ARACNE: An algorithm for the reconstruction of transcriptional regulatory networks in a mammalian cellular context

Ilya Nemenman

JCSB, Columbia
Andrea Califano, Adam Margolin, Kai Wang, Riccardo Dalla Favera, Katia Basso, Ulf Klein, Nila Banerjee, Chris Wiggins, Gustavo Stolovitzky

$$
\begin{aligned}
& \text { q-bio.MN/0411003, q-bio.MN/0410037 } \\
& \text { q-bio.MN/0410036, q-bio.QM/0406015 }
\end{aligned}
$$

COLUMBIA UNIVERSITY
in the city of new york

Gene expression analysis

Gene expression analysis

- clustering - too coarse
- reconstructing networks - Holy Grail!

Gene expression analysis

- clustering - too coarse
- reconstructing networks - Holy Grail!

Many methods exist, but:

- loops?
- what dependence (arrows) means?
- what approximations being made? controlling them?
- are approximations biologically sound?
- guarantees?

Gene expression analysis

- clustering - too coarse
- reconstructing networks - Holy Grail!

Many methods exist, but:

- loops?
- what dependence (arrows) means?
- what approximations being made? controlling them?
- are approximations biologically sound?
- guarantees?

Different conditions - (small) fluctuations around a steady state (in behavior, not expression).

Gene expression analysis

- clustering - too coarse
- reconstructing networks - Holy Grail!

Many methods exist, but:

- loops?
- what dependence (arrows) means?
- what approximations being made? controlling them?
- are approximations biologically sound?
- guarantees?

Different conditions - (small) fluctuations around a steady state (in behavior, not expression).
Akin to having covariance matrix and needing to invert it extremely many false positives (e. g. joint coregulation).

Model of dependence

No time series \rightarrow no directionality, steady state statistical dependencies only.

Model of dependence

No time series \rightarrow no directionality, steady state statistical dependencies only.

$$
-\log P\left(g_{i}\right)=\sum_{i} \phi_{i}\left(g_{i}\right)+\sum_{i j} \phi_{i j}\left(g_{i}, g_{j}\right)+\sum_{i j k} \phi_{i j k}\left(g_{i}, g_{j}, g_{k}\right)+\ldots
$$

Model of dependence

No time series \rightarrow no directionality, steady state statistical dependencies only.

$$
-\log P\left(g_{i}\right)=\sum_{i} \phi_{i}\left(g_{i}\right)+\sum_{i j} \phi_{i j}\left(g_{i}, g_{j}\right)+\sum_{i j k} \phi_{i j k}\left(g_{i}, g_{j}, g_{k}\right)+\ldots
$$

- use MaxEnt to define ϕ
- connections with spin glasses (reverse problem), generalizes MNs

Model of dependence

No time series \rightarrow no directionality, steady state statistical dependencies only.

$$
-\log P\left(g_{i}\right)=\sum_{i} \phi_{i}\left(g_{i}\right)+\sum_{i j} \phi_{i j}\left(g_{i}, g_{j}\right)+\sum_{i j k} \phi_{i j k}\left(g_{i}, g_{j}, g_{k}\right)+\ldots
$$

- use MaxEnt to define ϕ
- connections with spin glasses (reverse problem), generalizes MNs
- enough data to evaluate 2-way marginals only;

Model of dependence

No time series \rightarrow no directionality, steady state statistical dependencies only.

$$
-\log P\left(g_{i}\right)=\sum_{i} \phi_{i}\left(g_{i}\right)+\sum_{i j} \phi_{i j}\left(g_{i}, g_{j}\right)+
$$

- use MaxEnt to define ϕ
- connections with spin glasses (reverse problem), generalizes MNs
- enough data to evaluate 2-way marginals only;
- truncate at 2nd order potential (cannot reconstruct XOR), Bethe approximation
- Mutual information $I\left(g_{i}, g_{j}\right)=\left\langle\log P\left(g_{i}, g_{j}\right) / P\left(g_{i}\right) P\left(g_{j}\right)\right\rangle$ is enough to establish dependencies.

Notes

- introducing extra $\psi\left(g_{i}\right)$ describes response to perturbations (but: directionality)

Notes

- introducing extra $\psi\left(g_{i}\right)$ describes response to perturbations (but: directionality)
- biochemical dependencies persist as steady state statistical dependencies, but orders of interactions may change

Removing false positives - Data Processing inequality

$$
I(A, C) \leq \min [I(A, B), I(B, C)]
$$

Removing false positives - Data Processing inequality

$$
\begin{gathered}
A \\
I(A, C) \leq \min [I(A, B), I(B, C)]
\end{gathered}
$$

ARACNE: Look at every triplet and remove the weakest link.

Guarantees

Theorem. If MIs can be estimated with no errors, then ARACNE reconstructs the underlying interaction network exactly, provided this network is a tree and has only pairwise interactions.

Theorem. The maximum Mutual Information spanning tree is a subnetwork of the network reconstructed by ARACNE.

Theorem. Let $\pi_{i k}$ be the set of nodes forming the shortest path in the network between nodes i and k. Then, if MIs can be estimated without errors, ARACNE reconstructs an interaction network without false positives edges, provided: (a) the network consists only of pairwise interactions, (b) for each $j \in \pi_{i k}, I_{i j} \geq I_{i k}$. Further, ARACNE does not produce any false negatives, and the network reconstruction is exact iff (c) for each directly connected pair $i j$ and for any other node k, we have $I_{i j}>\min \left[I_{i k}, I_{j k}\right]$.

Why should it work?

- higher order interactions project into lower order ones
- large loops are locally trees (biological signals decorrelate very fast: $I(\mathrm{cMYK}, \mathrm{cMYK}) \approx 8$ bits, $I(\mathrm{cMYK}$, second best $) \approx 1$ bit.
- small loops (e. g., feed forward) are often transient

Gaussian kernels for MI estimation

$$
\begin{aligned}
f(x, y) & =\frac{1}{2 \pi h^{2} M} \sum_{i} \exp \left[-\frac{\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}}{2 h^{2}}\right] \\
f(x) & =\frac{1}{\sqrt{2 \pi} h M} \sum_{i} \exp \left[-\frac{\left(x-x_{i}\right)^{2}}{2 h^{2}}\right]
\end{aligned}
$$

Consistent for $M \rightarrow \infty$ for $h(M) \rightarrow 0$ and $[h(M)]^{2} M \rightarrow \infty$.

> How to select h ?
> Maybe $h=h(x, y)$?

Copula transform

Copula transform

Copula transform

No need to have $h=h(x, y)$.

Mutual information error vs. ranking error

Mutual information error vs. ranking error

Can use universal best h.

Synthetic networks

Synthetic networks

$$
\frac{d x_{i}}{d t}=a_{i} \prod_{j} \frac{I_{0, j}^{\nu_{j}}}{I_{j}^{\nu_{j}}+I_{j, 0}^{\nu_{j}}} \prod_{j}\left(1+\frac{A_{j}^{\nu_{j}}}{A_{j}^{\nu_{j}}+A_{j, 0}^{\nu_{j}}}\right)-b_{i} x_{i}
$$

Synthetic networks

$$
\frac{d x_{i}}{d t}=a_{i} \prod_{j} \frac{I_{0, j}^{\nu_{j}}}{I_{j}^{\nu_{j}}+I_{j, 0}^{\nu_{j}}} \prod_{j}\left(1+\frac{A_{j}^{\nu_{j}}}{A_{j}^{\nu_{j}}+A_{j, 0}^{\nu_{j}}}\right)-b_{i} x_{i}
$$

To simulate phenotypes and conditions, randomize a_{i} and b_{i} (and, possibly, $\left.I_{j, 0}, A_{j, 0}\right)$.

Benchmarks

$$
N_{T P}-N_{F P}=\max \text { at } p=10^{-4} .
$$

No sampling catastrophe!

Why RN's fail

Complete B-cell network

~ 129000 interactions (possibly scale-free).
Cell cycle

Ribosomal complex

c-MYC TF centered network

Protooncogene, involved in many cellular processes, 12% background interactions, top 5\% genetic hub, significant MI with ~ 2000 genes.

c-MYC TF centered network

Protooncogene, involved in many cellular processes, 12% background interactions, top 5\% genetic hub, significant MI with ~ 2000 genes.

56 1st neighbors

- pre-known targets 22
- Chlp-proven targets 11/12
- 2nd neighbors weaker enrichments
- Most 1st - major hubs

ARN1 iron uptake in Yeast

Global network properties

Hub 3-way interactions (conditional analysis)

G_{μ}^{*} - coarse conditions ($+/-$) of

 correlated gene clusters$I\left(g_{i}, g_{j} \mid G_{\mu}^{*}\right)$

- Independent of the hub (true 3way interactions)
- Large dynamic range

	$\mathbf{G}_{1^{+}}$	$\mathbf{G}_{\mathbf{1}^{-}}$	$\mathbf{G}_{\mathbf{}^{+}}$	$\mathbf{G}_{\mathbf{2}^{-}}$	\ldots	\ldots	$\mathbf{G}_{\mathbf{M}^{+}}$	$\mathbf{G}_{\mathbf{M}^{-}}$
Edge 1	1	0	1	0	0	0	1	0
Edge 2	0	1	0	0	0	1	0	0
$:$	0	0	1	0	1	0	0	0
Edge \mathbf{N}	1	0	0	1	0	0	0	1

Edge support conditions set size

$\#$	N_{P}	N_{V}	E.	$N_{\text {FP }}$	\boldsymbol{P}
1	2422	437	0.18	6520.1	1
2	1458	278	0.19	4541.5	1
3	1066	224	0.21	2514.1	1
4	847	182	0.21	1131.6	1
5	710	157	0.22	423.13	0.60
6	591	132	0.22	136.04	0.23
7	511	119	0.23	37.03	0.072
8	459	110	0.24	9.18	0.02
9	406	104	0.26	1.9	<0.01
10	367	96	0.26	0.37	<0.01

Edge support conditions set size

$\#$	N_{P}	N_{V}	E.	$N_{F P}$	P
1	2422	437	0.18	6520.1	1
2	1458	278	0.19	4541.5	1
3	1066	224	0.21	2514.1	1
4	847	182	0.21	1131.6	1
5	710	157	0.22	423.13	0.60
6	591	132	0.22	136.04	0.23
7	511	119	0.23	37.03	0.072
8	459	110	0.24	9.18	0.02
9	406	104	0.26	1.9	<0.01
10	367	96	0.26	0.37	<0.01

Probably better than original algorithm.

Conditional network sizes

Regulators, indeed

Of 168 c-MYC regulators:

GO Category	$\boldsymbol{N}_{\boldsymbol{C}}$	$\boldsymbol{N}_{\text {oat }}$	GO $\boldsymbol{N}_{\boldsymbol{C}}$	GO $\boldsymbol{N}_{\text {otat }}$	\boldsymbol{P}
Transcription Regulator Activity (MF)	21	116	2089	21014	0.0049
Protein Kinase (MF)	13	116	1004	21014	0.003
IKBK/NFKB cascade (BP)	5	117	222	24373	0.004
Immune Response (BP)	19	117	1664	24373	0.0003
Humoral IR (BP)	9	117	378	24373	0.0001
Reg. of Transcription, DNA-dep. (BP)	26	117	1697	24373	1.2×10^{-7}

