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Signal processing by small networks:
Does topology have a function?

CRP ;\5’\)
N Multiple functions (Wall et al.)
faci Stochasticity?
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chemical input, C

A A/genetic output, G

A Sign-Sensitive Delay

From Mangan et al., 2003
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Signal processing by small networks:
Are some networks better than others?

Logic Gates

From Guet et al.,
» Los Alamos
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Signal processing by small networks:
How much info can be transduced?

e Cross-talk “paradox”
— Single 2-state MAPKKK (channel capacity of 1 bit)
— Multiple on/off signals (>1bit) passing through

* How?
— Compartmentalization, extra signals, timing...
— Concentration of MAPKKK is real-valued! (multi-bit)

* Only ~100 molecules to make a decision
— Noisy
— How many bits can be sent with a few molecules?
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How to measure circuit quality
without knowing its function?

o+ 333
Good :
90% e = g(c,t +noise = P(glc
o Circuits § =4l )|f—>°° (glc)
170%
C,
e I(C,G)= jdcdg p(c,g)log p(c.8)
- p(c)p(g)
0<I(C,G)<min{S(C),S(G)}
30%
20%
e Guet example:
" C={(0,0),(1,0),(0,1),(1,1)}
G={+1, -1}
A Broken circuit: /(C,G)=5(G)=0
5 LosAIamos
aB Bad Circuits Slide 5
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What hides beneath?

e Circuits may not have oscillations

e Circuits may have multiple fixed points

* Fixed points may have different basins of attraction
* What defines P(c)?
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How good are circuits?

1. For a given topology,

exactly one promoter per gene,
each TF binds to one promoter type

@\‘Dmm‘»@ »G

2. For a given p(C),

each input is binary

CZ

3. Calculate g=g(¢) for all ccC

% = —Rgg +a, + Oc({g,c})

dt \/4

0

(actually do for 3 inputs)

» Los Alamos
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How good are circuits?

4. And maximize information.

0= argmax_ ( I(C,G)

biologically
realistic

6 = argmax, 1(G,C)~ A(N) Constraints on
3 _ 1(G,C)— _ time to and the
? arg maX@ ( ) miax /Tmm copy # at the
0 = argmax, I[(G,C)— A(N)—¥7,, /T ) Steady state.

high fidelity differentiation in development
high capacity signal transduction (/ac, photoreceptor)

Max=

5. How does max(I) depend on constraints?
On the topology?
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Linear noise:
How good is it?

e Poisson reactions

Hill
n—le——n——n +1

l l

* Master equation with
large N

* Fokker-Planck equation
o Steady state

» Steady state P(g|c):
multivariate normals

Van Kampen, 1997
Elf and Ehrenberg, 2003
Paulsson et al., 2004
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Numerics: increasing Ml
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° Los Alamos Steady State Numbers .
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Specific circuits:
more than 1 bit, almost optimal

o o
E E
: :
| 1 3 5 e 1 3 5
= 1.5: - s 1.5
. 25- ‘ 25
1o . : o - o 1 .,_ . ' ’ N - ©
] a3 . ) : T o3
0.5 2.1 0.5 21
0 4b éO 8‘0 ‘0 .1 éO 0 4b 60 § 86 160 1é0
Mean reporter copies ( NG ) Mean reporter copies NG )
Maxima: analytics and numerics
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Is topology important?
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Positive vs. negative feedback

26| | 7=0.001 negative
= 24 |
2.2 |
1-cycles 2-cycles 3-cycles p =0.0002
- ¥=0.01 p =0.0003

32.4-||| III IIII p =001
2.2 |
2

NF circuits have

1-cycles

» Los Alamos
NATIONAL LABORATORY
EST.1943

2-cycles

Ygap ‘ higher capacity and

3-cycles

reach it easier

Explanation available in terms of

decreased state variance
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Multiple functions?

Input 1 (log 10 units)

-0.5 0 0.5
Input 2 (log 0 units)

Input 1 (log 10 units)

Input 2 (Iog 10 unlts)

45%‘

| Chemical State | 000 | 001 | 010 | 011 | 100 | 101 | 110 111
Peak 1 2 6 1 5] 4 8 3 7
Peak 2 2 6 4 1 G 8 3 7
Peak 3 2 1 4 6 3 3 8 7
Peak 4 2 1 6 4 2 3 8 7
Peak 5 6 2 d 1 8 4 7 3

» Los Alamos
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Robust maxima?

Peak 1
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Predictions

Fast response and autorepression - correlated
Rosenfeld et al. (2002) - autorepression causes fast response
Alternative: Fast response requires negative feedback (cannot average)

Negative Feedback No Negative Feedback

Proteolysis 9 4
No Proteolysis 44 HE
l\j
> Los Alamos .
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Conclusions 1

= Small, noisy, generic biochemical networks easily achieve >1 bit of
information throughput over short times with a handful of molecules.

= The circuits come very close to transmitting the maximum
information.

= No fine tuning is required.

=  While all circuits are good, negative feedback circuits are marginally
better (skipped in this talk).

= Multiple functions per circuit (more exploration is heeded).
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How good is analysis?

* A multi-step transcription/translation/binding reaction

modeled as a single-step elementary one

Hill
n —le——n,—

>n, +1
e |[s this valid?

* |n general, how do we coarse-grain biochemical
reactions? (modeling each one is infeasible)

 What is the right way to simulate a biochemical network?
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Michaelis-Menten reaction:
Deterministic coarse-graining

ky
k_y

d[SE] _
dt
dP

S

SE—%2 s p

k[SI[E]-(k, + &, )[SE]

kik, [E][S]

dt  k +k, +k([S] ¢

* Adiabatic approximation

— Many enzyme turnovers for small fractional
change in [P], [S]

I
-

 How to do coarse-graining with fluctuations?

» Los Alamos

NATIONAL LABORATORY
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Michaelis-Menten reaction (or a pore):
Stochastic coarse-graining

P

S SE P

kl k_, SQ,‘
o-rn)-r0) )T TN o

4 Poisson processes

with (almost) constant rates k,-\
P(0)

= jd5Q1jd5Q2 : ~-jd5QT/5tHP(5Qi)5(Q - Z5Qi)

Functional integral over all paths - can get full MGF

. Los Alamos (Simper version of Sinitsyn and Nemenman, 2007)
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Michaelis-Menten reaction:
Periodic modulation of two rates

ket

MGF = MGF, + [[dSdP F

5. /'

> Berry curvature
k[S] As in adiabatic QM

k,+k_,

v (k)

Shielding

J=J g+, =dy+ [k

pump

3 Y~ Pump, ratchet

» Los Alamos
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Example 1: Bulk

k, =15+ Rcoswt; k,=1.5+Rsinwt,

equilibrium, on average: J, =0

2-5 T T T T T . 2 T T T T T T T T
—e— R=1.0 0.6
- R =0.75
..... [ - R =0_5 IR,
2 ¢ 1 N
059 F ¢ ¢ %
qw 1.5 I 7 - \\\\\
o » 1) ™ X
" AT 5 056
'\5 1 A g 1 = }
_—"‘/ ‘ \\\\
AT 0.53 ~J T
051 7 T e \
---------- .'” \\\
AT e o -
o ‘_‘.—. ...... e
0 Z-= - 1 1 1 0.50 1 1 1 Il L L L
0 0.005 0.01 0.015 0.02 0.025 0 0.2 0.4 0.6 0.8 1 1.2 1.4
w. Hz R.s
> Los Alamos Pump current up to 10% for realistic enzymes |
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Example 2:
Single molecule experiments

ki

\SE—2 s p Xie et al.
Bezrukov et al.

1.0 T T T T T T T ’ T T T
L]
0.9 S = sl
0.8 s
F ,’. ® numerics (k_1=0)

. . ' -+ theory (k =0) |

0.7 g A numerics1(k_|=1 .0)
hd theory (k =1.0)
. ¢ = numerics (k =5.0)
®
0.6 - " : e theory (K ,=5.0) -
3 o
®
[ 13
0.54 R .
T T T T T T k
2 4 6 g8 10 R,
- Los Alamos .
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Conclusions 2

= Can coarse-grain biochemical reactions
=  Pump effect (nonzero mean noise)
= Fano factor non-unity: non-Poisson statistics

» Los Alamos |
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