A Bayesian Estimator of Entropies in a Severely Undersampled Regime: Theory and Applications to the Neural Code

Ilya Nemenman
LANL/CCS-3

Entropy (unique measure of randomness, in bits)

$$
\begin{gathered}
S[X]=-\sum_{x=1}^{K} p_{x} \log p_{x}=-\left\langle\log p_{x}\right\rangle \\
0 \leq S[X] \leq \log K \quad \text { (number of "bins") } \\
N\left(x_{0}, \sigma^{2}\right) \Rightarrow S[X]=\frac{1}{2} \log \left(2 \pi e \sigma^{2}\right)
\end{gathered}
$$

Why knowing entropy is interesting?

- Information content of symbolic sequences
- Spike trains
- Bioinformatics
- Linguistics
- Dynamical systems
- Complexity of dynamics
- Dimensions of strange attractors
- Rare events statistics

Why is this a difficult problem?

Maximum likelihood (plug-in) estimation:

$$
\begin{aligned}
& \Longleftrightarrow p_{i}^{M L}=\frac{n_{i}}{N} \\
& \text { (K - \# of bins) } \\
& S_{M L}=-\sum_{i} \frac{n_{i}}{N} \log \frac{n_{i}}{N} \\
& \left\langle S_{M L}\right\rangle \leq-\sum_{i} \frac{\left\langle n_{i}\right\rangle}{N} \log \frac{\left\langle n_{i}\right\rangle}{N}=S \\
& !
\end{aligned}
$$

Why is this a difficult problem?

$$
\left\langle S_{M L}\right\rangle \leq-\sum_{i} \frac{\left\langle n_{i}\right\rangle}{N} \log \frac{\left\langle n_{i}\right\rangle}{N}=S
$$

bias $\propto-\frac{2^{S}}{N} \gg(\text { variance })^{1 / 2} \propto \frac{1}{\sqrt{N}}$

Fluctuations underestimate entropies (and usually overestimate mutual informations)
(Need smoothing)

Why is this a difficult problem?

- Events of negligible probability may contribute a lot to entropy due to log (not true for high order entropies, such as Renyi ≥ 2)

$$
R_{\alpha}=\frac{1}{1-\alpha} \log \sum p_{i}^{\alpha}
$$

- Small errors in p--> large errors in S
- $S($ best $p) \neq$ best $S(p)$
- But can use R to bound S

Why is this a difficult problem No go theorems

For N i.i.d. samples from a distribution on K
(countable or $\gg N$) bins (note that non-i.i.d is the same as K--> $)$:

- No universal rates of convergence exist for LZ, plug-in, and other estimators (Antos \& Kontoyiannis, 2002; Wyner \& Foster, 2003)
- For and universal estimator, there is always a bad distribution with bias $\sim 1 / \log N$.
- No finite variance unbiased entropy estimators (Grassberger 2003, Paninski 2003)
- No universally consistent multiplicative estimator (Rubinfeld et al, 2002)
- Universal consistent estimators only possible for N/K-->const (Paninski, 2003)

In other words: Correct smoothing possible only for...

$S \leq \log N$

(often not enough)

Incorrect smoothing = over- or underestimation.
Developed for problems ranging from mathematical finance to computational biology.

```
For estimation of entropy at K/N\leq1 see:
Grassberger 1989, 2003, Antos and Kontoyiannins 2002, Wyner and
Foster 2003, Batu et al. 2002, Paninski 2003, Panzeri and Treves
1996, Strong et al. }199
```


What if $S>\log N$?

But there is hope (Ma, 1981):
For uniform K-bin distribution the first coincidence occurs for

$$
\begin{aligned}
& N_{c} \sim \sqrt{K}=\sqrt{2^{s}} \\
& S \sim 2 \log N_{c}
\end{aligned} \quad \text { Time of first coincidence }
$$

Can make estimates for square-root-fewer samples! Can this be extended to nonuniform cases?

- Assumptions needed (won't work always)
- Estimate entropies without estimating distributions (good entropy estimator \neq good distribution estimator).

What if $S>\log N$?

- Imagine sampling sequences of length m from N_{c} samples with replacements.
- $\sim N_{c}{ }^{m}$ different sequences
- Uniformely distributed due to equipartition $\log p=-m S$
- Thus using Ma: $m S=2 \log N_{c}{ }^{m}$, and $S=2 \log N_{c}{ }^{m}$
- What happens earlier: non-independence of sequences, or equipartition?
- Sometimes may estimate entropies with little bias using coincidences (LZ) even for non-uniform distributions.

What is unknown?

Binomial distribution:

$$
\begin{aligned}
& S=-p \log p- \\
& \quad(1-p) \log (1-p)
\end{aligned}
$$

What is unknown?

 (Even worse for large K.)

For large K

- The problem is more severe.
- Uniformize on S (approximately).
- Will work for a certain type of distributions only.

For large K the problem is extreme (S known a priori)

$$
P_{\beta}\left(\left\{q_{i}\right\}\right)=\frac{1}{Z(\beta)} \delta\left(1-\sum_{i=1}^{K} q_{i}\right) \prod_{i=1}^{K} q_{i}^{\beta-1}
$$

Dirichlet priors, a.k.a., adding pseudocounts (include the uniform prior, the ML prior, and others).
Inference is analytic

For large K the problem is extreme (S known a priori)

$$
\begin{aligned}
& \xi(\beta)=\left\langle S_{\beta}(0)\right\rangle=\psi_{0}(K \beta+1)-\psi_{0}(\beta+1) \\
& \sigma^{2}(\beta)=\left\langle\delta S_{\beta}^{2}(0)\right\rangle=\frac{\beta+1}{K \beta+1} \psi_{1}(\beta+1)-\psi_{1}(K \beta+1)
\end{aligned}
$$

But a priori entropy distribution is narrow; need $N>K$ to overcome the bias.

Uniformize on S

$$
P_{\beta}\left(\left\{q_{i}\right\}, \beta\right)=\left.\frac{1}{Z} \delta\left(1-\sum_{i=1}^{K} q_{i}\right) \prod_{i=1}^{K} q_{i}^{\beta} \frac{d S}{d \beta}\right|_{N=0} P\left(\left.S\right|_{N=0}\right)
$$

- A delta-function sliding along the a priori entropy expectation.
- This is also Bayesian model selection (small β large phase space)
- Have error bars (dominated by posterior variance in β, not at fixed β).

Typical cases (correct prior)

Atypical cases (incorrect prior)

For NSB solution

- Posterior variance scales as $\left(N-K_{1}\right) / K$
- Little bias, except for distribution with long rank-order tails.
- Counts coincidences and works in Ma regime (if works, see above).
- Is consistent.
- Allows infinite K

$$
\begin{aligned}
& \hat{S}=\left(C_{\gamma}-\ln 2\right)+2 \ln N-\psi_{0}\left(\frac{N-K_{1}}{N}\right)+O(1 / K, 1 / N) \\
& \delta \hat{S}^{2}=\psi_{1}\left(\frac{N-K_{1}}{N}\right)+O(1 / K, 1 / N) \\
& (\text { Nemenman et al. 2002, Nemenman 2003) }
\end{aligned}
$$

General principle?

Priors uniforms on quantities of interest

Software implementation

...and many other details:
http://nsb-entropy.sf.net

H. L. Leertouwer

Questions

- Can we understand the code?
- Which features of it are important?
- Rate of precise timing (how precise)?
- Synergy between spikes?
- What/how much does the fly know?
- Is there an evidence for optimality?

Recording from fly's H1

Natural stimuli

electrode holder
and amplifier
(Land and Collett, 1974)

Natural stimuli

Natural stimulus and response

Highly repeatable spikes (not rate coding)

Experiment design

$$
\begin{aligned}
& T=4 \\
& W_{0} \quad W_{1} \ldots W_{9} \ldots W_{7} \ldots W_{0} \quad W_{1} \\
& \mathrm{w}_{0}=0000 \quad \mathrm{w}_{2}=0010 \\
& w_{1}=0001 \cdots w_{15}=11111 \\
& P(W) \longrightarrow S(W)=S^{t}
\end{aligned}
$$

$$
I=S^{t}-S^{n}
$$

10101000010010000101010000100001 10100100010100000011001000001001 01110000011010000101010000100010 01101000010010000101010001000010 10101000011010000011010000101001
$\begin{array}{lllll}P_{l}(W) & P_{2}(W) & \cdots & P_{M-l}(W) & P_{M}(W)\end{array}$

(Strong et al., 1998)

Problems

- Total of about 10-15 min of recordings (limited by stationarity of the outside world)
- At most 200 repetitions
- Stimulus correlation of 60ms: only 10000 independent samples (repeated or nonrepeated)
- Need to sample words of length 30 ms (behavioral) to 60 ms (stimulus) at resolution down to 0.2 ms (binary words of length up to ~ 100).

Synthetic test of NSB

Refractory Poisson, rate 0.26 spikes $/ \mathrm{ms}$, refractory period 1.8 ms , $T=15 \mathrm{~ms}$, discretization 0.5 ms , true entropy 13.57 bits.

- Estimator is unbiased if consistent and self-consistent.
- Always do this check.
(Nemenman et al. 2004)

Natural data (all S)

$$
\begin{aligned}
\varepsilon= & \frac{S^{N S B}(N)-S}{\delta S^{N S B}(N)} \\
\approx & \frac{S^{N S B}(N)-S(N=\max)}{\delta S^{N S B}(N)} \\
& \text { Max }=196 \text { repeats }
\end{aligned}
$$

(Nemenman et al. 2004)

Neural code: What remains hidden?

- Given entropy of slices, find the mean noise entropy with error bars (slice entropies are correlated and bimodal).
- Samples for total entropy are also correlated and have long tailed Zipf plots.
- For very fine discretizations and $T \sim 30 \mathrm{~ms}$ need extrapolation.

Information rate at $T=25 \mathrm{~ms}$

0.2 ms -- comparable to channel opening/ closing noise and experimental noise.

- Information present up to $\tau=0.3 \mathrm{~ms}$
- 30\% more information at $\tau<1 \mathrm{~ms}$. Encoding by refractoriness?
- ~1 bit/spike at 150 spikes/s and lowentropy correlated stimulus. Design principle?
- Efficiency $>50 \%$ for τ $>1 \mathrm{~ms}$, and $\sim 75 \%$ at 25ms. Optimized for natural statistics?

Synergy from spike combinations

New bits (optimized code)

- Spikes are very regular (>10 beats) WKB decoder? Interspike potential?
- CF at half its value, but fly gets new bits every 25 ms
- Independent info (even though entropies are T dependent).

Behaviorally optimized code!

Precision is limited by physical noise sources

A very intelligent fly

- One often considers a 1/f rankorder plot as a sign of intelligence.
- But...

A very intelligent fly

- One often considers a 1/f rankorder plot as a sign of intelligence.
- But...

Zipf law may be a result of complexity of the world, not the language.

