A Bayesian Estimator of Entropies in a Severely Undersampled Regime: Theory and Applications to the Neural Code

Ilya Nemenman LANL/CCS-3

Entropy (unique measure of randomness, in bits)

$$S[X] = -\sum_{x=1}^{K} p_x \log p_x = -\langle \log p_x \rangle$$

$$0 \le S[X] \le \log K \quad \text{(number of "bins")}$$

$$N(x_0, \sigma^2) \Rightarrow S[X] = \frac{1}{2} \log(2\pi e \sigma^2)$$

Why knowing entropy is interesting?

- Information content of symbolic sequences
 - Spike trains
 - Bioinformatics
 - Linguistics
- Dynamical systems
 - Complexity of dynamics
 - Dimensions of strange attractors
- Rare events statistics
- . . .

Why is this a difficult problem?

Maximum likelihood (plug-in) estimation:

 $\langle S_{ML} \rangle \le -\sum \frac{\langle n_i \rangle}{N} \log \frac{\langle n_i \rangle}{N} = S$

$$p_i, \ i=1...K$$
 (K - # of bins)
$$i=1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6$$
 (N - sample size)
$$S_{ML}=-\sum_i \frac{n_i}{N}\log\frac{n_i}{N}$$

Why is this a difficult problem?

$$\langle S_{ML} \rangle \leq -\sum_{i} \frac{\langle n_{i} \rangle}{N} \log \frac{\langle n_{i} \rangle}{N} = S$$

bias
$$\propto -\frac{2^S}{N} \gg \text{(variance)}^{1/2} \propto \frac{1}{\sqrt{N}}$$

Fluctuations underestimate entropies

(and usually overestimate mutual informations)

(Need smoothing)

4

Why is this a difficult problem?

 Events of negligible probability may contribute a lot to entropy due to log (not true for high order entropies, such as Renyi ≥2)

$$R_{\alpha} = \frac{1}{1 - \alpha} \log \sum p_i^{\alpha}$$

- Small errors in p --> large errors in S
- $S(\text{best }p) \neq \text{best } S(p)$
- But can use R to bound S

Why is this a difficult problem No go theorems

For N i.i.d. samples from a distribution on K (countable or >>N) bins (note that non-i.i.d is the same as $K-->\infty$):

- No universal rates of convergence exist for LZ, plug-in, and other estimators (Antos & Kontoyiannis, 2002; Wyner & Foster, 2003)
- For and universal estimator, there is always a bad distribution with bias ~1/log N.
- No finite variance unbiased entropy estimators (Grassberger 2003, Paninski 2003)
- No universally consistent multiplicative estimator (Rubinfeld et al, 2002)
- Universal consistent estimators only possible for N/K-->const (Paninski, 2003)

In other words: Correct smoothing possible only for...

$$S \leq \log N$$

(often not enough)

Incorrect smoothing = over- or underestimation.

Developed for problems ranging from mathematical finance to computational biology.

For estimation of entropy at $K / N \le 1$ see: Grassberger 1989, 2003, Antos and Kontoyiannins 2002, Wyner and Foster 2003, Batu et al. 2002, Paninski 2003, Panzeri and Treves 1996, Strong et al. 1998

What if S>logN?

But there is hope (Ma, 1981):

For uniform *K*-bin distribution the first coincidence occurs for

$$N_c \sim \sqrt{K} = \sqrt{2^S}$$

$$S \sim 2 \log N_c$$
Time of first coincidence

Can make estimates for square-root-fewer samples!
Can this be extended to nonuniform cases?

- Assumptions needed (won't work always)
- Estimate entropies without estimating distributions (good entropy estimator ≠ good distribution estimator).

What if S>logN?

- Imagine sampling sequences of length m from N_c samples with replacements.
- $\sim N_c^m$ different sequences
- Uniformely distributed due to equipartition log p =-mS
- Thus using Ma: $mS=2 \log N_c^m$, and $S=2 \log N_c^m$
- What happens earlier: non-independence of sequences, or equipartition?
- Sometimes may estimate entropies with little bias using coincidences (LZ) even for non-uniform distributions.

4

What is unknown?

Binomial distribution:

$$S = -p \log p - (1-p)\log(1-p)$$

uniform (no assumptions)

p

S

What is unknown?

For large K

- The problem is more severe.
- Uniformize on S (approximately).
- Will work for a certain type of distributions only.

For large K the problem is extreme (S known a priori)

$$P_{\beta}(\{q_i\}) = \frac{1}{Z(\beta)} \delta(1 - \sum_{i=1}^{K} q_i) \prod_{i=1}^{K} q_i^{\beta - 1}$$

Dirichlet priors, a.k.a., adding pseudocounts (include the uniform prior, the ML prior, and others).

Inference is analytic

For large K the problem is extreme (S known a priori)

$$\xi(\beta) = \left\langle S_{\beta}(0) \right\rangle = \psi_0(K\beta + 1) - \psi_0(\beta + 1)$$

$$\sigma^2(\beta) = \left\langle \delta S_{\beta}^2(0) \right\rangle = \frac{\beta + 1}{K\beta + 1} \psi_1(\beta + 1) - \psi_1(K\beta + 1)$$

But a priori entropy distribution is narrow; need *N>K* to overcome the bias.

-

Uniformize on S

$$P_{\beta}(\{q_i\}, \beta) = \frac{1}{Z} \delta(1 - \sum_{i=1}^{K} q_i) \prod_{i=1}^{K} q_i^{\beta} \frac{dS}{d\beta} \Big|_{N=0} P(S|_{N=0})$$

- A delta-function sliding along the a priori entropy expectation.
- This is also Bayesian model selection (small β large phase space)
- Have error bars (dominated by posterior variance in β , not at fixed β).

Typical cases (correct prior)

Atypical cases (incorrect prior)

For NSB solution

- Posterior variance scales as $(N K_1) / K$
- Little bias, except for distribution with long rank-order tails.
- Counts coincidences and works in Ma regime (if works, see above).
- Is consistent.
- Allows infinite K

$$\hat{S} = (C_{\gamma} - \ln 2) + 2 \ln N - \psi_0 \left(\frac{N - K_1}{N}\right) + O(1/K, 1/N)$$

$$\delta \hat{S}^2 = \psi_1 \left(\frac{N - K_1}{N}\right) + O(1/K, 1/N)$$

(Nemenman et al. 2002, Nemenman 2003)

General principle?

Priors uniforms on quantities of interest

Software implementation

...and many other details:

http://nsb-entropy.sf.net

- Can we understand the code?
- Which features of it are important?
 - Rate of precise timing (how precise)?
 - Synergy between spikes?
- What/how much does the fly know?
- Is there an evidence for optimality?

4

Natural stimuli

Natural stimuli

_

Natural stimulus and response

Highly repeatable spikes (not rate coding)

4

Experiment design

Problems

- Total of about 10-15 min of recordings (limited by stationarity of the outside world)
- At most 200 repetitions
- Stimulus correlation of 60ms: only 10000 independent samples (repeated or nonrepeated)
- Need to sample words of length 30 ms (behavioral) to 60 ms (stimulus) at resolution down to 0.2 ms (binary words of length up to ~100).

Synthetic test of NSB

Refractory Poisson, rate 0.26 spikes/ms, refractory period 1.8 ms, *T*=15ms, discretization 0.5ms, true entropy 13.57 bits.

- Estimator is unbiased if consistent and self-consistent.
- Always do this check.

(Nemenman et al. 2004)

Natural data (all S)

$$\varepsilon = \frac{S^{NSB}(N) - S}{\delta S^{NSB}(N)}$$

$$\approx \frac{S^{NSB}(N) - S(N = \max)}{\delta S^{NSB}(N)}$$

Max=196 repeats

(Nemenman et al. 2004)

- Given entropy of slices, find the mean noise entropy with error bars (slice entropies are correlated and bimodal).
- Samples for total entropy are also correlated and have long tailed Zipf plots.
- For very fine discretizations and T~30ms need extrapolation.

Information rate at T=25ms

0.2 ms -- comparable to channel opening/ closing noise and experimental noise.

- Information present up to τ =0.3 ms
- 30% more information at τ<1ms. Encoding by refractoriness?
- ~1 bit/spike at 150 spikes/s and lowentropy correlated stimulus. Design principle?
- Efficiency >50% for τ
 >1ms, and ~75% at
 25ms. Optimized for natural statistics?

New bits (optimized code)

- Spikes are very regular (>10 beats)
 WKB decoder?
 Interspike potential?
- CF at half its value, but fly gets new bits every 25 ms
- Independent info (even though entropies are T dependent).

Behaviorally optimized code!

Precision is limited by physical noise sources

$$T = 6 \text{ ms}$$

$$\tau = 0.2 \text{ ms}$$

1.49 vs.
$$1.61 \cdot 10^6$$
 ph/(s·rec)

$$I^+ - I^- = 0.020 \pm 0.011$$
 bits

(Lewen, et al 2001)

A very intelligent fly

- One often considers a 1/f rankorder plot as a sign of intelligence.
- But...

A very intelligent fly

- One often considers a 1/f rankorder plot as a sign of intelligence.
- But...

Zipf law may be a result of complexity of the world, not the language.