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Entropy (unique measure of

:h randomness, in bits)

K
SIX1=-) p. logp, =—(logp,)
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0< S[X] <L logK (number of “bins”)
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Why knowing entropy is

i interesting”?

= Information content of symbolic sequences
= Spike trains
= Bioinformatics
= Linguistics
= Dynamical systems
= Complexity of dynamics
= Dimensions of strange attractors

s Rare events statistics




Why is this a difficult problem?

Maximum likelihood (plug-in) estimation:
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i Why is this a difficult problem?

<SML> < —2 <7\”> log <;l\’]> =3
log K \

. 2° . 1
bias o< — v > (variance)'” oc —

JN

i

Fluctuations underestimate entropies
(and usually overestimate mutual informations)

(Need smoothing)



i Why is this a difficult problem?

= Events of negligible probability may contribute
a lot to entropy due to log (not true for high
order entropies, such as Renyi 22)

1 o
Ra T 1_a10g2pi

= Small errors in p --> large errors in S
= S(best p) #best S(p)
= But can use Rto bound S



Why is this a difficult problem
No go theorems

For N i.i.d. samples from a distribution on K
(countable or >>N) bins (note that non-i.i.d is the
same as K-->00):

= No universal rates of convergence exist for LZ, plug-in, and
other estimators (Antos & Kontoyiannis, 2002; Wyner & Foster,
2003)

= For and universal estimator, there is always a bad distribution
with bias ~1/log N.

= No finite variance unbiased entropy estimators (Grassberger
2003, Paninski 2003)

= No universally consistent multiplicative estimator (Rubinfeld et
al, 2002)

= Universal consistent estimators only possible for N/K-->const
(Paninski, 2003)



In other words: Correct
smoothing possible only for...

S<logN

(often not enough)
i= 1 2 3 4 5 6

Incorrect smoothing = over- or underestimation.

Developed for problems ranging from
mathematical finance to computational biology.

For estimation of entropy at K/ N <1 see:

Grassberger 1989, 2003, Antos and Kontoyiannins 2002, Wyner and
Foster 2003, Batu et al. 2002, Paninski 2003, Panzeri and Treves
1996, Strong et al. 1998



What if S>logN ?

But there is hope (Ma, 1981):

For uniform K-bin distribution the first coincidence occurs

for
N, ~JK =2°

Time of first coincidence
S~2logN <«

Can make estimates for square-root-fewer samples!
Can this be extended to nonuniform cases?

« Assumptions needed (won’t work always)
- Estimate entropies without estimating distributions
(good entropy estimator # good distribution estimator).



i What if S>logN?

Imagine sampling sequences of length m from N,
samples with replacements.

~N_m different sequences

Uniformely distributed due to equipartition log p =-mS
Thus using Ma: mS=2 logN_/™, and S=2 logN_"

What happens earlier: non-independence of
sequences, or equipartition?

Sometimes may estimate entropies with little bias
using coincidences (LZ) even for non-uniform
distributions.



i What is unknown??

Binomial distribution:
S=-plogp-
(I-p)log(1-p)

Assume (Bayes)
a

uniform (no assumptions)

uy. uy.
p S



i What is unknown?

N N

= plases the estimation.

1.0‘:||L|1||TJE=-I"AI"‘I_I_T' g_ﬁest—sﬂue
Selection of wrong “unknown” 95..:
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i For large K

= [he problem is more severe.
= Uniformize on S (approximately).

= Will work for a certain type of
distributions only.




For large K the problem is
extreme (S known a priori)
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For large K the problem is

i extreme (S known a priori)

E(B)=(S,(0)) = Wy (KB+ D)=y, (B+1)
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i Uniformize on S

1 K X dsS
Pﬁ({ql'}7ﬁ):E 5(1_21.:1%) ll:llqzﬁ EN:O P(S‘Nzo)

= A delta-function sliding along the a priori entropy
expectation.

= This is also Bayesian model selection (small B large phase
space)

= Have error bars (dominated by posterior variance in 3, not
at fixed 3 ).




Typical cases
(correct prior)
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Atypical cases
(incorrect prior)
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i For NSB solution

Posterior variance scales as (N-K,)/K

Little bias, except for distribution with long rank-order
tails.

Counts coincidences and works in Ma regime (if
works, see above).

Is consistent.
Allows infinite K
§:(Cy—1n2)+21nN—1//0(N]_vK1j+0(1/K,1/N)

5S? =1//1(N]_VK1)+0(1/K,1/N)

(Nemenman et al. 2002, Nemenman 2003)



i General principle?

Priors uniforms on quantities
of interest




i Software implementation

...and many other details:

http://nsb-entropy.sf.net



H. L. Lee



i Questions

= Can we understand the code?

= Which features of it are important?
= Rate of precise timing (how precise)?
= Synergy between spikes?

= What/how much does the fly know?
= Is there an evidence for optimality?




Recording from fly’s H"
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Natural stimuli
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electrode holder
and amplifiei

<«— rotation axis

T = 60ms
response = 30ms

(Lewen et al, 2001)



‘L Natural stimulus and response
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Highly repeatable spikes

(not rate coding)




Experiment design

T—4 {000 e o 00 ® (]
| o0 o o o o0 © e o°

N=5< o0® | X X J o0 O L] o

q f f | eee oo oo o o
" .”l . 00 ® o000 oo e o0 o
1010100001001000010 1010000100001
1010010001010000001 1001000001001
01110000011010000101010000100010

ﬂ;_o 00 1‘ l’l 0|0 11 lHo 00 0|l 01101000010010000101010001000010
! 10101000011010000011010000101001

| T/ . |
W, W, ... We...W,...W, W $ 1 A 4 4
W,=0000 W,=0010 P/ (W)  Py(W) -+ Py, (W) P, (W)
Wy=0001 W= 1111 SW)  SyW) Syt (W) Sy(W)
N o — r - o
P(W) ——= S(W)=5 S"= <S> = IMEST
i

e r=8Tog
(Strong et al., 1998)



i Problems

= Total of about 10-15 min of recordings (limited by
stationarity of the outside world)

= At most 200 repetitions

= Stimulus correlation of 60ms: only 10000 independent
samples (repeated or nonrepeated)

= Need to sample words of length 30 ms (behavioral) to
60 ms (stimulus) at resolution down to 0.2 ms (binary
words of length up to ~100).




S. bits

Synthetic test of NSB

Refractory Poisson, rate 0.26 spikes/ms, refractory period 1.8 ms,
T=15ms, discretization 0.5ms, true entropy 13.57 bits.
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NSB. k=2

_______

i
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log,nN

= Estimator is
unbiased if
consistent and
self-consistent.

= Always do this
check.

(Nemenman et al. 2004)



i Natural data (all S)

N=T5
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(Nemenman et al. 2004)



Neural code:

i What remains hidden?

= Given entropy of slices, find the mean
noise entropy with error bars (slice
entropies are correlated and bimodal).

= Samples for total entropy are also
correlated and have long tailed Zipf

plots.

= For very fine discretizations and
T~30ms need extrapolation.
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0.2 ms -- comparable to channel opening/
closing noise and experimental noise.

Information present up
tot=0.3 ms

30% more information
at t<1ms. Encoding by
refractoriness?

~1 bit/spike at 150
spikes/s and low-
entropy correlated
stimulus. Design
principle?

Efficiency >50% for t
>1ms, and ~75% at
25ms. Optimized for
natural statistics?



Synergy from spike
combinations
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New bits (optimized code)

« Spikes are very
1200 — - regular (>10 beats)
so | [, T WKB decoder?
L | Interspike potential?
e P T - CF at half its value,
BEE e _ but fly gets new bits
--------------------- T.ms every 25 ms
I * Independent info
TR entropies are T
R Ty dependent).

-------
[

0 10 20 30 40 50 60 Behaviorally
optimized code!



Precision is limited by physical
noise sources
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(Lewen, et al 2001)



= One often
considers a
1/f rank-
order plot as
a sign of
intelligence.

= But...
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A very intelligent fly
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= But... R L o A e

Rank

Zipf law may be a result of complexity of the world,
not the language.
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