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Entropy (unique measure of
randomness, in bits)
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Why knowing entropy is
interesting?
 Information content of symbolic sequences

 Spike trains
 Bioinformatics
 Linguistics

 Dynamical systems
 Complexity of dynamics
 Dimensions of strange attractors

 Rare events statistics
 …



Why is this a difficult problem?
Maximum likelihood (plug-in) estimation: 
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Why is this a difficult problem?
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Fluctuations underestimate entropies
(and usually overestimate mutual informations)

(Need smoothing)
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Why is this a difficult problem?
 Events of negligible probability may contribute

a lot to entropy due to log (not true for high
order entropies, such as Renyi ≥2)

 Small errors in p --> large errors in S
 S(best p) ≠best S(p)
 But can use R to bound S
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Why is this a difficult problem
No go theorems

 No universal rates of convergence exist for LZ, plug-in, and
other estimators (Antos & Kontoyiannis, 2002; Wyner & Foster,
2003)

 For and universal estimator, there is always a bad distribution
with bias ~1/log N.

 No finite variance unbiased entropy estimators (Grassberger
2003, Paninski 2003)

 No universally consistent multiplicative estimator (Rubinfeld et
al, 2002)

 Universal consistent estimators only possible for N/K-->const
(Paninski, 2003)

For N i.i.d. samples from a distribution on K
(countable or >>N)  bins (note that non-i.i.d is the
same as K-->∞):



In other words: Correct
smoothing possible only for…

S ! logN

(often not enough)

For estimation of entropy at                    see:
Grassberger 1989, 2003, Antos and Kontoyiannins 2002, Wyner and
Foster 2003, Batu et al. 2002, Paninski 2003, Panzeri and Treves
1996, Strong et al. 1998

K / N ! 1

Incorrect smoothing = over- or underestimation.

Developed for problems ranging from
mathematical finance to computational biology.
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What if S>logN ?
But there is hope (Ma, 1981):

For uniform K-bin distribution the first coincidence occurs
for

 

N
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Can make estimates for square-root-fewer samples!
Can this be extended to nonuniform cases?

• Assumptions needed (won’t work always)
• Estimate entropies without estimating distributions

(good entropy estimator ≠ good distribution estimator).

Time of first coincidence



What if S>logN?
 Imagine sampling sequences of length m from Nc

samples with replacements.
 ~Nc

m different sequences
 Uniformely distributed due to equipartition log p =-mS
 Thus using Ma: mS=2 logNc

m, and S=2 logNc
m

 What happens earlier: non-independence of
sequences, or equipartition?

 Sometimes may estimate entropies with little bias
using coincidences (LZ) even for non-uniform
distributions.



What is unknown?
Binomial distribution:

S = ! p log p !

!!!!(1! p)log(1! p)

p     1-p uniform (no assumptions)

p S



What is unknown?

Selection of wrong “unknown”
biases the estimation.

(Even worse for large K.)
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For large K
 The problem is more severe.
 Uniformize on S (approximately).
 Will work for a certain type of

distributions only.



For large K the problem is
extreme (S known a priori)

Dirichlet priors, a.k.a.,
adding pseudocounts
(include the uniform
prior, the ML prior, and
others).
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For large K the problem is
extreme (S known a priori)

But a priori entropy
distribution is narrow;
need N>K to
overcome the bias.
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Uniformize on S
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 A delta-function sliding along the a priori entropy
expectation.

 This is also Bayesian model selection (small     large phase
space)

 Have error bars (dominated by posterior variance in   , not
at fixed    ).
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Typical cases
(correct prior)



Atypical cases
(incorrect prior)



For NSB solution
 Posterior variance scales as
 Little bias, except for distribution with long rank-order

tails.
 Counts coincidences and works in Ma regime (if

works, see above).
 Is consistent.
 Allows infinite K

N ! K
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(Nemenman et al. 2002, Nemenman 2003)
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General principle?

Priors uniforms on quantities
of interest



Software implementation

…and many other details:

http://nsb-entropy.sf.net



H. L. Leertouwer



 Can we understand the code?
 Which features of it are important?

 Rate of precise timing (how precise)?
 Synergy between spikes?

 What/how much does the fly know?
 Is there an evidence for optimality?

Questions



(Lewen et al, 2001)

Recording from fly’s H1
light

record

stimulus



! = 60ms
(Lewen et al, 2001)

(Land and Collett, 1974)

5s

response = 30ms

Natural stimuli
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Natural stimulus and response

5s



Highly repeatable spikes
(not rate coding)

1.8s

10ms

0.72ms
0.81ms 0.21ms

Is high precision timing for natural stimuli relevant for
information transmission, or just anecdotal?



Experiment design

(Strong et al.,  1998)



Problems
 Total of about 10-15 min of recordings (limited by

stationarity of the outside world)
 At most 200 repetitions
 Stimulus correlation of 60ms: only 10000 independent

samples (repeated or nonrepeated)
 Need to sample words of length 30 ms (behavioral) to

60 ms (stimulus) at resolution down to 0.2 ms (binary
words of length up to ~100).



Synthetic test of NSB
Refractory Poisson, rate 0.26 spikes/ms, refractory period 1.8 ms,
T=15ms, discretization 0.5ms, true entropy 13.57 bits.

 Estimator is
unbiased if
consistent and
self-consistent.

 Always do this
check.

(Nemenman et al. 2004)



Natural data (all S)
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(Nemenman et al. 2004)



Neural code:
What remains hidden?
 Given entropy of slices, find the mean

noise entropy with error bars (slice
entropies are correlated and bimodal).

 Samples for total entropy are also
correlated and have long tailed Zipf
plots.

 For very fine discretizations and
T~30ms need extrapolation.



Information rate at T=25ms
• Information present up

to τ =0.3 ms
• 30% more information

at τ<1ms. Encoding by
refractoriness?

• ~1 bit/spike at 150
spikes/s and low-
entropy correlated
stimulus.  Design
principle?

• Efficiency >50% for τ
>1ms, and ~75% at
25ms. Optimized for
natural statistics?0.2 ms -- comparable to channel opening/

closing noise and experimental noise.



Synergy from spike
combinations

Spike pairs

Redundancy due
to stimulus



New bits (optimized code)
• Spikes are very

regular (>10 beats)
WKB decoder?
Interspike potential?

• CF at half its value,
but fly gets new bits
every 25 ms

• Independent info
(even though
entropies are T
dependent).

Behaviorally
optimized code!



Precision is limited by physical
noise sources

(Lewen, et al 2001)
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A very intelligent fly

 One often
considers a
1/f rank-
order plot as
a sign of
intelligence.

 But…



A very intelligent fly

 One often
considers a
1/f rank-
order plot as
a sign of
intelligence.

 But…

Zipf law may be a result of complexity of the world,
not the language.


