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What is
theoretical biophysics?
 Risk of answering just (soft, hard

condensed matter) physics questions
about biological materials/systems.

 Will then know how things happen, not
why they happen.

 To be sure: ask questions relevant to
behavior.



Life is…

The
environment

Estimating (lossy
encoding) the past

Predicting
the future

Biologically
optimal
action

Physics of observation,
Limited resources

Statistics of environment,
Limited time, Relations

to complexity of the task
(Bialek, Nemenman,

Tishby, 2001)

Limited resources



Efficient estimation as a
biological design principle
 Berg and Purcell (1977). Chemosensing

precision and reliability is limited by physical
noise sources

 Since then: single photon responses,
transcription, chemotaxis run length, motion
estimation in insects, chemotaxis network
design - all are at physical limits to sensing.

 Many behaviors and designs need
consideration of the remaining arrows
(estimation of and reaction to a dynamical
stimulus).



Fast learning
and active response?

Berg&Purcell
Efficient estimation
of noisy stationary

signal

Chemosensing
behavior

Optimal
estimation of

dynamical signals

Signal transduction,
regulation, systems
response, cognition?



Lac operon and
phoshotransferase system

 Slow positive
feedback (lac), 10min

 Very slow positive
feedback (cap), 1hr

 Fast negative PEP
feedback, 100ms

 Medium-fast positive
feedback (PEP), 10s

 Very fast low pass
filter (receptor),10ms

PEP - phosphoenolpyruvate Why?



Statistics of environment
 In a newborn baby (because of the milk-

enriched diet) and a non-European adult
(because of a certain mutation), lactose
enters lower small intestines every few hours
- cap averaging sets the mean operating
point.

 Bursts appear with time scales of minutes
and disappear in tens of minutes - PEP
activation, and lac shut-off.

 Chemotaxis leads to higher concentrations
on scales of seconds - PEP feedback.



Statistics of environment
 Negative PEP feedback at PEP saturation

stabilizes energy production
 Low path filtering at receptors removes

statistical noise.

(with Wall, Bettencourt, Hlavacek)

Maybe (near) optimal for this environment?



Motion estimation in fly H1

! = 100ms
(Lewen et al, 2001)

(Land and Collett, 1974)

Diffusion in a quadratic potential



Motion estimation in fly H1

! = 100ms

(Strong et al.,  1998)



Precision is limited by
physical noise sources

In an upcoming paper
we show that

also grows with the
light intensity.

(Lewen, et al 2001)
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Not just optimal estimation:
just in time estimation!

 An effort to make
information
available “now”

 Information grows
with resolution

(IN, Bialek, de Ruyter van Steveninckl, 2005)

Why does the fly use such high resolution and short
observation times to code this relatively slow signal?



A limited form of prediction
 Estimation of dynamical signal “right now”

(t=0) from observations of its past (t<0).
 Need to know time statistics of the signal.
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Motion prediction by fly
 Receptor delay (sampling) ~10ms
 Correlation time 100ms
 Efficient estimation ~30ms (also

behavioral response time of the fly)
 Thus ability to send most info in 30ms

windows is not surprising
 For 30ms windows, coding at <1ms

may be needed.



Turtle cone background light
intensity adaptation

Bckgr, log I Adap, log I

dark -4.4

-4.4 -3.8

-3.2 -3

-2.1 -2.3

-1 -1.3

(Normann & Perlman, 1979)
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Response time adaptation

(Baylor & Hodgkin, 1974)
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Probably not a coincidence:
Adapting to integrated flux.



What should τ be?

! + Rh" Rh
*
" unknown

Rh
*
! PDE

*

PDE
*
! GC

Cone: 3 low pass
filters (at least):



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Solution
(for signal-limited precision)

Represent SDE’s as SFT, integrate out all fields except
fields at moment t=0. Get

Note that this is not same as
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which is the channel capacity.



Solution
(for signal-limited precision)

Represent SDE’s as SFT, integrate out all fields except
fields at moment t=0. Get
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Can also maximize total predictive information:



Finding τ
Maximize I0 w.r.t τ

For:
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get:
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Best possible matched filter
(limited by biochemical mechanisms)

Also predicted by variance balance argument. 



A problem

 1/k2-ε spatial spectrum
 ~10 phoreceptors/fixation

drift
 1/ω2−ε temporal spectrum
 Should have

(Ruderman & Bialek, 1994) Wrong! But…
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Biochemical constraint
Rh* is the signal, its temporal response is
uncontrollable (and badly known - Rieke & Baylor, 1998)

Given this signal, the rest of the biochemistry
should adapt in agreement with experiment
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Rat matching experiments
 Poisson deposition

of rewards
 Rewards do not

accumulate
 Possibly variable

rate
 Changeover delay
 Rat matches

No Yes

(with Gallistel)



Rat matching experiments
 Poisson deposition

of rewards
 Rewards do not

accumulate
 Possibly variable

rate
 Changeover delay
 Rat matches

(Gallistel et al 2001)



But: Time scales are history
dependent. Can we explain?

(also note imperfect matching)

 ! = 30…100 +min  ! = 1…2min



Can we explain the time
scales
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Examples of potentials

Poisson process:
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Learning a Poisson variable
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Compare to the crude estimate above:



Time scales
Correlation time:

For stable period                 :

For variable schedule                   :

For monkeys (Sugrue et al, 2004)                           :
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Importantly, estimate starts to
change immediately in both cases

 
(! 0 ! 17 samples)

 
l ! 300 / r, r, " ! 15 samples



Self-consistent estimation of l
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Averaging over          leads to correct estimation of
the smoothness scale for fixed     (Nemenman and
Bialek, 2002) if one takes into the account first loop
corrections around φ0.

For time-dependent    :

leads to self-consistent selection of    . Do not
investigate particular form due to lack of data.
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Abrupt changes
 Only after a few

changes have
been experienced

 Common during
fast changes
epochs

Sometimes
“unwarranted”



Abrupt changes
 Only after a few

changes have been
experienced

 Common during
fast changes
epochs

 Sometimes
“unwarranted”

 Metastable states?



Caused by memory
(non-local QFT)

 Overestimation of rate
immediately leads to
higher rate and
persists

 Nonlocality, friction
(see also Atwal, Bialek, 2004)

 Power spectrum of
reward histories

 Two regimes clearly
seen

 Peak at 0 - long range
correlations



Memory, metastability, and
non-Gaussianity



Modeling memory: two scales
and rapid readjustments
 Need memory scale (long), and adaptation

scale (short)
 Signal changes on long time scale, while

effects of self-perpetuation of rate are on
shorter scales
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Non-Gaussianity
 V is not quadratic in
φ, plateaus (self-
confounding
effects); exact form
unclear

 W is not quadratic
either; left plateau;
no exact form
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Dynamics of fast field
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The field undergoes small fluctuations (zero point
and due to irregular sampling) near the minimum
of the energy



Two minima
For long-tailed distributions, will have two minima
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Jumps possible from a metastable state near ψ to
new minimum near θ.



Adiabatic dynamics of the
slow field
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Either self-perpetuates, or approached the
true solution (depending on which minima the

fast field is in).

Critical periods?



Reversal to status quo ante



Modeling memory: nonlocality
and long range correlations

Bialek & Zee, 1990 -
decoding can be done
linearly accurately (even if
the process itself is very
nonlinear). Also trivially true for
Gaussian processes.
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range near t=0 and t=18hrs (normalized within the

window).



Long-tailed filters
explain reversal
 At the end of the session, rate estimates are

effected mostly by the last (post-change)
observation

 After a long delay, pre-change and post-
change observations are almost equally
weighed, but there are much more of the
former.

 Wouldn’t work for exponential filters as used
by Sugrue et al, 2004.

 Experiments to measure C(t) are now done.



Why matching?
 Matching is a bit suboptimal for maximizing

reward.
 Matching is almost optimal for tracking rate

changes.
 Can it be that the bit value of a reward is

higher than its food value? (Rats are
curious!)

 Preliminary support: matching for
accumulating rewards. Planning experiments
to test matching to neutral stimuli.


