Ilya Nemenman

Emory University Computational and Life Sciences Strategic Initiative Departments of Physics and Biology Atlanta, GA 30322 Tel (404) 727-9286; Fax (404) 727-0873 ilya.nemenman@emory.edu

Current version available at: http://menem.com/~ilya/

CV last updated on November 2, 2011

EDUCATION

Princeton University, Physics, PhD 2000 San Francisco State University, Physics, MS 1997 Santa Clara University, Physics/Math, BS 1995 Belarusian State University, Theoretical Physics, 1991 – 1994

APPOINTMENTS

- since 2009 Associate Professor, Departments of Physics and Biology, Emory University
- 2005 2009 Technical Staff Member, R&D Scientist-4, CCS-3, Los Alamos National Laboratory
- 2004 2005 Associate Research Scientist, Joint Centers for Systems Biology, Columbia University Medical Center, New York
- 2001 2004 Postdoctoral Scientist, Kavli Institute for Theoretical Physics, UC Santa Barbara
- 2000 2001 Postdoctoral Scientist, NEC Research Institute, Princeton, New Jersey
- 1998 1999 Research Scientist, Gravity Probe B (GP-B), HEPL, Stanford University.
- 1997 1997 Student Researcher, L3 experiment, CERN/PPE, Geneva

CONCURRENT APPOINTMENTS

since 2010	Population Biology, Ecology, and Evolution Graduate Program, Emory University
since 2010	Neuroscience Graduate Program, Emory University
since 2011	External Research Associate, Info-metrics Institute, American University, Washington, DC
since 2010	External Associate, Vanderbilt Institute for Integrative Biosystems Research and Education
(VIIBRE), Nashville, TN	
since 2009	Computational and Life Sciences Strategic Initiative Core Faculty, Emory University
2007 - 2010	Visiting Scientist, New Mexico Consortium, Los Alamos, NM
2007 - 2009	Affiliate, Executive Committee Member, Center for Nonlinear Studies, Los Alamos Na-
tional Laboratory	
2008 - 2009	Information Science and Technology Center Science Council, LANL
2007 - 2008	Adjunct Assistant Professor, Department of Physics, University of New Mexico, Albu-

TEACHING EXPERIENCE

querque, NM

since 2009 Emory University: Introductory Physics, Computational Neuroscience, Stochasticity in Biology, Physical Biology: Information Processing in Biological Systems, Quantum Field Theory

2011 The q-bio Conference on Cellular Information Processing, tutorial

2007 – 2010 The q-bio Summer School on Cellular Information Processing, organizer and instructor

2009 Information Processing in Biology summer school, Beijing University, China

2006 – 2007 Los Alamos Summer School, instructor

2004 – 2005 Columbia University, Department of Biomedical Informatics, co-instructor, *Computational Biology: Functional and Integrative Genomics*

2002 UCSB, Department of Statistics; NYU, Courant Institute, Bioinformatics group, visiting instructor, lecture series in *Statistical Inference*

- 1999 2001 Marine Biological Laboratory, Woods Hole, MA, teaching assistant, *Methods in Computational Neuroscience*
- 1997 1999 Princeton University, Department of Physics, teaching assistant
- 1995 1996 San Francisco State University, Department of Physics, teaching assistant

HONORS AND AWARDS

2011	Physical Biology: Highlight of 2010 recognition of Bel et al., 2010
2011	Executive Committee nomination, Division of Biophysics, American Physical Society
2009	Distingusihed Performance Award Nomination, LANL
2009	SPOT Award, Computer and Computational Sciences Division, LANL
2004	National Science Foundation Scholar (declined), StatPhys 22
1999	Outstanding Teaching Assistant, Department of Physics, Princeton University
1997	Graduate Student Distinguished Achievement Award, SFSU
1996	Outstanding Teaching Assistant, Department of Physics, SFSU
1993–1994	Honorary Stipend, Belarusian State University, Minsk, Belarus
1991	Winner, Belarusian National High School Physics Olympiad

RESEARCH SUPPORT

Current

- ARO/60704-NS-II "Improving image segmentation with adaptive, recurrent, spiking neural network models of the primary visual cortex", PI, 2011-2012
- HFSP/RGY0084/2011 "Adaptive behavior of *C. elegans* in complex sensory environments", PI (multiple PIs), collaborative program requiring multiple international investigators, 2011-2014
- NIH/NCI/7R01CA132629 "Differential Metabolic Analysis of Tumor Progression", co-PI, 2007–2012
- NIH/NIGMS/2R13GM082162-03 "Information processing In cellular signaling and gene regulation", PI (multiple PIs; contact PI for 2009-2011), *The q-bio Conference* support grant, 2011-2014

Completed

- DOE/LANL/LDRD/20090001DR "Synthetic Cognition Through Peta-scale Modeling of Mammalian Visual Cortex", 2008–2011, co-PI in 2008-2009, collaborator since 2009
- NSF-OCI-0749348 "Peta-scale computing infrastructure: High Performance Neural Computing", co-PI, 2008–2011
- DOE/LANL/LDRD/20080391ER "Stochastic Transport on Networks: Efficient Modeling And Applications to Epidemiology", PI, 2007–2010
- DOE/LANL/LDRD/20080138DR "Genomes to Behavior: Predicting Bacterial Response by Constrained Network Interpolation", co-investigator, 2007–2010
- NIH/NIGMS/1R21GM080216 "System-wide Study of Transcriptional Control of Metabolism", co-PI, 2007–2009
- NSF/ECS/0425850 "QSB: Optimal information processing in biological networks", co-PI, 2004–2008
- NSF/ECS/0332479 "SGER: Developing learning theory for genetic network inference", co-PI, 2003–2005

ADVISEES

Postdocs: LANL: Nikolai Sinitsyn (now LANL Staff Member), Golan Bel (now Assistant Professor, Ben Gurion University), Brian Munsky (now LANL Feynman Distinuished Postdoctoral Fellow); Emory: Sorin Tanase Nicola (now Assistant Professor, Uppsala University), Martin Tchernookov.

Graduate Students: Vijay Singh, Jakub Otwinowski, George Leung (all Emory).

Graduate Students co-Advised: Etay Ziv (PhD 2007, Columbia), Andrew Mugler (PhD 2010, Columbia).Summer Students: Aly Pesic (Stanford), Misha Shashkov (Berkeley), Pradeep Bandaru, Sean Escola, Michael Vidne (Columbia), Wiet de Ronde (AMOLF), Bryan Daniels (Cornell).

PUBLICATIONS

Submitted

- 1. <u>I Nemenman</u>. Coincidences and estimation of entropies of random variables with large cardinalities. In revision, 2011.
- 2. <u>I Nemenman</u>. Gain control in molecular information processing: Lessons from neuroscience. Submitted, 2011.

Refereed

- S Tanase Nicola and <u>I Nemenman</u>. Fitness in time-dependent environments includes a geometric phase contribution. *J Roy Soc Int*, accepted, 2011.
- R Cheong, A Rhee, J Wang, <u>I Nemenman</u>, and A Levchenko. Information transduction capacity of noisy biochemical signaling networks. *Science* 334, 354, 2011.
- V Gintautas, M Ham, B Kunsberg, S Barr, S Brumby, C Rasmussen, J George, <u>I Nemenman</u>, L Bettencourt, G Kenyon. Model cortical association fields account for the time course and dependence on target complexity of human contour perception. *PLoS Comp Biol* 7, e1002162, 2011.
- J Otwinowski, S Tanase Nicola, and <u>I Nemenman</u>. Speeding up evolutionary search by small fitness fluctuations. J Stat Phys 144, 367, 2011.
- Y Wei, X Wang, J Liu, <u>I Nemenman</u>, A Singh, H Weiss, and B Levin. The population dynamics of bacteria in physically structured habitats and the adaptive virtue of random motility. *Proc Natl Acad Sci USA* 108, 4047, 2011.
- 6. P Bandaru, M Bansal, and <u>I Nemenman</u>. Mass conservation and inference of metabolic networks from mass spectrometry data. *J Comput Bio* **18**, 147, 2011.
- N Sinitsyn and <u>I Nemenman</u>, Time-dependent corrections to effective rate and event statistics in Michaelis-Menten kinetics. *IET Syst Biol* 4, 409, 2010.
- 8. A Margolin, K Wang, A Califano, and <u>I Nemenman</u>. Multivariate dependence and genetic networks inference. *IET Syst Biol* **4**, 428, 2010.
- 9. G Bel, B Munsky, and <u>I Nemenman</u>. The simplicity of completion time distributions for common complex biochemical processes. *Physical Biology* **7**, 016003, 2010.
- B Munsky, <u>I Nemenman</u>, and G Bel. Specificity and Completion Time Distributions of Biochemical Processes. J Chem Phys 131, 235103, 2009.
- K Wang, M Saito, B Bisikirska, M Alvarez, W Lim, P Rajbhandari, Q Shen, <u>I Nemenman</u>, K Basso, A Margolin, U Klein, R Dalla-Favera, and A Califano. Genome-wide identification of post-translational modulators of transcription factor activity in human B cells. *Nature Biotech* 27, 829, 2009.
- 12. W de Ronde, B Daniels, A Mugler, N Sinitsyn, and <u>I Nemenman</u>. Mesoscopic statistical properties of multistep enzyme-mediated reactions. *IET Syst Biol* **3**, 429, 2009.
- A Mugler, E Ziv, <u>I Nemenman</u>, and C Wiggins. Quantifying evolvability in small biological networks. *IET Syst Biol* 3, 379, 2009.
- 14. G Bel and <u>I Nemenman</u>. Ergodic and non-ergodic anomalous diffusion in coupled stochastic processes. *New J Phys* **11** 083009, 2009.
- N Sinitsyn, N Hengartner, and <u>I Nemenman</u>. Adiabatic coarse-graining and simulations of stochastic biochemical networks. *Proc Natl Acad Sci (USA)* 106, 10546, 2009.
- 16. A Mugler, E Ziv, <u>I Nemenman</u>, and C Wiggins. Serially-regulated biological networks fully realize a constrained set of functions. *IET Syst. Biol.* **2**, 313, 2008.
- 17. D Dreisigmeyer, J Stajic, <u>I Nemenman</u>, W Hlavacek, and M Wall. Determinants of bistability in induction of the *Escherichia coli lac* operon. *IET Syst. Biol.* **2**, 293, 2008.
- <u>I Nemenman</u>, GD Lewen, W Bialek, RR de Ruyter van Steveninck. Neural coding of natural stimuli: Information at sub-millisecond resolution. *PLoS Comput. Biol.* 4(3), e1000025, 2008.
 - Preliminary version available as: <u>I Nemenman</u>, G Lewen, W Bialek, and R de Ruyter van Steveninck. Neural coding of natural stimuli: information at sub-millisecond resolution. *BMC Neurosci.* 8 (Suppl 2), S7, 2007.
- 19. NA Sinitsyn and <u>I Nemenman</u>. A universal geometric theory of mesoscopic stochastic pumps and reversible ratchets. *Phys. Rev. Lett.* **99**, 220408, 2007.
- <u>I Nemenman</u>, GS Escola, WS Hlavacek, PJ Unkefer, CJ Unkefer, ME Wall. Reconstruction of metabolic networks from high-throughput metabolite profiling data: *in silico* analysis of red blood cell metabolism. *Ann. N.Y. Acad. Sci.* **1115**, 102, 2007.

- 21. E Ziv, <u>I Nemenman</u>, and C Wiggins. Optimal signal processing in small stochastic biochemical networks. *PLoS ONE* **2**, e1077, 2007.
- 22. NA Sinitsyn and <u>I Nemenman</u>. Berry phase and pump effect in stochastic chemical kinetics. *EPL* **77**, 58001, 2007.
- 23. A Margolin, K Wang, WK Lim, M Kustagi, <u>I Nemenman</u>, and A Califano. Reverse engineering cellular networks. *Nature Protocols* **1**, 663, 2006.
- K Wang, <u>I Nemenman</u>, N Banerjee, A Margolin, and A Califano. Genome-wide discovery of modulators of transcriptional interactions in human B lymphocytes. In *Lecture Notes in Computer Science*, '3909, Proceedings of Research in Computational Molecular Biology: 10th Annual International Conference, RECOMB 2006, pp. 348 (Springer: Berlin / Heidelberg, 2006).
- 25. A Margolin, <u>I Nemenman</u>, K Basso, U Klein, C Wiggins, G Stolovitzky, Riccardo D Favera, and A Califano. ARACNE: An algorithm for reconstruction of genetic networks in a mammalian cellular context. *BMC Bioinformatics* **7**(Suppl. 1), S7, 2006.
- 26. <u>I Nemenman</u>. Fluctuation-dissipation theorem and models of learning. *Neural Comp.* **17**(9), 2006, 2005.
- 27. <u>I Nemenman</u>, W Bialek, and R de Ruyter van Steveninck. Entropy and information in neural spike trains: Progress on the sampling problem. *Phys. Rev. E* **69**, 056111, 2004.
- 28. C Wiggins and <u>I Nemenman</u>. Process pathway inference via time series analysis. *Experim. Mech.* **43**, 361, 2003.
- 29. A Silbergleit, <u>I Nemenman</u>, and I Mandel. On the interaction of point charges in an arbitrary domain. *Techn. Phys.* **48**, 146, 2003.
- 30. A Silbergleit, I Mandel, and <u>I Nemenman</u>. Potential and field singularity at a surface point charge. J. *Math. Phys.* **44**, 4460, 2003.
- 31. <u>I Nemenman</u>, F Shafee, and W Bialek. Entropy and inference, revisited. In TG Dietterich, S Becker, and Z Ghahramani, editors, *Adv. Neural Inf. Proc. Syst. 14* (MIT Press: Cambridge, MA, 2002).
- 32. <u>I Nemenman</u>, and W Bialek. Occam factors and model-independent Bayesian learning of continuous distributions. *Phys. Rev. E* **65**, 026137, 2002.
 - Preliminary version available as: <u>I Nemenman</u> W Bialek, Learning Continuous Distributions: Simulations With Field Theoretic Priors. In T Leen, T Dietterich, and V Tresp, eds. *Adv. Neural Inf. Proc. Syst. 13*, pp. 287 (MIT Press: Cambridge, MA, 2001).
- 33. W Bialek, I Nemenman, and N Tishby. Complexity through nonextensivity. Physica A 302, 89, 2001.
- 34. W Bialek, <u>I Nemenman</u>, and N Tishby. Predictability, complexity, and learning. *Neur. Comp.* **13**, 2409, 2001.
- 35. R Adler, <u>I Nemenman</u>, J Overduin, and D Santiago. On the detectability of quantum spacetime foam with gravitational-wave interferometers. *Phys. Lett. B* **477**, 424, 2000.
- 36. J Naud, <u>I Nemenman</u>, M Van Raamsdonk, and V Periwal. Minimal subtraction and the Callan-Symanzik equation. *Nucl. Phys. B* **540**, 533, 1999.
- 37. <u>I Nemenman</u> and A Silbergleit. Explicit Green's function of a boundary value problem for a sphere and trapped flux analysis in Gravity Probe B experiment. *J. Appl. Phys.* **86**, 614, 1999.
- 38. A Minkevich and <u>I Nemenman</u>. On the influence of gravitating vacuum on dynamics of homogeneous isotropic models in gauge-theories of gravity. *Class. Quant. Grav.* **12**, 1259, 1995.
 - Preliminary version available as: A Minkevich and <u>I Nemenman</u>. On the influence of gravitating vacuum on dynamics of homogeneous isotropic models in gauge-theories of gravity. *Dokl. Akad. Nauk Belar.* **39**, 45, 1995. In Russian.

Views, Editorials, Books, and Chapters

1. <u>I Nemenman</u>, Information theory and adaptation. In *Quantitative biology: From molecules to Cellular Systems*, ME Wall, ed. (Taylor and Francis, 2011), in press.

- <u>I Nemenman</u>, J Faeder, W Hlavacek, Y Jiang, M Wall, and A Zilman. Selected papers from the Fourth Annual q-bio Conference on Cellular Information Processing. *Phys Biol* 8, 050301, 2011.
- <u>I Nemenman</u>, W Hlavacek, Y Jiang, M Wall, and A Zilman. Editorial: Selected papers from the Third q-bio Conference on Cellular Information Processing. *IET Syst Biol* 4, 331, 2010.
- INemenman, W Hlavacek, Y Jiang, and M Wall, Editorial: Selected papers from the Second q-bio Conference on Cellular Information Processing. *IET Syst Biol* 3, 297, 2009.
- <u>I Nemenman</u>, W Hlavacek, J Edwards, J Faeder, Y Jiang, and M Wall, Editorial: Selected papers from the First q-bio Conference on Cellular Information Processing. *IET Syst Biol* 2, 203, 2008.
- C Teuscher, <u>I Nemenman</u>, and F Alexander. Novel Computing Paradigms: Quo Vadis? *Physica D* 237, 10, 2008.
- J Edwards, J Faeder, W Hlavacek, Y Jiang, <u>I Nemenman</u>, and M Wall. q-bio 2007: a watershed moment in modern biology. *Mol Syst Biol* 3, 148, 2007.
- I Nemenman. Information Theory and Learning: A Physical Approach. PhD thesis, Princeton University, Department of Physics, 2000. arXiv:physics/0009032.

Unpublished work

- 1. K Wang, N Banerjee, A Margolin, <u>I Nemenman</u>, K Basso, R Dalla Favera, and A Califano. Conditional network analysis identifies candidate regulator genes in human B cells. Unpublished manuscript, 2005. arXiv:q-bio/0411003.
- A Margolin, N Banerjee, <u>I Nemenman</u>, and A Califano. Reverse engineering of yeast transcriptional network using the ARACNE algorithm. Unpublished manuscript, 2004. Available at menem.com/ ~ilya.
- T Holy and <u>I Nemenman</u>. On impossibility of learning in a reparameterization covariant way. Technical Report NSF-KITP-03-123, KITP, UCSB, 2002. Available at menem.com/~ilya.
- I Kominis and <u>I Nemenman</u>. BGO dead crystal correction and shower fitting. Tech. Rep. 2157, CERN: L3, 1997. Available at menem.com/~ilya.