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Abstract. We propose a rigorous definition for the term temporal encoding as it is applied to schemes for the 
representation of information within patterns of neuronal action potentials, and distinguish temporal encoding 
schemes from those based on window-averaged mean rate encoding. The definition relies on the identification of an 
encoding time window, defined as the duration of a neuron's spike train assumed to correspond to a single symbol 
in the neural code. The duration of the encoding time window is dictated by the time scale of the information being 
encoded. We distinguish between the concepts of the encoding time window and the integration time window, the 
latter of which is defined as the duration of a stimulus signal that affects the response of the neuron. We note that 
the duration of the encoding and integration windows might be significantly different. We also present objective, 
experimentally assessable criteria for identifying neurons and neuronal ensembles that utilize temporal encoding to 
any significant extent. The definitions and criteria are made rigorous within the contexts of several commonly used 
analytical approaches, including the stimulus reconstruction analysis technique. Several examples are presented 
to illustrate the distinctions between and relative capabilities of rate encoding and temporal encoding schemes. 
We also distinguish our usage of temporal encoding from the term temporal coding, which is commonly used in 
reference to the representation of information about the timing of events by rate encoding schemes. 
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Introduction: Definition of the Encoding Problem 

An animal's continually evolving perception of its 
surrounding environment, its awareness of its own in- 
ternally regulated homeostatic balance within its en- 
vironment, and its behavioral responses to dynamic 
sensory stimuli must ultimately be derived from in- 
formation contained within relatively brief segments 
of neuronal spike trains. The computations underly- 
ing all aspects of the operation of its nervous system 
are carried out within the context of the neural code 
with which the relevant information is represented in 
those spike trains. A determination of the information 
coding schemes used within nervous systems is an ex- 
tremely important goal, due not only to the intrinsic 
interest in the nature of the neural code itself but due 
also to the very valuable and important constraints a 
knowledge of the code can place on the development 

of physiological models for the mechanisms underly- 
ing neural computation. 

Deciphering the neural code at any particular loca- 
tion within a neural system can be reduced to three 
interconnected tasks, representing a quantitative char- 
acterization of the observed stimulus-response charac- 
teristics of the neurons under study. The first task is to 
determine the quantity and qualitative nature (such as 
the specific parameters characterizing a complex sen- 
sory stimulus) of the information encoded in the spike 
trains of the neuron or neuronal ensemble under study. 
The second task is to determine the nature of the neural 
symbols with which that information is encoded that 
is, is all of the information encoded in the meanfiring 
rates of the cells, or is some significant proportion of 
the information encoded in more complex statistical 
features of the spike train patterns? The third task is 
to define relevant, objective measures of significance 
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with which the information and the associated neural 
symbols are correlated. 

For the purposes of our discussion, we assume that 
the first task has been accomplished by some means 
and that we have explicit knowledge of the nature of the 
significant information to be encoded in the neural ac- 
tivity patterns. Specifically, for the sake of simplicity, 
we cast our discussions in terms of sensory physiology 
and consider the encoded information to be the values 
of one of the parameters describing a sensory stimu- 
lus that is known to affect the activity of the neuron 
or ensemble of neurons under study. We deal exclu- 
sively with problems associated with the second task 
listed above. This second task can be termed the en- 
coding problem to distinguish it from the larger coding 
problem encompassed by all three tasks. We address 
the encoding problem for the case of spiking neurons, 
in which the neural symbols can be reduced to binary 
strings in time, where 0s and Is can be used to mark 
the absence or occurrences of spikes. 

Although these binary strings would seem to be rel- 
atively simple objects on which to base any analysis of 
neural coding, the problem is actually quite complex 
due to the possibility that the code might be of high 
dimensionality. The problem is as follows. Any anal- 
ysis of neural encoding or decoding schemes forces a 
determination (or assumption) of the associated encod- 
ing time window--that is, the duration of the spike train 
assumed to correspond to a single symbol in the code. 
The longer the encoding time window, the greater is 
the number of digits in the binary string corresponding 
to a single symbol of the code, and the greater is the 
number of possible symbols in the code (that is, the 
number of possible patterns of spikes within the time 
window). Considering the fact that action potentials 
are approximately 1 millisecond in duration, a rough 
estimate of the number of bits in a binary string cor- 
responding to a single symbol of neural code would 
be on the order of the duration of the encoding time 
window measured in msec. For a 100 msec time win- 
dow, the potential information imbedded in a binary 
string is on the order of 100 bits, corresponding to the 
2 l~176 possible symbols. If the possibility of ensemble 
encoding of information across multiple-cell ensem- 
bles is allowed, then the theoretically limiting number 
of possible symbols in the code strings would grow to 
even more astronomical numbers. 

This large dimensionality of the encoding prob- 
lem poses two significant problems. First, from a 
practical standpoint, the task of experimentally char- 
acterizing the statistics of occurrence of each of the 

different symbols becomes increasingly difficult with 
longer encoding time windows. Second, from a con- 
ceptual standpoint, determining the significance of the 
analysis becomes increasingly problematic, since (1) 
many of the different neural symbols might conceiv- 
ably correspond to the same input information (that is, 
some differences in the different spike response pat- 
terns might be due to some type of noise intrinsic to 
the system rather than to an actual variation in the in- 
put), (2) some of the different neural symbols might 
occur so infrequently as to be experimentally unchar- 
acterizable, and (3) the postsynaptic neuronal decoder 
circuit might not be capable of extracting all of the in- 
formation that is available in the transmitted symbols. 
In other words, even though a 100 msec encoding win- 
dow might theoretically allow the use of a binary neu- 
ral "alphabet" having 21~176 symbols, the neural decoder 
(cell or ensemble) might lump together huge si~bsets of 
these different possible spike patterns as being indis- 
tinguishable, reducing the effective number of symbols 
used for information representation to a small fraction 
of the theoretical limiting number. 

A determination of the neural code therefore re- 
quires the reduction of the binary strings represent- 
ing spike occurrence times to the set of biologically 
significant symbols within the particular context being 
investigated. The neural code with which information 
is represented within the nervous system can be de- 
fined objectively: the neural code is the minimum set 
of symbols capable of representing all of the biologi- 
cally significant information. Thus, in order to define 
the neural encoding scheme implemented in any par- 
ticular situation, a measure must be derived that cor- 
responds to the correlation between an observed set 
of neural activity patterns and the encoded informa- 
tion (such as those sensory stimulus parameters) rep- 
resented by those activity patterns. One measure of 
correlation that has been shown to be of particular util- 
ity within the context of the neural encoding problem 
is the measure of transinformation or mutual informa- 
tion, as defined by Shannon in his development of in- 
formation theory (Shannon, 1948; Pierce, 1961). The 
mutual information is the most precise measure of cor- 
relation as it is based on the complete form of the joint 
probability between the symbols representing the bio- 
logically significant information and the symbols rep- 
resenting the neural code (Eckhorn and PiSpel, 1974; 
Thuenissen, 1993). Within an experimental electro- 
physiological context, where a set of stimulus-response 
measurements can be recorded, the joint probability of 
occurrence of individual neural responses within the 



data set and the set of electrical or sensory stimuli that 
were used to evoke those responses can be character- 
ized and used to compute the mutual information. The 
minimum set of neural symbols can be determined, at 
least in theory, by systematically reducing the complete 
set of binary strings representing the most complete de- 
scription of the neural responses to smaller and simpler 
sets composed of the putative neural symbols, until the 
measure of mutual information begins to decrease. 

Many encoding schemes have been considered by 
neurobiologists, and all schemes can be classified ac- 
cording to the degree to which the dimensionality of the 
spike-train response data is reduced for the analysis (for 
an early comprehensive review, see Perkel and Bullock, 
1968). At one extreme, an analysis allowing no reduc- 
tion at all would necessitate the consideration of the full 
binary code, where the precise temporal placement of 
every spike within the encoding time window is consid- 
ered to be capable of conveying significant information. 
At the other extreme, a coding scheme is imaginable 
in which a full reduction of the complexity of the bi- 
nary string within the encoding time window to a single 
bit, where the presence of one or more spikes in any 
temporal pattern whatsoever within the encoding time 
window would convey the significant information. 

In many cases, the reduction from the full binary 
code to a code of intermediate complexity is accom- 
plished by counting the number of spikes within the 
assumed encoding time window. Any scheme based on 
such a reduction is generally referred to as a rate code. 
Beginning with the earliest studies of neural encod- 
ing, rate codes have been shown to encode significant 
amounts of information in many different experimental 
preparations (see, for example, Adrian, 1928; Werner 
and Mountcastle, 1963; Perkel and Bullock, 1968) and 
are generally considered as the best first-order assump- 
tion for the neural encoding scheme. However, recent 
studies have shown that aspects of the fine temporal 
structure or patterns of spike trains within the time 
scale of the encoding time window can also carry sig- 
nificant information about the stimulus (Gray et al., 
1989; Richmond et al., 1987; McClurkin et al., 1991; 
Engel et al., 1992; Middlebrooks et al., 1994; Kjaer et 
al., 1994). Such a code is generally referred to as a 
temporal code. 

One might think that a temporal encoding scheme 
could be considered as being equivalent to a special 
case of a rate encoding scheme, in the limit where 
the encoding time window is of short enough dura- 
tion to take into account the fine temporal structure in 
the observed spike train responses. This would seem 
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to make the distinction between rate encoding and tem- 
poral encoding somewhat arbitrary. We refute that 
idea and show that the distinctions between rate en- 
coding and temporal encoding can be defined clearly 
and rigorously. Moreover, the distinctions are of sig- 
nificant biological relevance, since (1) the distinctions 
emerge from a consideration of the intrinsic time scale 
of the dynamics of the encoded information, and (2) 
the extremely different nature of these two encoding 
schemes would have significant implications for bi- 
ologically plausible decoding mechanisms. We also 
show that the definition has a strict mathematical cor- 
relate when the encoding-decoding task is expressed 
in terms of stochastic systems analysis and in partic- 
ular within the context of the stimulus reconstruction 
methodology recently derived by Bialek and his col- 
leagues (Bialek et al., 1991; Bialek and Rieke, 1992). 

The Encoding Time Window 

Determining the Characteristic Time Scale 
of a Coding Process 

Any definitions of temporal encoding and rate encod- 
ing must involve some consideration of the nature and 
dynamics of the encoded information. Specifically, the 
duration of the encoding window used for any analysis 
of the neural code is not arbitrary but depends on the dy- 
namical nature of the information being encoded. For 
stimuli that are approximately stationary (such as those 
for which the time scale of the variation in a stimulus 
parameter is much longer than the time scale of the dy- 
namics of the animal's associated computational task 
or behavioral response), the duration of the encoding 
window can be arbitrarily long, and may include the 
entire neuronal response to a prolonged stimulus. Ex- 
amples of relatively stationary stimulus encoding tasks 
might include the coding of the shape of stationary ob- 
jects in the visual field in the primate visual system 
(Richmond et al., 1987) and the coding of the location 
of a continuous sound source in space (Middlebrooks 
et al., 1994; Moiseffand Konishi, 1981). The only con- 
straints influencing the duration of the encoding win- 
dow arise, presumably, from the evolutionary forces 
acting in opposition to one another to (1) increase acu- 
ity (by increasing the encoding time, allowing a longer 
period over which to "signal average") and (2) decrease 
reaction time (by decreasing the encoding time, allow- 
ing a shorter delay between the stimulus onset and the 
computed response). Indeed, one practical approach 
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toward estimating the duration of the encoding win- 
dow for stationary stimuli has been to measure the be- 
havioral reaction time following presentation of test 
stimuli. 

However, for many encoding tasks, the time scale 
of the variation in a relevant stimulus parameter is on 
the order of (or shorter than) the time within which 
decisions or behavioral responses must be made by the 
animal. Examples from sensory physiology include 
(1) the tracking of a constantly moving visual stimu- 
lus and (2) the analysis and identification of spectrally 
complex sound sources. For such tasks, the duration 
of the presumed encoding window cannot be arbitrarily 
long, but must be limited by the rate at which the rel- 
evant stimulus parameter is changing. In other words, 
dynamic variations in the stimulus signal can never be 
encoded faster than the rate at which the neural code can 
be updated to represent those variations. This rate is it- 
self limited, presumably, by the intrinsic time scale for 
the neural computations underlying the encoding task, 
and can be used as another means by which to define 
the encoding time window: the encoding window is the 
limiting intrinsic period of the encoding process, corre- 
sponding to the inverse of the limiting frequency with 
which the neural code is updated to represent dynamic 
variation in the stimulus signal. 

For example, in a hypothetical system in which a 
saccadic eye movement presents a "new" stimulus to 
the visual system every 300 msec, the upper limit on the 
duration of the appropriate time window for the encod- 
ing of some aspect of the stimuli is equal to 300 msec. 
The actual duration of the encoding window might be 
shorter, if behavioral or psychophysical experiments 
suggest a reaction time less than 300 msec. That is, the 
limiting duration of the encoding window is uniquely 
determined by the dynamical characteristics of the rel- 
evant aspect of the stimulus being encoded. 

For tasks involving continuously varying stimuli, 
constraints on the encoding time window can be under- 
stood from a consideration of a Fourier decomposition 
of the stimulus signal. For example, if one of the tasks 
of a particular auditory neuron were to encode continu- 
ously the amplitude and phase of the 100 Hz component 
of the signal, then the duration of the appropriate en- 
coding window for that task would be 5 msec. This 
is essentially a restatement of the Nyquist theorem: in 
order to reconstruct the waveform of the 100 Hz compo- 
nent, a decoder would need a minimum of two sampling 
points per 10 msec cycle period. A simple form of rate 
decoding of the phase and amplitude of the 100 Hz 
stimulus component estimated within a specific time 

interval of 10 msecs centered at a particular time t could 
be achieved by the following procedure: (1) count the 
number of spikes within each of the two sequential 
5 ms time windows subdividing the 10 msec time in- 
terval of interest, (2) scale the sum of those spike counts 
with the appropriate (experimentally derived) factor to 
determine the amplitude of the 100 Hz component of 
the signal within that particular 10 msec time interval, 
and (3) ratio the spike counts within each of the two 
sequential 5 ms encoding windows to determine the 
phase of the 100 Hz component with respect to time t. 
It is clear from this example that implementation of an 
encoding time window having a duration longer than 
5 msec would prevent continuous representation of the 
encoded information, since the duration of the window 
would prevent the minimum number of sampling points 
(that is, one per sampling window) needed to decode 
the spike train in order to reconstruct the amplitude and 
phase of the 100 Hz component. 1 

Encoding Window and Integration Window 

It is important to distinguish between the concepts of 
the encoding time window and the integration time win- 
dow, which are often confused and used interchange- 
ably. In particular, the term integration time window is 
often used in place of encoding time window in analyses 
of rate encoding schemes, where the spikes within the 
encoding window are summed to obtain the estimate 
of a stimulus parameter value. In general, however, 
the integration window refers to the net duration of 
all physiological processes that contribute to the inte- 
gration and transformation of synaptic inputs (and any 
intrinsically generated conductances) into the spiking 
output of a neuron. One practical definition of the in- 
tegration window is the period of time preceding any 
particular timepoint in a neuron's (or ensemble's) re- 
sponse pattern during which a variation in the input 
could have significantly affected the response at that 
timepoint. Although the durations of the encoding and 
integration windows might be equal in some cases, it 
is also possible that the integration time is of longer 
duration than the encoding time window. 

To illustrate, consider an auditory neuron that en- 
codes the waveform of a 100 Hz signal component, 
whose activity is affected by multiple cycles of the 
100 Hz component. In such cases, the reverse corre- 
lation filter, obtained b.y determining the average stim- 
ulus waveform preceding each elicited spike, would 
show many cycles of a sinusoidal waveform at the fre- 
quency to which the cell is maximally tuned. This is 
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typically the case for auditory neurons with very sharp 
frequency tuning: see Eggermont (1993) for examples. 
The duration of this reverse correlation filter would cor- 
respond to the neuron's integration window, as defined 
above. However, to be able to continuously represent 
the amplitude and phase of that 100 Hz component, a 
new sample point would have to be obtained from the 
spike train every 5 msec, which is the duration of the 
neuron's encoding window. 

Although the integration time window of a neuron 
(or ensemble) might be of longer duration than its en- 
coding window, it could not be of short duration than 
the encoding time window. This is because the inte- 
gration time can, in a sense, be taken as a measure of 
the limiting electrophysiological reaction time--that 
is, the upper bound on the time limit over which a 
change in the stimulus can be seen to have significant 
correlation with the response. Since the duration of 
the encoding time window is set by the shorter of the 
reaction time and the dynamic time course of the stim- 
ulus, the encoding time window must be shorter than 
or equal in duration to the integration time window. 

Determining the Characteristic Time Scale of a 
Signal Using the Stimulus Reconstruction Method 

In many encoding situations, the relevant stimuli are 
not stationary, nor can they be characterized as hav- 
ing only a single frequency component (nor, therefore, 
a single characteristic time scale). Rather, a stimu- 
lus may be composed of many frequency components, 
Such complex dynamic stimuli are referred to as sig- 
nals in the engineering literature, and a neural system 
encoding the signals would be referred to be as a dy- 
namical encoder. An auditory neuron with a broad 
frequency tuning curve is an example of a dynamical 
encoder. Since each of the different frequency com- 
ponents must be encoded simultaneously within such 
a neuron's spike-train response, the notion of a single 
encoding time window becomes inadequate. Each fre- 
quency component requires a corresponding encoding 
window having a duration equal to half the period of 
that frequency component. Each spike in a given spike 
train will fall within the encoding windows associated 
with all the different frequency components and could 
in fact be correlated with multiple frequency compo- 
nents of the signal. 

The methods of stochastic systems analysis are 
well suited for the analysis and quantification of such 
complex encoding scenarios. The goal of stochastic 
systems analysis is to characterize the deterministic 

relationship between two stochastic signals (in our 
case, the sensory stimulus signal and the neural re- 
sponse pattern), thereby separating the aspects of the 
two signal variables that are correlated from those that 
are random. The deterministic relationship can then 
be expressed in the frequency domain, allowing the 
encoding of the different frequency components to be 
"untangled" from one another. In a stochastic sys- 
tems analysis, the deterministic relationship between 
the stimulus signal and the response pattern is ex- 
pressed as a transformation that operates on one of 
the random variables to generate a prediction of the 
other one. Such a transformation can be expressed as a 
functional expansion, similar to the way a Taylor series 
expansion (using successively higher-order polynomial 
terms) can be used to approximate a complex function. 
In a functional expansion, the terms are called kernels 
or filters and correspond to the successively higher- 
order nonlinear terms needed to achieve an adequate 
approximation of the transformation. The kernels can 
be derived analytically from a statistical analysis of the 
data, by requiring that the difference between the pre- 
dicted and the actual random variable are minimal with 
respect to some set of objectively defined criteria. Such 
analyses are known as Volterra or Wiener analyses (de- 
pending on the precise form of the functional expan- 
sion) or white-noise analyses (after the most freque, ntly 
used stimuli) and have been applied extensively in sen- 
sory physiology (Marmarelis and Marmarelis, 1978; 
Korenberg and Hunter, 1990; Eggermont, 1993). 

The conventional approach in applying this type of 
analysis to neurobiological systems has been to derive 
a transformation that operates on the stimulus signal to 
obtain a best estimate of the spike-train response. In 
the frequency domain, such a forward transformation 
describes how any single frequency component of the 
spike-train response can be predicted from combina- 
tions of multiple-frequency components of the signal. 
The natural inclination is to interpret such a forward 
transformation as the operation that transforms the raw 
stimulus signal into the significant information about 
the signal. That information would then be represented 
by simply equating the amplitude of the transformed 
signal to the probability of obtaining a spike. It is 
important to note that this interpretation forces the as- 
sumption that all significant information is encoded 
with a rate code. 

If the nature of the encoding scheme has not yet 
been determined and the analysis of the code is an ex- 
plicit goal of the study, then the reverse approach must 
be taken. That is, an expansion must be derived that 
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transforms the observed spike train into an optimal es- 
timate of the stimulus that elicited that spike train. This 
approach allows an analysis of the correlation of dif- 
ferent frequency components of the spike train with 
individual frequency components of the signal (each 
of which has its own characteristic time scale). To do 
so, an expansion is derived in the form of a set of fil- 
ters that, when convolved with the observed spike train, 
reconstructs an optimal estimate of the stimulus signal. 

This innovative approach, referred to as the reverse 
reconstruction or stimulus reconstruction method, was 
defined and first applied for an analysis of sensory 
coding by Bialek and his colleagues (Bialek et al., 
1991; Bialek and Rieke, 1992). 2 The stimulus re- 
construction method allows us to analyze the encoding 
of each of the frequency components of the signal in- 
dependently from all other frequency components and 
resolves the apparent problems presented by the ne- 
cessity for considering multiple overlapping encoding 
time windows. In essence, the reconstruction filter is 
decomposable into its constituent frequency compo- 
nents (see Appendix). Each frequency component will 
have an associated encoding time window equal to one- 
half of the associated cycle period. A study of the re- 
construction filters in such an analysis thus provides a 
wealth of quantitative, model-independent information 
about the intrinsic time scales of neural computation 
and encoding. 

Rate Encoding and Temporal Encoding 

Rate Encoding 

With the duration of the encoding window defined in 
terms of the intrinsic time scale of the biologically rel- 
evant encoded information, we can distinguish objec- 
tively between rate encoding and temporal encoding 
schemes. It is generally accepted that a rate encod- 
ing scheme is one in which the relevant information 
encoded about the stimulus is correlated only with the 
number of elicited spikes within the encoding window 
and is not correlated with any aspect of the tempo- 
ral pattern of the spikes within the encoding window. 
In o/ur definitions, we use the term correlation in the 
loose sense to signify any probabilistic dependence be- 
tween the two random variables. To be rigorous, this 
statistical dependence must be tested with a measure 
that takes into account all the moments the joint prob- 
ability distribution between the stimulus and the re- 
sponse (such as the mutual information). 

The general definition of rate encoding can be recast 
more specifically in terms of several different analytical 
approaches that are commonly used for the analysis of 
the input-output properties of a nerve cell or ensemble, 
as follows: 

1. For neurons encoding stimuli with a single time 
scale, the definition is this: a rate encoding scheme 
is one in which there is significant correlation 
between the relevant stimulus parameter and the 
mean number of spikes in the elicited response 
within the encoding window (or between the stimu- 
lus parameter and some weighted average derived, 
for example, from the value of the first principal 
component of the pattern of spikes) and no ad- 
ditional correlation between the stimulus parame- 
ter and any higher-order moments (or higher-order 
principal components) of the elicited spike pattern 
within the encoding window. 

2. For tasks in which the stimuli are dynamic in time, 
this definition can be formulated in the frequency 
domain: a rate encoding scheme is one in which 
there is significant correlation between identical 
frequency components of the stimulus signal and 
elicited spike pattern, and no additional indepen- 
dent correlation between any frequency component 
of signal with any other higher-frequency compo- 
nents of the elicited spike pattern. Correlations with 
lower-frequency components are allowed, since 
these can determined by averaging the values from 
multiple encoding windows corresponding to the 
frequency being encoded. 

3. For the analysis of complex signals within the con- 
text of the stimulus reconstruction technique defi- 
nition 2 translates to the following: a rate encoding 
scheme is one in which the transformation used to 
obtain the best estimate of a given frequency com- 
ponent of a signal is composed of analytical terms 
that involve only the same (or lower) frequency 
components of the spike-train response pattern. In 
other words, in a rate-encoding scheme, no signifi- 
cant improvement could be achieved in the estima- 
tion of the stimulus signal at a given frequency by 
adding expansion terms involving components of 
the response pattern at higher frequencies. In par- 
ticular, if all relevant information about a dynamic 
stimulus signal can be recovered through the ap- 
plication of a first-order (that is, linear) filter term 
in the reconstruction operation, then the code can 
automatically be classified as a rate code. In fact, 
such a code can be classified even more restrictively 
as a linear rate code. 
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As shown by Abbott (1994), a linear filter obtained 
via application of the stimulus reconstruction method 
can be normalized to obtain an estimate of the mean fir- 
ing rate. Within the context of our definition, this mean 
firing rate is obtained by a convolution of the spike train 
with a analytically derived filter that takes into account 
the time frames of all the frequency components of the 
significant information being encoded. If this mean fir- 
ing rate can be linearly scaled to match the stimulus (as 
it is done in the stimulus reconstruction methodology), 
and the resulting approximation is the best that can be 
achieved from the information imbedded in the spike 
train, the code can be classified as a linear rate code. 

Note that our variously worded definitions of rate en- 
coding do not necessarily require the code to be linear. 
The function characterizing the correlation between the 
information being encoded and the number of spikes 
within the window can represent a highly nonlinear 
transformation of the number of spikes. Within the 
context of the stimulus reconstruction technique, we 
note also that encoding schemes could exist in which 
the best stimulus reconstruction filter would include 
nonlinear terms in the same frequency. Such a scheme 
would be a nonlinear rate encoding scheme. As is dis- 
cussed below, the encoding scheme is disqualified as 
being a rate code only/fparticular frequency compo- 
nents of the stimulus signal are correlated with higher- 
frequency components of the response pattern and that 
this correlation yields additional information beyond 
what can be obtained from the correlation with the 
frequency component of the response pattern at the 
frequency of the stimulus signal. 

Another important point is that in a rate code, the 
amount of information conveyed by a particular re- 
sponse is not necessarily proportional to the number 
of spikes elicited within the encoding window. In- 
deed, responses that consist of decreases in the spike 
activity below the baseline rate can convey consider- 
able amounts of information. Rather, as shown by our 
work and by that of others (Theunissen and Miller, 
1991; Eckhorn and P~pel, 1975), the mutual informa- 
tion conveyed by a particular symbol (in this case, the 
spike count within an encoding window) depends on 
the extent to which that symbol is distinguishable from 
all other symbols that might have occurred. 

Temporal Encoding 

In a temporal encoding scheme, the relevant informa- 
tion is correlated with the timing of the spikes within the 
encoding window, over and above any information that 

might be correlated with the number of spikes within 
the window. Specifically, a temporal encoding scheme 
is one in which there is significant additional correla- 
tion between a stimulus parameter and any aspect of 
the pattern of elicited spikes on a time scale less than 
the duration of the encoding window. As was the case 
for our definition of rate encoding, this definition can 
be recast more specifically in terms of several analytic 
approaches that are commonly used for the analysis of 
the input-output properties of a nerve cell or ensemble, 
as follows: 

1. For neurons encoding stimuli with a single time 
scale: a temporal encoding scheme is one in which 
there is significant additional correlation between 
the relevant stimulus parameter and any moments 
of the elicited spike pattern having higher order 
than the mean (or having any principal components 
beyond the first). 

2. In the frequency domain: a temporal encoding 
scheme is one in which there is significant addi- 
tional correlation between a frequency component 
of a dynamic stimulus signal and a higher-frequency 
component of the corresponding elicited spike 
pattern. 

3. Within the context of the stimulus reconstruction 
technique: a temporal encoding scheme is one in 
which the transformation used to obtain the best es- 
timate of a given frequency component of a signal is 
composed of analytical terms that involve higher- 
order nonlinear filters involving higher-frequency 
components of the spike-train response pattern. 
(See the Appendix for the mathematical formula- 
tion of this definition.) 

Some Examples and Common Misconceptions 

Weighted-Average Rate Codes. In our scheme for 
the classification of rate encoding versus temporal en- 
coding schemes presented above, we have included 
a weighted-average-rate code as a particular exam- 
ple of a rate-encoding scheme. Although a weighted- 
average code is ultimately based on a count of the 
number of spikes occurring within the encoding time 
window, spikes within different subintervals of the en- 
coding window might be weighted differently in the 
final estimation of the stimulus parameter value. For 
example, as indicated in our definitions, if all the in- 
formation about the stimulus can be extracted by con- 
sidering only the coefficients of the first component in 
a principal component decomposition of the response, 
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the code would be classified as a rate code. That prin- 
cipal component might have a much higher value near 
the beginning of the encoding window than at the end 
of the window--for example, indicating that a differ- 
ential weighting of the early spikes within the encoding 
window would allow a better estimate of the stimulus 
signal than would an unweighted or "flat" count of the 
spikes over the whole encoding window. 

This generalization of rate encoding to include 
weighted rate codes is consistent with the fundamental 
distinction between temporal and rate codes. For an 
encoding scheme to qualify as a temporal scheme, at 
least two different weighted spike-count average values 
would have to be obtained from statistically indepen- 
dent aspects of the spike-train pattern within a single 
encoding window in order to extract all of the infor- 
mation imbedded in that spike train about the stimulus. 
The information from these two different measures of 
the spike-train pattern could then, presumably, be com- 
bined together through some nonlinear operation to 
obtain a single value describing the deterministic rela- 
tionship between the stimulus and the response that was 
better than either of the weighted-average values alone. 
If an encoding scheme is based on a derivation of one 
encoding value per encoding window through a linear 
operation on the spike train, as in a weighted-average 
code, then it classifies as a rate code. Researchers test- 
ing for temporal encoding should therefore compare the 
accuracy of their presumed temporal encoding scheme 
(such as the degree of correlation between their de- 
coded response and the actual stimulus signal) with the 
accuracy attainable using the optimal weighed-average 
rate code. 

From a practical standpoint, the consideration of 
weighted rate codes allows for an objective determi- 
nation of the duration of the encoding time window. In 
particular, when considering the encoding of stationary 
or pseudostationary stimuli, the duration of the encod- 
ing time window can be considered as being equivalent 
to the integration time of the neural layer being consid- 
ered. Note that the use of an unweighted (that is, flat) 
rate code could lead to severe problems if the length of 
the integration window were not known and if an in- 
appropriately long encoding window were chosen for 
an analysis of neural encoding. In this case, erroneous 
conclusions could be drawn about the nature of en- 
coding. For example, errors due to spikes counted in 
the later part of the chosen window (that is, outside 
of the real encoding window) could significantly de- 
grade information obtained from the spikes counted in 
the early part of the chosen window (corresponding to 

the real encoding window). In that situation, the en- 
coding scheme could be misclassified as being tem- 
poral when, in fact, limiting the spike count to the 
actual encoding time window would result in the cor- 
rect classification of the scheme as rate encoding. The 
derivation of weighted average rate codes prevents this 
kind of mistaken interpretation, even if the duration 
of the encoding time window is erroneously chosen 
to be too long. Therefore, this general definition of 
rate encoding is of practical as well as of theoretical 
merit. 

Temporal Encoding Versus Rate Encoding ? 

It is important to note that the classification of an encod- 
ing scheme as either a rate or a temporal scheme can- 
not be based solely on an observation of the frequency 
or timing precision of spikes within the response pat- 
terns. The fact that a set of spike patterns elicited by 
repeated presentations of a complex stimulus might 
show extremely low intertrial variability (for example, 
many spike placements might be reproducible from 
trial to trial with little "jitter" on a time scale longer 
than 1 msec) might only reflect the encoding of the 
phase of high-frequency components of a signal. On 
the other hand, a temporal code could be implemented 
that required relatively low precision in spike timing, as 
long as different discriminable patterns could be pro- 
duced within the time scale of the encoding window. 
Thus, one might expect a greater probability of finding 
temporal encoding in situations where the duration of 
the encoding window for the relevant information is 
long relative to the action potential refractory period 
(or to the mean interspike interval). In such cases, one 
might even expect to find temporal encoding employed 
at the level of single neurons. For neurons having en- 
coding time windows with durations approaching the 
refractory period, the imposed restriction on the mini- 
mal interspike interval would prevent the realization of 
many different spike patterns within the time scale of 
the encoding window. 

Experimental results suggesting the involvemem of 
temporal encoding in single neurons have, in fact, been 
reported. Examples in which single neurons tempo- 
rally encode significant amounts of information about 
relatively stationary stimuli can be found in (1) cuta- 
neous receptors encoding location on the skin of the 
stimulus (Fuller and Looft, 1984), (2) neurons in pri- 
mate visual system pathways encoding complex visual 
patterns (Richmond et al., 1987; Richmond et al., 1990; 
McClurkin et al., 1991; Kjaer et al., 1994; but see also 
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Tovee et al., 1993), and (3) interneurons in the auditory 
cortex of cats encoding sound source localization (Mid- 
dlebrooks et al., 1994). In each of these cases, the same 
aspect of the stimulus was encoded by the restricted rate 
code and the temporal code. Thus, consideration of the 
temporal code in these cases allowed an increase in the 
coding accuracy. 

To our knowledge, however, no definitive demon- 
strations have yet been presented of single neurons 
encoding dynamic signals using temporal encoding 
schemes. The stimulus reconstruction method has now 
been applied to the analysis of encoding in several dif- 
ferent sensory systems, but in most cases, the linear 
filter term recovered all significant mutual informa- 
tion, implying the operation of a rate encoding schemes 
(Bialek et al., 1991; Bialek and Rieke, 1992; Warland 
et al., 1991). Only in one case reported to date was sig- 
nificant additional mutual information recovered with 
a second-order (nonlinear) filter term (Rieke, 1991). 
However, the amount of additional information recov- 
ered with the second-order filter was relatively small, 
and it was not determined in that study whether or not 
the second-order term involved a correlation between 
any signal component with higher-frequency compo- 
nents of the spike-train response pattern. 

Ensemble Temporal Encoding 

When information is encoded by an ensemble of cells, 
however, the possibilities for temporal encoding be- 
come much greater. This is because the number of 
different discrete spike pattems expressible within the 
encoding time window is not restricted to the same ex- 
tent across an ensemble as they are in any individual 
neuron making up the ensemble. To illustrate, if the 
encoding window for a particular class of neuron were 
2 msec, the duration of an action potential 1 msec, 
and the refractory period 1 msec, then the number of 
spikes per encoding window would never exceed one 
for any individual cell. Thus, the number of patterns 
expressible by one spike per encoding window per cell 
would be severely restricted. However, the number of 
patterns expressible across an ensemble of such cells 
might be substantially greater, since different relative 
placements of the cells' spikes within their respective 
encoding windows could theoretically be used much 
more reliably to encode information about the variation 
of dynamic signal parameters. It is important to note, 
however, that the mere existence of ensemble coding 
does not necessarily imply the operation of a temporal 
encoding scheme. If the information about amplitude 

or phase is correlated only with the total spike count 
within the net encoding window across the ensemble, 
then the operation of a rate-encoding scheme is im- 
plied. 

One interpretation of several recent studies of ensem- 
ble encoding in the mammalian visual system is that 
(1) there is a significant amount of information encoded 
in temporal spike patterns across a neural ensemble and 
(2) the temporally encoded information is of a com- 
pletely different nature than the information that is en- 
coded by the rate of firing of the neural ensemble. One 
hypothesis is that information about the binding of the 
different components of a visual object is encoded by 
aspects of the synchronization of neuronal responses 
across neurons (Engel et al., 1992). For neurons in the 
cat visual cortex, the synchronization of spike firing 
has a time scale on the order of 20 msec, whereas the 
time scale of the encoding window in those tasks is 
on the order of 100 msec. In this case, essentially no 
information about linkage could be recoverable from 
the ensemble firing rate (averaged over the correct 100 
msec window) of the neurons. 

Temporal encoding across neuronal ensembles has 
also been demonstrated by Abeles et al. (1993), who 
found very precise patterns (with time scales on the or- 
der of a few msecs) across small ensembles of neurons 
in the frontal cortical areas of the primate brain. The 
patterns were shown to correlate with specific behav- 
ioral information-processing situations, even though 
the exact nature the information carried by the patterns 
could not be determined. As in the case for the syn- 
chronous firing of neurons of the primary visual cortex, 
the temporal patterns in these neurons might encode the 
results of some higher-order computation occurring in 
the brain. 

Considering even larger ensembles of neurons, 
Freeman has shown that the complex dynamical re- 
sponse pattern of the ensemble of neurons in the 
olfactory bulb of the rabbit (represented by a multi- 
dimensional EEG recording) were correlated with the 
perception of different odorants (Freeman, 1991). Sim- 
ilarly, complex dynamical patterns have recently been 
found by recording simultaneously from many neu- 
rons in the olfactory system of locusts (Laurent and 
Davidowitz, 1994). In both of these cases, it still re- 
mains to be determined whether or not any additional 
information can be obtained from the consideration of 
the spatiotemporal response patterns, beyond the in- 
formation that would be recoverable from the mean 
activity of all the neurons in consideration and, if so, 
what the nature of that information might be, 
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Temporal Coding Versus Temporal Encoding 

It is important to clarify the difference between our 
definition of temporal encoding and the term tempo- 
ral coding, which is often used in the literature to de- 
scribe the encoding of information about the temporal 
aspects of dynamic stimuli (for example, contrast the 
use of temporal coding in Engel et al., 1992, with the 
use in Gooler and Feng, 1992). The time course of 
information processing in any sensory part of the ner- 
vous system is necessarily coupled to the time course 
of external physical stimuli. In other words, the times 
of occurrence of relevant stimulus features are often of 
considerable behavioral relevance to the animal and are 
almost always encoded within spike-train responses. 
This encoding of temporal aspects of a stimulus sig- 
nal is commonly referred to as temporal coding and 
could theoretically be implemented through either a 
rate-encoding scheme or a temporal-encoding scheme. 

Many examples of temporal coding have been pre- 
sented in the literature, for both static (or slowly chang- 
ing) stimuli and for rapidly changing dynamic signals. 
Within the context of auditory physiology, the extent 
of temporal coding is reflected by the precision with 
which the neural response is phase locked to the time 
of occurrence of relevant stimulus features. The abil- 
ity of neurons to phase lock to a stimulus signal is 
exemplified by high-frequency auditory fibers: single 
neurons can phase lock to stimulus frequencies of up 
to 7 kHz (Moiseff and Konishi, 1981) (although no 
single neuron could fire at every cycle). Another re- 
markable example of phase-locking neurons is found 
in bats, where the variance in the latency of spiking 
neurons to the onset of the stimulus is in the submil- 
lisecond range (Covey and Casseday, 1991). In those 
cases, the timing of action potentials is modulated with 
extreme precision, on a time scale much smaller than 
the duration of an action potential. 

However, it is important to note that the represen- 
tation of such temporal information, even where such 
precise timing of spikes can be observed, does not nec- 
essarily require a temporal encoding scheme but could 
be achieved through rate encoding. 3 Conversely, the 
implementation of a temporal encoding scheme does 
not necessarily require high temporal resolution in a de- 
coder's sensitivity to the exact timing of spikes within 
the encoding window. Temporal encoding and tempo- 
ral coding can both produce distinct and reliable spike 
patterns in time, but the nature of the patterns as it re- 
lates to the encoded information is fundamentally dif- 
ferent. It is important to remember, however, that a 

scheme could be imagined in which additional infor- 
mation about the phase of the signal were temporally 
encoded. This would be the case if differences in the 
precise timing of the spikes within the encoding win- 
dow were correlated with differences in the phase of 
the signal. Considering the confusing nature of the ter- 
minology, we propose the strict use of temporal coding 
when referring to the encoding of temporal aspects of 
the significant information, such as the phase of a fre- 
quency component of a signal, and the use of temporal 
encoding when referring to schemes for encoding in- 
formation in which spike patterns on a time scale less 
than the duration of the encoding window correlate 
significantly with stimulus patterns. 

Conclusions 

As we have shown, the distinctions between rate en- 
coding and temporal encoding are far from arbitrary 
and can be defined rigorously by considering the nat- 
ural time scale of the information being represented. 
The distinctions are significant for two important rea- 
sons. First, from a practical standpoint, the extent by 
which spike-train data can be statistically reduced for 
subsequent analysis may be very different for these 
two different schemes. Any time-window averaging 
of spike trains containing temporally encoded informa- 
tion would essentially filter out and eliminate some or 
all of the temporally encoded information, and analysis 
of such degraded data would lead to miscalculations of 
the quantity or quality of information represented in 
neuronal spike trains. 

Second, temporal encoding schemes are signifi- 
cantly different than rate-encoding schemes from a 
conceptual standpoint. In temporal encoding schemes, 
the dimension of time is used by a neuron or neuronal 
ensemble to encode information that might not be tem- 
poral in nature (that is, not related to either the timing 
of events or the temporal dynamics of continuously 
varying functions). This transformation of the encod- 
ing regime presumably requires innovative architecture 
and sophisticated biophysical encoding mechanisms. 
On the other hand, the nervous system is an excellent 
processing machine for such a transformation of en- 
coding domains, since spatial patterns of activity can 
easily be transformed into temporal patterns and vice 
versa. Another fascinating possibility is the potential 
for information that is temporal in nature to be tem- 
porally encoded. But this, again, requires a significant 
transformation of the encoding regime. In this case, the 
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Table 1. 

Time windows 

Integration window Encoding window 

Definition The period of time preceding any particular point The duration of the spike train assumed to correspond 
in a neuron's or ensemble's activity pattern to a single symbol of the code; also the limiting 
during which a variation in the input could intrinsic period of the encoding process, corresponding 
have significantly affected that activity to the inverse of the limiting frequency with which the 

neural code is updated to represent dynamic 
variation in the stimulus signal 

Depends on All physiological processes that contribute to the 
integration and transformation of synaptic inputs 
(and any intrinsically generated conductances) 
into the spiking output of a neuron 

The time scale of the stimuli being encoded; and also on 
the reaction time of the system. Must be less than or 
equal to the duration of the integration window. 

Encoding schemes 

Rate encoding Temporal encoding 

Definition The encoded information is correlated only with the Additional information is correlated with some aspect(s) 
average number of spikes within the encoding of the temporal pattern of spikes within the encoding 
time window, or with any weighted average window 
across that window 

Temporal coding versus Temporal encoding 

Temporal coding Temporal encoding 

Definition An implementation of a rate or temporal encoding An encoding scheme in which information about static or 
scheme to represent a continuously varying dynamic signals is encoded in some aspect(s) of the 
sensory signal, characterized by a one-to-one temporal pattern of action potentials within the 
correspondence between the time of occurrence encoding window 
of a sensory event and the time of occurrence of 
the corresponding neural response 

transformation is between two different time scales: a 
time scale for the significant information being encoded 

and a fas t e r  time scale for the encoding symbols. It will 
be of great interest to identify such cases and to deter- 
mine the cellular and network mechanisms underlying 
the implementation of temporal encoding schemes for 
temporal information. 

The stimulus reconstruction technique is of par- 
ticular utility in analyzing the encoding of dynamic 
stimuli. This analysis technique allows the investi- 
gator to analyze the encoding for each intrinsic time 
scale of the different frequency components of a dy- 

namic stimulus. It also allows the researcher to imagine 

biologically plausible schemes for decoding the spike- 
response patterns within the necessary time scale. 
Further, it facilitates the practical definition of (and 

distinction between) rate-encoding and temporal en- 
coding schemes and offers a rigorous way to char- 
acterize coding accuracy. To our knowledge, the 

stimulus reconstruction technique has been applied so 
far only to single neurons, but the same concepts and 
mathematical formalism can be applied to neuronal 
ensembles. 

Only a very few instances of temporal encoding by 

single neurons have been demonstrated conclusively 
to date. Most of those cases were limited to situations 
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in which the information being encoded by the neuron 
concerned slowly varying or static stimulus parameters. 
The possibility for temporal encoding by ensembles of 
neurons is, however, much greater. An understand- 
ing of temporal encoding may be an important key 
to understanding many functions of nervous systems 
(and in particular of higher-level functions), and fur- 
ther examples need to be identified and analyzed (see 
Table 1). 

Appendix 

Through the stimulus-reconstruction methodology, a 
best estimate of the stimulus waveform (and any 
linear or nonlinear transformation of the stimulus 
waveform) can be obtained from a transformation 
of the spike-train response waveform. This method 
is appropriate for the characterization of the nature 
of the encoding. In that case, the transformation 
operating on the spike train can be interpreted as 
the decoding operation, and the form of the trans- 
formation will determine whether or not the stim- 
ulus is being encoded with a rate or a temporal 
scheme. 

In the time domain, the transformation can be ex- 
pressed as a functional expansion in terms of Volterra 
kernels, such that the best estimate of the stimulus 
Sest(t) can be obtained by operating on the spike-train 
response waveform R(t): 

/ 1  

ho + / hl(~)R(t - 1:)dr Sest(t) 

--OO 

OO OO 

+ / / h2( 1,  2)R(t-  2)d ld 2 + . .  
t /  

- - O  --OO 

(1) 

In order to determine whether S(t) is being encoded 
with a rate-encoding scheme or a temporal encoding 
scheme, the Volterra expansion can be rewritten in the 
frequency domain. The kernels hi(r) ,  hz(rl, "g2)-'' 
of the Volterra expansion can be expressed in the fre- 
quency domain by taking the Fourier transform of the 
corresponding order. For example, 

H 2 ( / D 1 ,  1/)2) = 

ffh2('t51,'~2)e-i(wlrl+W2r2)drld'g2 (2) 

--0(3 --00 

The convolutions in the Volterra expansion can then be 
rewritten in terms of products in the frequency domain, 
such that 

Sest(t):F-l{Ho~(w) + nl(w)R(w) 
+ H2(wl, w2)R(wl)R(w2) + . . . }  (3) 

where F -1 stands for the inverse Fourier transform. In 
the above transformation, the inverse Fourier transform 
of the correct order is first applied to each term, and 
the multiple time variables that are obtained are then 
all set equal to t. For example, if 

12(tl, t2) = 

' f e +i(wltl +w2t2) H2(wl,W2)R(wl)R(w2)dwldw2, (2,7)2 
-oo -oo 

(4) 

then 

Gz(t) = /2 ( t ,  t) = 
oO oo 

f fh2(Zl ,r2)R(t-rl)R(t-r2)dzldV2. (5) 
--OO --OO 

Equation 3 can be rewritten by grouping all the terms 
corresponding to each frequency: 

Sest ( W )  = 

Hog(w) + H1 (w)R(w) 

H2(Wl, wz)R(wl)R(w2)dwldW2 + 
i /  

t0~W 13r-W2 

~ H3(Wl, w2, w 3 ) R ( w l ) R ( w 2 ) R ( w 3 ) d w l d w 2 d w 3  + 

113=1131 -}-W2+IO 3 

+ . . .  (6) 

Or, by substitution, 

Se~t (w)  = 

Hog(w) + H1 (w)R(w) 

+ f H2(wl, w - wl)R(wl)R(w - Wl)dWl 

+ . . .  (7) 

In the above equation, frequency components of the 
spike pattern other than w are combined in the second- 
and higher-order terms in order to obtain the estimate 
of the stimulus at frequency w. In a rate encoding 
scheme, these frequency components can only be less 
in magnitude than w. We can write (7) to separate the 
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frequency components below and above w: 

Sest ( to) = 

H o 3 ( w )  + H I ( W ) R ( w )  
to 

+2f H 2( to l ,  w --  W l ) R ( W l ) R ( w  --  W l )dW l  
0 
W I / ) - - W  1 

+ 4 f  f { H 3 ( W l ,  w2, to - tot - to2) 
0 0 

• R ( t o l ) R ( w a ) R ( w  - Wl - t o 2 ) d w l d w 2 }  

-•-... 
+ 

o o  

2 f H 2 ( w l ,  w - W l ) R ( w l ) R ( w  -- w l ) d W l  
tO 

oo 0 

+ 4 f  f { H 3 ( w l , w 2 ,  w -  wl  - w2) 
[O I/J - -  0 )  1 

x R ( w ~ ) R ( w 2 ) R ( w  - Wl - w 2 ) d w l d w 2 }  

(8) 

If the Volterra functional expansion relating the re- 
sponse spike pattern to the stimulus can be written 
solely in terms expressed in the first group, then the 
encoding can be classified as a rate code. If terms from 
the second group are involved, then the encoding can 
be classified as a temporal code. 

Notes 

1. Note that the task of encoding the amplitude and phase of one 
frequency component of a signal within a particular, discrete 
time window (equal in duration on one cycle period) is formally 
equivalent to the task of continuously encoding the waveform 
of that frequency component over longer time periods. The ac- 
tual formulation of the neural encoding problem will depend on 
the memory of the system (see the definition of integration time 
window below). Also note that a neuron can be responsive to 
a 100 Hz frequency component without necessarily encoding 
the phase and amplitude of that component. For example, the 
response of the neuron might be correlated only with the ampli- 
tude of an envelope of the 100 Hz component. In such a case, the 
appropriate encoding time window would be correlated with the 
longer time scale characteristic of the dynamics of the envelope. 

2. Note that the forward and reverse transformations are not nec- 
essarily inverses of one another and that the difference between 
the two approaches is not just a matter of interpretation. In cases 
requiring the incorporation of nonlinear terms in the functional 
expansions, the forward and reverse transformations could be 
significantly different. A functional expansion can only describe 
deterministic relationships between two random variables, and 
only a single estimate for the output variable can be obtained 
from operation on the input variable. Therefore, if the deter- 
ministic output function to be represented by the expansion is 
not single-valued, then the transformation is not an adequate 

representation of the relationship between the input and output 
functions. 

3. Note that the rate code for such a high-frequency encoder is 
restricted to a simple binary code, where the only two possible 
symbols are 0 (no spike) or I (spike). It is only when an ensemble 
of such high-frequency neurons are taken into account that an 
analog rate code capable of encoding the amplitude of the signal 
would be obtained. 
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