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Abstract
The nonlinearity of dynamics in systems biology makes it hard to infer them from experi-

mental data. Simple linear models are computationally efficient, but cannot incorporate

these important nonlinearities. An adaptive method based on the S-system formalism,

which is a sensible representation of nonlinear mass-action kinetics typically found in cellu-

lar dynamics, maintains the efficiency of linear regression. We combine this approach with

adaptive model selection to obtain efficient and parsimonious representations of cellular dy-

namics. The approach is tested by inferring the dynamics of yeast glycolysis from simulated

data. With little computing time, it produces dynamical models with high predictive power

and with structural complexity adapted to the difficulty of the inference problem.

Introduction
Dynamics of cellular regulation are driven by large and intricate networks of interactions at the
molecular scale. Recent years have seen an explosive growth in attempts to automatically infer
such dynamics, including their functional form as well as specific parameters, from time series
of gene expression, metabolite concentrations, or protein signaling data [1–6]. Searching the
combinatorially large space of all possible multivariate dynamical systems requires vast
amounts of data (and computational time), and realistic experiments cannot sufficiently con-
strain many properties of the inferred dynamics [7]. Thus detailed, mechanistic models of cel-
lular processes can overfit and are not predictive. Instead, one often seeks a priori information
to constrain the search space to simpler ad hocmodels of the underlying complex processes [2,
4, 8]. This can lead to missing defining features of the underlying dynamics, and hence to poor
predictions as well.

A promising approach is to forgo mechanistic accuracy in favor of phenomenological or ef-
fectivemodels of the dynamics [1, 9, 10]. Following the recipe that can be traced to Crutchfield
and McNamara [11], one defines a sufficiently general (and, hopefully, complete [12]) set of
possible dynamics using pre-defined combinations of basis functions. One then uses statistical
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model selection techniques to select a model that is “as simple as possible, but not simpler”
than needed for predictive modeling of the studied system [13]. Such approaches expand tradi-
tional statistical modeling to the realm of nonlinear dynamical systems inference. While their
derived models may not have an easy mechanistic interpretation, they are parsimonious and
often predict responses to yet-unseen perturbations better than microscopically accurate, and
yet underconstrained models.

In particular, we have recently implemented such an approach [10] using S-systems (to be
described later in this article) as a basis for representing the dynamics. The representation is
nested, so that the dynamics can be ordered by an increasing complexity. It is also complete, so
that every sufficiently smooth dynamics can be represented with an arbitrary accuracy using
large dynamical S-systems, which grow to include complex nonlinearities and dynamical vari-
ables unobserved in experiments. Thus inference of the dynamics with this representation is
statistically consistent [12] in the sense that, for a large amount of data, the inferred models are
guaranteed to become arbitrarily accurate with high probability. The success of such phenome-
nological modeling is evident from its ability to use simulated noisy data to infer that equations
of motion in celestial mechanics are second order differential equations, and to derive New-
ton’s law of universal gravitation in the process [10]. Similarly, the approach infers parsimoni-
ous, phenomenological, and yet highly accurate models of various cellular processes with many
hidden variables using about 500 times fewer data than alternative methods that strive for the
mechanistic accuracy [10].

And yet the approach in [10] suffers from a high computational complexity, requiring nu-
merical integration of millions of trial systems of differential equations to generalize well. In
specific scenarios, it may be useful to trade some of its generality for a substantial
computational speedup.

As has been argued in [2, 5], in biological experiments, it is often possible to measure not
just expressions of all relevant molecular species, but also their rates of change. In experiments
that make use of chemostats [14], for instance, the rates of change are often the quantities of in-
terest, and are measured in many cases more precisely than the absolute concentrations. In
such cases, there is the possibility of a large gain of computational speed in model inference be-
cause estimates of rates of change can be tested directly, without the requirement of numerical
integration of ODEs.

In this article, we show that, in such a scenario, the alternating regression method for infer-
ence of S-systems [2], merged with the Bayesian model selection for dynamics [10], infers dy-
namical models with little computational effort. Importantly, these phenomenological models
are parsimonious, nonlinear, and hence predictive even when the microscopically accurate
structure of the dynamics is unknown.

In the remainder of the article, we first formalize the problem we study, then introduce the
reader to S-systems formalism. We then explain the alternating regression method for infer-
ence of the S-systems parameters from data, followed by our implementation of S-systems
model selection using Bayesian approaches. Finally, we introduce the biological system on
which our approach is tested [15], and present the results of the automated dynamical systems
inference in this context.

Methods

Problem setup: Inferring biochemical dynamics from data
In a general scenario [10], one needs to infer the deterministic dynamics from a time series of
J-dimensional vectors of molecular expressions, {xμ}i = xi, μ = 1. . .J, measured with noise at dif-
ferent time points ti, i = 1. . .N. The system may be arbitrarily nonlinear and the measured data

Efficient Inference of Parsimonious Models of Cellular Dynamics

PLOS ONE | DOI:10.1371/journal.pone.0119821 March 25, 2015 2 / 14

Competing Interests: The authors have declared
that no competing interests exist.



vectors xmay represent only a small fraction of the total number of densely interacting dynam-
ical variables. Intrinsic noise in the system, while possibly important [16], is neglected
for simplicity.

We focus on a simplified case [2, 5] in which the measured dynamical variables completely
define the system, and where their rates of change, dxi=dt ¼ x0

i, and the expected experimental

variances of the rates, s02i , are also given. Since typical experiments measure variables with
higher accuracy than their rates of change, for simplicity, we assume no errors in xi. (This
framework can also be straightforwardly extended to include known exogenous variables; for
simplicity we do not include this in the example here.) Since the mechanistically accurate form
of X′ is unknown, we are required then to approximate the rate function X′:

dx
dt

¼ X0ðxÞ: ð1Þ

Knowing x0
i, we can fit the functions X′ by minimizing

w2 ¼
XN
i¼1

XJ

m¼1

x0i;m � X 0
mðxiÞ

s0
i;m

 !2

; ð2Þ

subject to a traditional penalty for the model complexity. Note that here we use the measured
values xi instead of the integrated model values ~xðtiÞ as the argument of X′.

Different approximation strategies correspond to different functional forms of X′. In this
paper, we focus on the linear approximation,

dxm
dt

¼
XJ

n¼1

Amnxn; ð3Þ

as well as on S-systems (see below), which can be viewed as linear models in logarithmic space.
However, compared to the previous work [2], the analyzed dynamics is not expected to be fit-
ted exactly by either of the model families, resulting in approximate, effective, or phenomeno-
logical models. Further, even for a modestly large number of variables, the number of
interaction parameters, such as Aμν, can be quite large. Thus we additionally study the effects
of constraining the interaction model using Bayesian model selection.

Our goals are to understand (1) the accuracy afforded by the nonlinear S-system approach
for phenomenological modeling, especially compared to a simpler linear regression, (2) the
computational efficiency of the S-systems alternating regression method compared to more
complex fitting approaches in [5, 10], and (3) whether selection of parsimonious models using
the Bayesian approach, first tried for dynamical systems in Ref. [10], similarly provides an im-
provement over fitting a complex, fully connected interaction model.

S-systems formalism
The textbook representation of biochemical dynamics uses ordinary differential equations in
themass-action form, where the rate laws are differences of production (G) and degradation
(H) terms,

dxm
dt

¼ GmðxÞ � HmðxÞ: ð4Þ

In their turn, G and H are products of integer powers of expressions of other chemical species,
where the powers represent stoichiometry. For example, if a certain chemical μ is produced by
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a bimolecular reaction involving one molecule of ν and two molecules of λ, then its mass-action
production term is Gm ¼ amxnx

2
l , where αμ is the reaction rate.

In what became known as the S-systems formalism, Savageau and colleagues generalized
this form to non-integer powers of expressions [17]. That is,

GmðxÞ ¼ am
YJ
n¼1

xgmnn ; HmðxÞ ¼ bm

YJ
n¼1

xhmnn : ð5Þ

The S-system is a canonical representation of nonlinear biochemical dynamics since, in a pro-
cess called recasting, any dynamics, Equation (1), with X′ written in terms of elementary func-
tions can be rewritten in this power-law form by introducing auxiliary dynamical variables and
initial value constraints in a certain way [17]. Further, since any sufficiently smooth function
can be represented as a series of elementary functions (e. g., Taylor series), a recasting into an
S-system of a sufficient size can approximate any such deterministic dynamics. While a de-
tailed review of recasting is beyond the scope of this article, here we give a few examples. First,
the classic Michaelis-Menten enzymatic kinetics, x01 ¼ Ax1=ðBþ x1Þ, can be recast by introduc-
ing one hidden variable x2 as

x01 ¼ Ax1x
�1
2 ; x2 ¼ Bþ x1: ð6Þ

Similarly, the dynamics x01 ¼ sinx1 has a representation

x01 ¼ x2; x
0
2 ¼ x3x2; x

0
3 ¼ �x22; ð7Þ

where x2 = sinx1, and x3 = cosx1. (This can be checked by observing that x02 ¼ x01cosx1 and
x03 ¼ �x01sinx1.) Note that, since the exponents are not constrained to be positive or integer, dy-
namics in this class are generally ill-defined when variables are not positive.

The power-law structure of G andH takes a particularly simple form if viewed in the space
of logarithms of the dynamical variables, ξν = logxν:

logGmðxÞ ¼ log am þ
XJ

n¼1

gmnxn; logHmðxÞ ¼ logbm þ
XJ

n¼1

hmnxn: ð8Þ

Thus S-systems can be rationalized even when the set of the modeled variables is fixed, not al-
lowed to be enlarged, and hence recasting is impossible: S-systems are the first order expansion
of the logarithms of the production/degradation terms in the logarithms of the concentration
variables. Arbitrary dynamics can be approximated again by adding a sufficient number of
higher order terms in this logarithmic Taylor expansion, just like they can be added to Equa-
tion (3). However, it has been argued that typical biochemical kinetics laws remain linear for
broader ranges in the logarithmic, rather than the linear space [18]. At the same time, they can
produce richer dynamics than that of simple linear models. Thus S-systems have a potential to
be more effective in approximating biological dynamics. Verifying this assertion is one of the
goals of this article.

Alternating regression for S-systems inference
The key observation that leads to efficient inference of S-systems is that each of the production
and degradation terms is linear in its parameters in log-space, Equation (8) [2]. Specifically, if
we know the current concentrations x and their time derivatives x′, and hold constant the pa-
rameters in one of the two terms (say, G), the parameters in the other term (H) can be fit using
linear regression. The alternating regression approach, first implemented in [2] for models that
can be fitted exactly by S-systems, simply iteratively switches between linearly fitting
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parameters in the two terms. Thus, for each S-system model, defined by which interactions gμν
and hμν are allowed to be nonzero, the inference consists of the following two steps repeated
until convergence:

1. Fit production terms, holding degradation fixed. That is, in Equation (4), solve for αμ and gμν
using a linear regression (see below), while holding βμ and hμν fixed.

2. Fit degradation terms, holding production fixed. Same, but swapping (αμ,gμν) and (βμ,hμν).

(Note that, due to the nonlinear nature of the transformation to log-space, we are not guaran-
teed to have a smaller χ2 in linear space after the linear regression in log-space. In practice, we
find reliable convergence given a modest quantity of data.)

To implement this logarithmic linear regression, we define

Y ðGÞ ¼ log ðH þ x0Þ; Y ðHÞ ¼ log ðG� x0Þ; ð9Þ

so that in the regression in the two cases we are attempting, we are looking for parameters α,β,
g, and h that satisfy, for every measured timepoint ti,

Y ðGÞ
i;m ¼ log am þ

P
n gmnxi;n; Y

ðHÞ
i;m ¼ logbm þ

X
n

hmnxi;n: ð10Þ

We define parameter matrices P with a row for the prefactors logα and logβ followed by the
matrix of the exponent parameters:

PðGÞ
k¼1;m ¼ log am; PðGÞ

k¼1þn;m ¼ gmn; ð11Þ

PðHÞ
k¼1;m ¼ logbm; PðHÞ

k¼1þn;m ¼ hmn: ð12Þ

Then, for bothH and G, the problem becomes a linear regression in which we want to mini-
mize the following modified χ2 with respect to P:

~w2
Y ¼Pm;i Wi;mðYi;m �

X
k

Di;kPk;mÞ
" #2

þ
X
m;k

P2
k;m

B2p
; ð13Þ

where the last term corresponds to Gaussian priors on each parameter with mean 0 and vari-
ance B2p (in our example below, we set Bp = 10−1). Here the design matrix D combines the pre-

factor parameters and the data,

Di;k¼1 ¼ 1; Di;k¼1þn ¼ xi;n; ð14Þ

and the matrixW weights each residual according to its uncertainty in log-space,

Wi;m ¼
1

s0
i;m

d expYi;m

dYi;m

¼ expYi;m

s0
i;m

: ð15Þ

Finally, elements of Y are undefined when the arguments of the logs in Equation (9) become
negative, corresponding to derivatives that cannot be fit by modifying only G or H at one time.
In these cases, we zero the corresponding weightWi,μ, effectively removing these datapoints
from the regression at a particular iteration. This can be a bigger problem, in principle, for ap-
proximate approaches than it was for the case when S-systems could fit the data exactly [2]. In
practice, the number of such datapoints quickly becomes small or zero after just a
few iterations.
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The linear regression can be solved separately for each species μ. In matrix form, extremiz-
ing the μth term of ~w2

Y in Equation (13) produces the maximum likelihood parameters for spe-
cies μ:

Pm ¼ �DT
m
�Dm þ

1

B2p
I

 !�1

�DT
m
�Y m; ð16Þ

where I is the identity matrix, and (Ďμ)i,ν =Wi,μ Di,ν, (Y̌μ)i =Wi,μ Yi,μ.
To perform the regression with some parameters fixed, it is convenient to let all matrices re-

main the same shape instead of removing rows and columns corresponding to parameters
fixed at the current iteration. To accomplish this, we define the binary matrix θ that is the same
shape as P and contains a 1 when the corresponding parameter is to be optimized and a 0 when
it is not. Because in our model the default fixed value for each parameter is 0, we arrive at
(Ďμ)iν =Wi,μ Di,ν θμ,ν and

Pm ¼ �DT
m
�Dm þ

1

B2p
I þ ð1� ymÞdm;n

 !�1

�DT
m
�Y m; ð17Þ

where the δμ,ν term removes singularities corresponding to the fixed parameters.
In our experiments, the alternating regression typically converged to a relative tolerance of

10−2 in a few tens of iterations. This made it not much slower than the simple linear regression
(and many orders of magnitude faster than approaches of Refs. [5, 10]), while preserving the
ability to fit nonlinearities pervasive in biological systems.

Adaptive Bayesian dynamical model selection
Adaptive Bayesian model selection defines an a priori hierarchy of models with an increasing
complexity and selects the one with the largest Bayesian likelihood given the data. This mini-
mizes the generalization error [12, 19, 20]. Generally, one needs to define such a hierarchy over
the number of interactions among species, the nonlinearity of the interactions, and the number
of unobserved species in the model [10]. Here we have a fixed number of species, and the situa-
tion is simpler.

Indeed, different S-systems models can be characterized by “who interacts with whom”—

the identity of those exponential parameters gμν and hμν that are allowed to be nonzero. Then
the complexity hierarchy over S-systems can be defined by gradually allowing more interac-
tions, so that the production and degradation of species depends on more and more of (other)
species. Specifically, we start with the simplest model with 2J parameters in which only βμ and
gμμ need to be inferred from data. Next hμμ are added to the list of inferable variables, and then
αμ for each μ. Next are gμμ connections starting with the nearest neighbors [μ−ν = 1 (mod J)],
then the next-nearest neighbors [μ−ν = 2 (mod J)], and so on until all gμν are included. Finally
we add hμν connections in the same order. The final, largest model contains 2J(J+1) parameters.
While in the above example the order of the variables and hence the hierarchy is pre-defined, a
random order is also possible. As has been argued elsewhere [10], a random hierarchy is still
better than no hierarchy at all. In the Results section, we test both the nearest neighbor hierar-
chy and a series of random hierarchies.

With the hierarchy defined, we calculate the posterior log-likelihood L of each modelM
within the S-systems family in the usual way [19]. We expand the log-likelihood of the model
to the lowest order in 1/N, that is, as a quadratic form near the maximum likelihood values de-
termined by alternating regression. This extends the Bayesian Information Criterion (BIC)
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[21] by explicitly incorporating parameter sensitivities and priors over the parameters, giving

LðMÞ � � 1

2
~w2ðPbestÞ �

1

2

X
m

log lm �
1

2

X
k

log B2k: ð18Þ

Here ~w2 ¼ w2 þPkP
2
k=B

2
k with χ2 defined as in Equation (2), Pbest represents the maximum

likelihood parameters found in the alternating regression, and B2k are the a priori parameter var-
iances. Finally, λμ are the eigenvalues of the Hessian of the posterior log-likelihood around the
maximum likelihood value, which we estimate numerically. We then maximize L(M) over all
possible models in the S-systems structure to “select” a parsimonious model with a high
generalization power.

Note that some eigenvectors have lm � 1=B2p ¼ oð1Þ. These directions in parameter space

are sloppy[7], in the sense that they cannot be inferred from the data because they do not affect
the probability of the data. Thus we define the number of effective, or relevant parameters in
the model relative to the data as the number of eigenvectors with λμ> 1. It will be instructive
to see how this number for the “selected”model changes as a function of various properties of
the training data.

A software implementation of the adaptive model selection algorithm can be found under
the project “Sir Isaac” on github: http://github.com/EmoryUniversityTheoreticalBiophysics/
SirIsaac.

Results
The model of oscillations in yeast glycolysis [15] has become a standard test case for biochemi-
cal dynamics inference [3, 10]. We use it here as well to analyze the performance of our adap-
tive S-systems approach. The biochemical details are not critical to our current purpose; we
instead take the model as an example of complicated nonlinear dynamics typical of biological
systems. The model consists of ODEs for the concentrations of 7 biochemical species:

dS1
dt

¼ J0 �
k1S1S6

1þ ðS6=K1Þq
;

dS2
dt

¼ 2
k1S1S6

1þ ðS6=K1Þq
� k2S2ðN � S5Þ � k6S2S5;

dS3
dt

¼ k2S2ðN � S5Þ � k3S3ðA� S6Þ;
dS4
dt

¼ k3S3ðA� S6Þ � k4S4S5 � kðS4 � S7Þ;
dS5
dt

¼ k2S2ðN � S5Þ � k4S4S5 � k6S2S5;

dS6
dt

¼ �2
k1S1S6

1þ ðS6=K1Þq
þ 2k3S3ðA� S6Þ � k5S6;

dS7
dt

¼ ckðS4 � S7Þ � kS7;

ð19Þ

where the parameters for the model are taken from [15] and listed in Table 1. Representative
trajectories from this dynamical system are displayed in Fig. 1. Notice that, for the first few
minutes, the system explores a large volume in the phase space, and it settles down onto a
much simpler limit-cycle behavior a few minutes into the process.

We evaluate the performance of three types of expansions of X′ for the yeast oscillator: a lin-
ear representation, Equation 3, a fully-connected S-system with all 2J(J+1) = 112 parameters
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Table 1. Yeast glycolysis model parameters.

J0 2.5 mM min−1 k 1.8 min−1

k1 100. mM−1 min−1 κ 13. min−1

k2 6. mM−1 min−1 q 4

k3 16. mM−1 min−1 K1 0.52 mM

k4 100. mM−1 min−1 ψ 0.1

k5 1.28 min−1 N 1. mM

k6 12. mM−1 min−1 A 4. mM

Parameters for the yeast glycolysis model defined in Equations (19), from [15].

doi:10.1371/journal.pone.0119821.t001

Fig 1. Representative trajectories for the first three species in the yeast glycolysis model. Trajectories are shown for five initial conditions randomly
chosen from the ranges in Table 2. The system’s behavior is characterized by a stable limit cycle with a period of about one minute, with transients that
subside on the timescale of seconds to minutes. At left are zoomed portions of the trajectory showing fast transients. The period of the oscillation is
independent of the initial condition, while the phase depends on it.

doi:10.1371/journal.pone.0119821.g001
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fit, and an adaptive S-system with a number of fit parameters that depends on the given data.
To create training data, we choose N random initial conditions uniformly from ranges shown
in Table 2 [5], integrate each forward in time using Equations (19) until time ti chosen uni-
formly from time 0 to time T, and use the values of x and x′ at ti as the input data. To simulate
experimental noise, we corrupt each evaluated rate by a rather large Gaussian noise with the
standard deviation of 0.5σx′μ, where σx′μ is the standard deviation of the rate x0m sampled over

long-time behavior of each species, also shown in Table 2. Finally, to evaluate performance in
predicting derivatives, we create out-of-sample test data using the same method, with time-
points ranging from t = 0 to 5 minutes. For testing, we force all inference methods to extrapo-
late rather than interpolate by choosing a wider range of initial conditions, as described in
Table 2. In this setup, the difficulty of the inference problem is adjusted by varying T. Indeed,
for T = 5, much of the training data is close to the low-dimensional attractor. Since the test data
is very similar, the inference only needs to learn the structure of the derivatives near the at-
tractor in this case. In contrast, small T forces the algorithms to approximate the system over a
larger volume of the phase space, which is harder since nonlinearities start playing a
stronger role.

The top left plot in Fig. 2 displays the performance of each method in the easiest case (with
T = 5 minutes), as measured by the mean correlation between predicted and actual out-of-sam-
ple derivatives, and as a function of the number of data points N in the training set. In this case,
much of the training/testing dynamics falls onto the simple, low-dimensional attractor (cf.
Fig. 1), and the resulting oscillations are well-fit by the linear regression, though the adaptive S-
system method performs nearly as well. On the contrary, since the simple dynamics near the
attractor does not require a complex model, the fully connected S-system overfits and performs
significantly worse. Indeed, the linear regression and the adapted S-system make their predic-
tions with far fewer parameters than the fully connected model (cf. top right panel in Fig. 2).
For comparison, notice also that the approaches requiring identification of a true microscopic
model using variable and rate time series [5] or building a phenomenological model using only
variable time series [10] both required orders of magnitude more data and computing time to
achieve the same level of out-of-sample correlation of 0.6 to 0.8.

Increasing the difficulty of the inference problem by decreasing T forces approximating the
system over a broader, more nonlinear range. This more severely degrades the predictions of

Table 2. Specification of training data.

SPECIES IC RANGE (mM) σx′ (mM/min)

S1 [0.15, 1.60] 1.8442

S2 [0.19, 2.16] 3.0449

S3 [0.04, 0.20] 0.1438

S4 [0.10, 0.35] 0.2746

S5 [0.08, 0.30] 0.1153

S6 [0.14, 2.67] 3.4437

S7 [0.05, 0.10] 0.0489

Ranges of initial conditions (matching [5]) and the experimental noise (chosen as 1/2 the standard

deviation of derivatives sampled from the long-time behavior of each species) for training data. In test data,

the high ends of initial condition ranges are changed to increase the size of each range by 25%, forcing the

fits to extrapolate, and not just to interpolate.

doi:10.1371/journal.pone.0119821.t002
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Fig 2. Inference results for yeast oscillator model. (Left column) Mean correlation of predicted and true derivative values on out-of-sample test data
versus the amount of data,N (since there are 7 species, the total number of data points is 7×N), for each of three inference methods. The mean is taken over
the 7 species and 100 different realizations of the training data. Shaded areas represent the standard deviation of the mean over the realizations. (Right
column) The nominal and the effective (that is, stiff, or determined by the data) number of parameters used in each fit. The fully connected S-system and
simple linear regression each have a constant nominal number of parameters, while the nominal number of parameters in the selected S-system adapts to
the data. The effective number of parameters is always data dependent. Rows correspond to values of T, the upper limit on the range of time values used in
training (test data always use T = 5 minutes). As described in the text, the complexity of the inference task is higher for lower T. In each case, the adaptive S-
systemmodel performs at least as well as the other approaches. Nonlinearity of S-systemsmakes them usable even for the complex inference task, where
the range of variables is large and the nonlinear effects are important, so that the linear regression model fails (T = 0 min).

doi:10.1371/journal.pone.0119821.g002
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the simple linear regression than those of the S-systems, as displayed in the bottom two rows of
Fig. 2. With T = 0.1 minutes, the selected S-system is the best performer, slightly better than
the fully connected S-system, and with significantly fewer nominal and effective parameters.
With T = 0, the number of parameters used in the selected S-system approaches the full model.
Both are equivalent and perform better than the simple linear regression, as we expect if they
are better able to fit the nonlinearities present in the original model.

A different measure of performance, the mean-squared error of predicted rates, reaffirms
these conclusions. As shown in Fig. 3, the median mean-squared error also more clearly dem-
onstrates the effect of overfitting, with severely degraded performance for the fully-connected
S-system at small N.

Finally, we test the effects of changing the choice of the model hierarchy, corresponding to
changing the order of adding parameters to the model. Fig. 4 demonstrates that the variance
due to the choice of the hierarchy is generally smaller than the variance due to the randomness
in the sampling of the training data. Thus while restricting the model search to some single hi-
erarchy is important, the specific choice of hierarchy is not crucial.

Discussion
In this work we have proposed a new and fast method for inference of the underlying biochem-
ical dynamics from experiments that measure concentrations and rates of changes of all rele-
vant molecular species, such as one would obtain from, for example, cultures in a chemostat. In
a previous paper [10], we addressed the case that does not assume measurements of derivatives,
nor measurements of all important dynamic variables. Here, we focus on a simpler yet relevant
case with stricter assumptions, one that allows for much more efficient inference.

The approach is based on the S-systems formalism, and uses alternating regression and
Bayesian model selection for efficient and parsimonious inference. Our results confirm that the
alternating regression approach for inferring phenomenological, approximate dynamics using
S-systems retains the computational efficiency of simple linear regression, while including non-
linearities that allow it to make better predictions in a typical test case from systems biology. In
addition, we generalize the approach of [2] to include adaptive dynamical model selection [10],
which allows inference of parsimonious S-systems with an optimal complexity. When the dy-
namics are more simple (as in the cases with T> 0 in Fig. 2), this allows the S-system to use far
fewer parameters and avoid overfitting. When dynamics become more nonlinear (as in the
case with T = 0 in Fig. 2), the approach makes use of more parameters to obtain better predic-
tions than a simple linear model.

We note that our model selection criterion in Equation (18) resembles BIC, but is more gen-
eral, equivalent to a Gaussian estimate of the full posterior capturing the two lowest order cor-
rections in a large N limit. Traditional BIC assumes each parameter contributes equally to the
Bayes factor, which is roughly valid in simpler models. This fails spectacularly in complex non-
linear ODE models, with typically widely varying sensitivities in different parameter space di-
rections [7]. This crucial generalization allows such a semi-analytic approach to be useful for a
broad class of problems, without reliance on MCMC sampling methods that are much slower.

Inferring the true microscopic structure of the yeast glycolysis dynamics is possible, but re-
quires N* 104 measurements [5]. Here we demonstrated that, when the structure is unknown
a priori and cannot be inferred given the limited data set size, N* 101, a phenomenological ex-
pansion of the dynamics can still be useful for making predictions about the system’s behavior.
We have described one such representation based on S-systems that is extremely computation-
ally efficient, more predictive than linear models through its incorporation of realistic nonline-
arities, and parsimonious through its use of adaptive model selection.
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Fig 3. Mean-squared error demonstrates overfitting of fully-connected model. Plotted are the median
mean-squared errors measured using each inference method for the cases of T = 5 and 0.1 minutes
(corresponding to the top two plots in Fig. 2). Decreased performance due to overfitting is evident for the fully-
connected S-systemmodels (blue). Squared errors are standardized for each species by dividing by the
square of the standard deviations listed in Table 2.

doi:10.1371/journal.pone.0119821.g003
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Fig 4. Testing different model hierarchies using the yeast oscillator model. As in Fig. 2, here we plot the
mean correlations of predicted and true derivative values on out-of-sample test data versus the amount of
data,N. We compare different orderings of adding parameters in the model hierarchy. The variance in
performance over different orderings of parameters in a random hierarchy (standard deviations plotted in
green) is generally smaller than the variance caused by different random realizations of the training data for
the single nearest neighbor ordering used in Fig. 2 (standard deviations plotted in orange).

doi:10.1371/journal.pone.0119821.g004
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