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We develop new data-robust lower-bound methods to quantify the infor-
mation carried by the timing of spikes emitted by neuronal populations.
These methods have better sampling properties and are tighter than previ-
ous bounds based on neglecting correlation in the noise entropy. Our new
lower bounds are precise also in the presence of strongly correlated firing.
They are not precise only if correlations are strongly stimulus modulated
over a long time range. Under conditions typical of many neurophysiolog-
ical experiments, these techniques permit precise information estimates
to be made even with data samples that are three orders of magnitude
smaller than the size of the response space.

1 Introduction

A fundamental problem in systems neuroscience is to understand the nature
of the code used by neuronal populations to transmit sensory information.
A traditional hypothesis is that information is carried by the total number
of spikes emitted by individual neurons over a relatively long time window.
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Total spike counts typically vary across a stimulus set, such that spike
counts afford some degree of discriminability concerning which stimulus
has occurred (Adrian, 1926; Tovee, Rolls, Treves, & Bellis, 1993; Shadlen
& Newsome, 1998). However, recent studies have revealed that informa-
tion may also be carried by precise spike timing. The spike timing code
may take the simple form of precise timing of individual spikes (Rieke,
Warland, de Ruyter van Steveninck, & Bialek, 1996; Furukawa, Xu, &
Middlebrooks, 2000; Panzeri, Petersen, Schultz, Lebedev, & Diamond, 2001;
DeWeese, Wehr, & Zador, 2003) or the more complex form of patterns of
spikes whose emission times are statistically correlated (Abeles, Bergman,
Margalit, & Vaadia, 1993; Vaadia et al., 1995; Dan, Alonso, Usrey, & Reid,
1998).

An increasingly popular way to characterize quantitatively the relative
role of spike timing and spike counts is to quantify and compare the amounts
of information carried by different neuronal codes (Rieke et al., 1996; Borst
& Theunissen, 1999; Dimitrov and Miller, 2001; Panzeri, Petersen, et al.,
2001). However, a problem with this approach is that quantifying reliably
the information conveyed by spike timing often requires the collection of un-
practically large samples of data. This is mainly because spike times are not
statistically independent: they are correlated (Mastronarde, 1983; Gawne
& Richmond, 1993; de Oliveira, Thiele, & Hoffman, 1997; Averbeck & Lee,
2004). If such correlations did not exist, then the statistics of spike times
would be completely characterized by the time-dependent firing rate of
each neuron. However, one needs to measure also the correlations among
all possible groups of spikes. A complete characterization of these corre-
lations requires a number of parameters that are difficult to sample with
a realistic amount of neuronal data. Thus, spike timing information mea-
sures suffer from an upward sampling bias problem (Panzeri & Treves,
1996).

One useful approach to the sampling bias problem has been to seek
data-robust lower bounds to the spike timing information that neglect part
of the spike timing correlations (Reich, Mechler, Purpura, & Victor, 2000;
Reich, Mechler, & Victor, 2001). These information lower bounds have been
used to provide convincing characterizations of the role of spike timing in
cortical coding (Reich et al., 2000; Reich et al., 2001; Panzeri, Petersen, et al.,
2001). However, these lower bounds are not tight if neurons are strongly
correlated. To overcome this limitation, in this letter we develop new data-
robust lower bounds to spike timing information that have better sampling
properties and are tighter than previous estimators. Our new lower bounds
are very tight also in the presence of strongly correlated firing. They fail only
if correlations are strongly stimulus modulated over a long time range. They
permit precise and reliable estimates of the information conveyed by spike
times even when dealing with data samples that are relatively small with
respect to the size of the response space. Under appropriate circumstances,
the new techniques allow investigation of the spike timing information in
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long time windows with samples made of tens to hundreds of trials in cases
where direct estimation of mutual information would require thousands to
millions of trials.

The letter is organized as follows. We first review basic concepts of infor-
mation theory applications to spike trains; we then critically evaluate pre-
vious lower-bound techniques. Next we introduce our new lower bounds,
testing and illustrating them by means of applications to both simulated
data and real neuronal spike trains.

2 The Information Carried by Neuronal Population Responses

We consider a time period of duration T , associated with a dynamic or
static sensory stimulus s (chosen with probability P(s) from a stimulus set
S with S elements), during which the activity of C cells is observed. We
assume that the spike arrival times are binned with a timing precision �t
and transformed into a sequence of spike counts in each time bin. L de-
notes the number of time bins (i.e., T = L�t). The neuronal population re-
sponse is denoted by a one-dimensional array r = {r(1), r(2), r(3), . . . , r(L)},
where r(t) = {r1(t), r2(t), r3(t), . . . , rC (t)} is the population response in the tth
time bin; rc(t) is the number of spikes emitted by the cth neuron in the tth
time bin. The maximum number of spikes that can be observed in a single
time bin in any trial is denoted by M. (If �t is very short, M is 1 and rc(t)
is binary.) We indicate the response space with R. (R contains (M + 1)LC

elements.)
Following Shannon (1948), we write the mutual information transmitted

by the population response about the whole set of stimuli as

I (R;S) = H(R) − H(R|S), (2.1)

where H(R) and H(R|S) are the response entropy (stimulus unconditional)
and the noise entropy (stimulus conditional), respectively, of the response
variables. They are defined (Cover & Thomas, 1991) as

H(R) = −
∑
r∈R

P(r) log2 P(r), (2.2)

H(R|S) = −
∑
s∈S

P(s)
∑
r∈R

P(r|s) log2 P(r|s). (2.3)

In equations 2.2 and 2.3, the summation over r stands for the sum over
all possible population responses. The summation over s indicates a sum
over all stimuli s. P(r|s) is the probability of simultaneously observing a
particular response r conditional to stimulus s, and P(r) = 〈P(r|s)〉s is its
average across all stimulus presentations (the angular brackets indicate the
average over different stimuli, 〈F (s)〉s ≡ ∑

s∈S P(s)F (s)). In practice, P(r|s)
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is determined experimentally by repeating each stimulus in exactly the same
way on many trials, while recording the neuronal responses. The probability
P(s) is usually chosen by the experimenter.

Estimating the information carried by spike times of real neuronal pop-
ulations is difficult because each stimulus-response probability has to be
measured from limited amounts of data. The statistical errors in estimating
the response probabilities lead to downward systematic errors (biases) in
both noise and response entropy (Miller, 1955) and in an overall upward
bias when estimating mutual information (Panzeri & Treves, 1996). This
makes it difficult to estimate the information directly from equation 2.1,
especially for long time windows or precise spike time discretizations (large
L) and large neuronal populations (large C).

3 Independent and Correlated Stimulus-Response Probabilities

The full description of the stimulus-response relationship is given by P(r|s).
Estimating this probability, which has (M + 1)LC − 1 free parameters for
each stimulus s, requires extensive data samples. However, if spike times
were statistically independent events, the stimulus-response probability
would simply be characterized by the probability of a spike in each individ-
ual time bin. One way to alleviate the sampling problem is thus to work with
probability models that assume that spikes emitted in response to a certain
stimulus are independent of each other. Since by definition, stochastic vari-
ables are statistically independent if their joint response probabilities equal
the product of the individual probabilities, we define the independent prob-
ability model Pind(r|s) as the product of P(rc(t)|s), the stimulus-conditional
marginal probabilities of responses of individual cells in each time bin:

Pind(r|s) =
C∏

c=1

L∏
t=1

P(rc(t)|s). (3.1)

While estimating P(r|s) requires an evaluation of (M + 1)LC − 1 parameters
for each stimulus s, estimating Pind(r|s) needs only MLC parameters for
each stimulus.

In this letter, when we say that the spike trains are correlated, we mean
that for some stimulus s, the real stimulus-response probability P(r|s) is
different from Pind(r|s). Thus, when we refer to correlations, we refer to
correlations at fixed stimulus. These correlations are usually called noise
correlations (Gawne & Richmond, 1993; Nirenberg & Latham, 2003; Pola,
Thiele, Hoffmann, & Panzeri, 2003), and are the main subject of this letter.
For simplicity, in the rest of this letter, when we use the term correlation, we
intend “noise correlation.”

One way to parameterize noise correlations is (Pola et al., 2003) to intro-
duce a generalized correlation coefficient γ (r|s) quantifying how much the
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real response probability P(r|s) deviates from Pind(r|s):

γ (r|s) = P(r|s)
Pind(r|s)

− 1, if Pind(r|s) �= 0,

γ (r|s) = 0, if Pind(r|s) = 0. (3.2)

This generalized correlation coefficient varies in the range −1 ≤ γ (r|s) < ∞.
Negative values indicate anticorrelation; positive values indicate correlation
(Pola et al., 2003).

4 A Lower Bound That Neglects Correlations in the Noise Entropy

Let us now consider in detail the effect of ignoring correlations in the
stimulus-conditional response probability on both noise entropy and
response entropy.

Neglecting correlations by using Pind(r|s) instead of the true distribution
P(r|s) necessarily increases the noise entropy:

Hind(R|S) ≥ H(R|S), (4.1)

where Hind(R|S) is defined as

Hind(R|S) = −
∑
s∈S

P(s)
∑
r∈R

Pind(r|s) log2 Pind(r|s). (4.2)

The inequality in equation 4.1 can be proved rewriting the difference be-
tween Hind(R|S) and H(R|S) as

Hind(R|S) − H(R|S) = D(P(r|s)||Pind(r|s)), (4.3)

where D(P(r|s)||Pind(r|s)) is the conditional Kullback-Leibler (KL) distance
between P(r|s) and Pind(r|s). The conditional KL distance between two dis-
tributions P(r|s) and Q(r|s) is defined as (see Cover & Thomas, 1991)

D(P(r|s)||Q(r|s)) =
∑
s∈S

P(s)
∑
r∈R

P(r|s) log2
P(r|s)
Q(r|s)

. (4.4)

D(P(r|s)||Q(r|s)) is nonnegative, and it is zero if and only if P(r|s) = Q(r|s)
for every r and s. Thus, Hind(R|S) = H(R|S) if and only if P(r|s) = Pind(r|s)
for every r and s; otherwise, Hind(R|S) > H(R|S).
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Hind(R|S) is much easier to sample than H(R|S) because it can be
expressed as a sum of entropies of the marginal distributions in individ-
ual time bins,

Hind(R|S) =
C∑

c=1

L∑
t=1

H(Rc,t|S), (4.5)

where

H(Rc,t|S) = −
∑
s∈S

P(s)
M∑

rc (t)=0

P(rc(t)|s) log2 P(rc(t)|s). (4.6)

In contrast to the noise entropy, the response entropy H(R) can be either
reduced or increased by using the independent probability model (Schultz
& Panzeri, 2001). Hence, replacing P(r|s) with Pind(r|s) in the definition of
mutual information, equation 2.1, does not provide a lower bound on the
mutual information.

The idea of Reich and collaborators (Reich et al., 2000, 2001) was to pro-
duce a sampling-robust lower bound by neglecting correlations only in the
noise entropy, as follows,1

ILB1 = H(R) − Hind(R|S), (4.7)

where H(R) and Hind(R|S) are defined in equations 2.2 and 4.2, respectively.
The lower bound introduced in this way is much more data robust than the
mutual information because only Pind(r|s) and P(r), but not P(r|s), need to
be estimated. Since Hind(R|S) is a sum of low-dimensional entropies (see
equation 4.5), the most biased term in equation 4.7 is H(R). Numerical
investigations of these sampling properties will be presented below.

It is useful to rewrite the lower-bound ILB1 in the following equivalent
way:

ILB1 = I (R;S) − D(P(r|s)||Pind(r|s)). (4.8)

Since the conditional KL distance is always nonnegative, and it is zero if and
only if P(r|s) = Pind(r|s) for every r and s, the very presence of correlations
causes ILB1 to become less than the mutual information, even if these corre-
lations are not carrying any information about the stimuli. Indeed, ILB1 can
sometimes become negative in the presence of strong enough correlations.

1Like the mutual information I (R;S), ILB1 is also defined over the stimulus and
response space and should thus have (R;S) as argument; however, we drop this argument
for simplicity of notation.
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It is also useful to point out that ILB1 is always less than the sum of single
time bin information,

ILB1 ≤
C∑

c=1

L∑
t=1

I (Rc,t;S), (4.9)

where I (Rc,t;S) is the information conveyed by the spikes emitted by the
cth cell in the tth time bins and is defined as

I (Rc,t;S) = H(Rc,t) − H(Rc,t|S), (4.10)

where H(Rc,t|S) is defined in equation 4.6, and

H(Rc,t) = −
M∑

rc (t)=0

P(rc(t)) log2 P(rc(t)). (4.11)

Thus, ILB1 cannot reveal the presence of synergistic encoding between spikes
emitted at different times or by different neurons.

5 A Tighter Lower Bound That Ignores Stimulus-Modulated
Correlations

ILB1, though much more data robust than the mutual information, is not
tight in the presence of correlations between spike times. The main pur-
pose of this article is to introduce new data-robust lower bounds that can
be tight even in the presence of strong correlations. This new lower bound
is based on a recently developed information breakdown formalism (Pola
et al., 2003) that separates out the contribution of different coding mecha-
nisms. These components of the mutual information breakdown have dif-
ferent magnitudes and sampling properties. In this section, we show how
this information breakdown provides the basis for better data-robust lower
bounds.

5.1 The Information Breakdown. The information breakdown method
was originally introduced to investigate the role of correlated cortical neu-
ronal firing in transmitting sensory information. Here, we briefly review it
and slightly extend it to quantify the information content of all correlation
between spike times (and not only of cross-cell correlations as in Pola et al.,
2003).

This formalism consists in breaking down the total mutual information
into a sum of components, each of which can be associated with a different
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coding mechanism (Pola et al., 2003; Golledge et al., 2003):

I (R;S) = Ilin + Isig−sim + Icor. (5.1)

The mathematical expression and its interpretation in terms of coding mech-
anisms, and the sampling properties of each component will be discussed
below. We will present the coding components in a mathematical form sim-
ilar to that reported in appendix A of Pola et al. (2003) and in Golledge
et al. (2003).

5.1.1 The Linear Component Ilin. The first term of the information break-
down is the information that would be obtained if the spikes emitted in
different time bins and cells all conveyed independent information. In this
case, the total information transmitted by the population would just be a
linear sum of the information provided by each time bin and each cell:

Ilin =
C∑

c=1

L∑
t=1

[H(Rc,t) − H(Rc,t|S)]. (5.2)

This component has very good sampling properties because it only requires
sampling the entropies in single bins separately.

Deviations from independent information transmission (i.e., synergy or
redundancy) are expressed by the terms considered next.

5.1.2 The Signal-Similarity Term Isig−sim. This term quantifies the re-
dundancy (or information loss) arising from signal similarity (Gawne &
Richmond, 1993)—similarity across stimuli of the mean probability of spike
emission in each time bin.2 Its expression is:

Isig−sim = Hind(R) −
C∑

c=1

L∑
t=1

H(Rc,t), (5.3)

where Hind(R) is the stimulus-unconditional independent entropy:

Hind(R) = −
∑

r

Pind(r) log2 Pind(r) (5.4)

and Pind(r) = ∑
s P(s)Pind(r|s). Isig−sim, which is always less than or equal

to zero, was first introduced by Pola et al. (2003) as a generalization of

2Signal similarity is more often called signal correlation, (see Gawne & Richmond,
1993; Nirenberg and Latham, 2003). Here we use the word similarity because we use
correlation to refer only to noise correlation.
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the series expansion of Panzeri and Schultz (2001), and later discussed by
Schneidman, Bialek, and Berry (2003) (with an overall change in sign) under
the name “�Isignal .” Isig−sim does not depend on spike time correlations,
but only on the marginal distributions. For this reason, it has extremely
good sampling properties.

The sum of Ilin and Isig−sim equals Iind, the information that would be
obtained if there were no correlations (i.e., if P(r|s) = Pind(r|s) for every
r and s):

Iind = Ilin + Isig−sim. (5.5)

5.1.3 The Total Impact of Correlation Icor. The next term in the information
breakdown, indicated as Icor, is the only term that depends on the corre-
lation coefficient γ (r|s) and quantifies the total impact of correlation in in-
formation encoding. It is defined as the difference between the information
I (R;S) in the presence of correlations and the information Iind in absence
of correlation:

Icor = I (R;S) − Iind. (5.6)

This quantity was introduced in Hatsopoulos, Ojakangas, Paninski, and
Donoghue (1998) and Nirenberg and Latham (1998) and later refined and
used in Panzeri, Golledge, Zheng, Tovee, and Young (2001), and Pola et al.
(2003) to study the role of correlations in sensory and motor coding. Icor
can be further broken down into two components, which we will term
“correlational,” that reflect two different ways in which correlations may
contribute to coding (Pola et al., 2003; Golledge et al., 2003):

Icor = Icor−ind + Icor−dep. (5.7)

The two correlational components Icor−ind and Icor−dep will be briefly intro-
duced next. Further considerations on the meaning and scope of Icor, Icor−ind
and Icor−dep can be found in Panzeri, Pola, Petroni, Young, & Petersen, (2002),
Nirenberg and Latham (2003), Pola et al. (2003), and Schneidman et al.(2003).
These considerations will not be reviewed here because they have no direct
bearing on the work presented in this article, as the information breakdown
is used merely as a tool to obtain data-robust lower bounds rather than
separating out different correlational coding mechanisms.

5.1.4 The Stimulus-Independent Correlational Component Icor−ind. Even if
not stimulus modulated, correlations can still affect the neuronal code
(Abbott & Dayan, 1999; Oram, Földiák, Perrett, & Sengpiel, 1998). The
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component of information associated with stimulus-independent correla-
tions is

Icor−ind = χ (R) − Hind(R), (5.8)

where χ (R) is defined as

χ (R) = −
∑

r

P(r) log2 Pind(r). (5.9)

Icor−ind is positive (synergistic) when spike timing correlation and signal
similarity have opposite signs Icor−ind is instead negative (redundant) when
they have the same sign (see Oram et al., 1998; Pola et al., 2003).

Neurophysiological studies revealed that Icor−ind can have a substantial
impact on cortical information encoding. It is positive for both within-cell
correlations in rat S1 cortex (+18% of the total information; Panzeri, Petersen,
et al., 2001) and cross-cell correlations in both monkey S2 cortex (Romo,
Hernandez, Zainos, & Salinas, 2003) and rat prefrontal cortex (Jung, Qin,
Lee, & Mook-Jung, 2000). It is negative (−20%) for both cross-cell cor-
relations between nearby neurons in rat S1 cortex (Petersen, Panzeri, &
Diamond, 2001) and monkey IT cortex (−12% ; Rolls, Franco, Aggelopou-
los, & Reece, 2003).

Icor−ind has good sampling properties because it depends on only P(r)
and Pind(r), not on P(r|s) and Pind(r|s).

5.1.5 The Stimulus-Dependent Correlational Component Icor−dep. The final
term of the information breakdown, Icor−dep, is associated with stimulus
modulation of correlations:

Icor−dep = D(P(s|r)||Pind(s|r)) ≡
∑

r

P(r)
∑

s

P(s|r) log2
P(s|r)

Pind(s|r)
. (5.10)

This term is always positive or zero. It is associated with stimulus-dependent
correlations because it equals zero if and only if the correlation coefficient
γ (r|s) does not depend on s for every response r. If a neuronal population
carries information by emitting patterns of correlated spikes that “tag” each
stimulus, Icor−dep is greater than zero.

Equation 5.10 was introduced by Nirenberg, Carcieri, Jacobs & Latham
(2001) (and named �I ); Pola et al. (2003) then showed that this is a general-
ization of an analogous quantity introduced by Panzeri and Schultz (2001)
in the short-time approximation. An alternative interpretation of Icor−dep
stems from the fact that Icor−dep is zero if and only if P(s|r) = Pind(s|r) for
every s and r (Cover & Thomas, 1991; Nirenberg et al., 2001). Thus, Icor−dep is
zero if and only if the decoding dictionary obtained using Pind(·) is the same
one obtained using the true distribution P(·). Nirenberg & Latham (2003)
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interpreted it as a cost function measuring “how much harder it is to decode
neural responses when correlations are ignored than when they are taken
into account.”

Although in general, a K-L distance can be infinite in some cases (Cover
& Thomas, 1991), it is important to note that Icor−dep is always finite (Pola
et al., 2003). This is because if Pind(s|r) is zero, then so is P(s|r), and in this
case the quantity P(s|r) log P(s|r)

Pind(s|r) would be zero.3

A number of studies have made estimates of Icor−dep from neurophysio-
logical data. With the one exception of Dan et al. (1998),4 all of these studies
have reported small values of Icor−dep as follows. Panzeri, Petersen, et al.
(2001) and Petersen et al. (2001) found that it contributes 3% to coding of
whisker position in rat S1 cortex. Nirenberg et al. (2001) found it to be neg-
ligible for the vast majority of nearby cells in mouse retina (Icor−dep/I was
more than 10% for only one pair out of over four hundred). Rolls et al. (2003)
found it to be less than 2% of the total information about faces carried by the
firing of monkey IT neurons. Golledge et al. (2003) found that Icor−dep was
≈5% of the total information about visual objects carried by the firing of
cat V1 neurons. Current data thus suggest that Icor−dep typically contributes
little to the total information available in the neuronal response.

Icor−dep is by far the most biased of all terms entering the information
breakdown in equation 5.1. It is as biased as the total mutual information
itself. This is because its evaluation requires measuring the full correlational
structure for each stimulus.

5.2 The New Tighter Lower Bound. Since the stimulus-dependent cor-
relational component Icor−dep is nonnegative, is the only component that
presents significant sampling problems, and has been found in most cases
to account for a small proportion of the total information, a data-robust and
tight lower bound can be obtained by computing the information ignoring
Icor−dep:

ILB2 = Ilin + Isig−sim + Icor−ind. (5.11)

Using equations 5.2, 5.3, and 5.8, ILB2 can be written as

ILB2 = χ (R) − Hind(R|S). (5.12)

3In fact, Pind(s|r) = 0 implies that either P(s)=0 (which implies that P(s|r) = 0) or that
Pind(r|s) = 0. In the latter case, at least one of the marginals of P(r|s) entering the product
in equation 3.1 is zero, which implies that P(r|s) = 0 and P(s|r) = 0.

4It should be however noted that the experiment of Dan et al. (1998) quantified in-
formation through a stimulus reconstruction method rather by means of a more direct
approach, and this makes the comparison with the work presented here difficult.
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As we shall see in section 6, ILB2 has very good sampling properties
compared to both I (R;S) and ILB1.

Icor−dep is zero if and only if γ (r|s) is not stimulus modulated for every
response r, whatever the overall strength of γ (r|s). Hence, even if the spike
trains are strongly correlated but these correlations are stimulus indepen-
dent, the lower bound ILB2 is still tight. Thus, under many circumstances,
ILB2 is a significantly tighter lower bound than ILB1, which is tight only in
the total absence of correlations.

As for ILB1, there are hypothetical cases where stimulus modulation of
correlations is particularly strong and individual spikes code for little in-
formation; here, ILB2 can become negative and thus not useful. However,
no such situation has yet been reported in information analysis of experi-
mentally recorded spike trains.

Is ILB2 always tighter than ILB1? The following inequality can be proved:

ILB2 − ILB1 =
∑

r

P(r) log2
P(r)

Pind(r)
= D(P(r)||Pind(r)) ≥ 0, (5.13)

where in the above equation D(P(r)||Pind(r)) is a KL distance (see Cover &
Thomas, 1991, p. 18, equation 2.26). Thus, ILB2 is always tighter than ILB1:

ILB1 ≤ ILB2 ≤ I (R;S), (5.14)

with ILB1 = ILB2 if and only if P(r) equals Pind(r) for each r.
In order to clarify and illustrate the differences between the two lower-

bound estimators, we applied the method to synthetic spike trains. We
simulated a neuronal pair responding to two stimuli, reflecting different
ways of encoding information through correlations. The analysis in this
section was performed using a large number of trials; the behavior of
the two estimators with small data samples will be discussed in the next
section.

We considered three situations: uncorrelated spike trains, correlated
spike trains with weak stimulus modulation of correlation, and correlated
spike trains with strong stimulus modulation of correlation.

We started with the uncorrelated case. We generated, independently for
each cell, simulated data according to a stationary Poisson process with the
mean rates reported in Figure 1A (left panel). For illustration, we show in
Figure 1A (central panel) that the cross-correlogram (CCG) between the two
spike trains was flat. Consistent with the above mathematical analysis, both
lower-bound estimators were exactly equal to the true mutual information
(see Figure 1A, right panel). Thus, in the absence of correlations, both lower
bounds provide equally precise estimates.

We then modeled a neuronal pair with the same mean firing rates as
above, but with the addition of correlated activity (see Figure 1B). The
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amount of correlation was strong, but only very weakly stimulus modu-
lated (see Figure 1B, central panel). In this case, ILB2 was extremely accurate,
but ILB1 underestimated the true information by 39% (see Figure 1B, right
panel).

Finally, we simulated a case of strong stimulus modulation of the corre-
lation (see Figure 1C). In this case, ILB2 was no longer tight; however, it still
performed much better than ILB1, which in this case was strongly negative.

Thus, unlike ILB1, ILB2 can provide accurate and robust measures of in-
formation even in the presence of correlated activity, so long as correlations
are not stimulus modulated. In section 7, we will show how to improve on
this.

6 Sampling Bias Properties

In practice, the spike timing information and its lower-bound approxima-
tions must be estimated from experimental probabilities obtained from a
limited number N of repeated presentations of all stimuli. This leads to a
systematic error (or bias) in the estimate of the mutual information and of its
lower bounds, the size of the bias decreasing when increasing the number
of trials Panzeri & Treves, 1996). In this section, we focus more explicitly on
the sampling bias properties of the two lower-bound estimators.

Figure 1: The performance of the lower-bound estimators LB1 and LB2 in the
presence and absence of correlated activity. The lower-bounds estimates are
compared to the total mutual information I (R;S) in simulated neuronal pairs
responding to two stimuli. The simulated spike trains were analyzed in the
0–60 ms poststimulus window, using a timing resolution �t of 10 ms to bin
the responses (thus, there were six time bins per cell). We considered three
ways of encoding information through correlations: (1) absence of correlation,
(2) stimulus-independent correlation, and (3) stimulus-dependent correlation.
Data were generated as described next. We first created, independently for each
cell, spikes from a Poisson process with a certain firing rate r , as follows. For
each time bin, we generated at random a spike with a generation probability
equal to r�t, the generated spike being given a random time within the time bin.
To simplify the terminology, we call this process “Poisson” to emphasize that it
generates spike independently in each time bin. We then generated spikes from
a third Poisson process, and these spikes were added to both cells in order to
create cross-correlation. To avoid synchronization with infinite time precision,
the shared spike times added to the second cell were shifted together in time
by a random amount chosen anew for each trial from a zero-mean gaussian
distribution with standard deviation of 1 ms. In all cases, a joint spike timing
code over a 60 ms long window with a time precision of 10 ms was considered.
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The left panels plot the mean firing rate of the two cells; the central panels plot
the cross-correlogram (CCG; computed analytically from knowledge of the sim-
ulated processes); the right panels report the values of the lower bounds ILB1

and ILB2 and the true information. In this information estimation, we considered
a large number of trials per stimulus in order to focus only on the asymptotic
estimations (see main text). (A) Uncorrelated spike trains. A Poisson process is
used for each cell, and no shared spikes are added. Both ILB1 and ILB2 give good
estimations. (B) Correlated spikes with weak stimulus modulation of correla-
tion. The ratio of independent versus shared spikes was approximately the same
for both stimuli, and hence the correlation strength γ (·) was only weakly stim-
ulus modulated. The presence of stimulus-independent correlation makes ILB1

markedly different from I . However, ILB2 remained a precise estimator of infor-
mation. The simulation parameters were as follows. For both cells, the mean rate
of the independently generated spikes was 32 Hz for the first stimulus and 16 Hz
for the second stimulus. The mean rate of the shared spikes was 8 Hz to the first
stimulus and 4 Hz to the second one. (C) Correlated spikes with strong stimulus
modulation of correlation. The ratio of independent versus shared spikes was
much higher for the first stimulus than for the second. As a consequence, the γ (·)
coefficients were stimulus dependent. The stimulus modulation of correlation
made ILB2 smaller than I ; ILB1 was negative. The data were generated as follows.
For both cells, the mean rate of the independently generated spikes was 15 Hz
for the first stimulus and 19 Hz for the second stimulus. The mean rate of the
shared spikes was 25 Hz to the first stimulus and 1 Hz to the second one.



1976 G. Pola, R. Petersen, A. Thiele, M. Young, and S. Panzeri

We first report derivations of approximate analytical estimates of the
sampling biases of ILB1 and ILB2. These bias equations provide useful insights
into the relative sampling properties of each information quantity, and they
can also be used to quantify and subtract out the bias in real experimental
conditions. After considering the analytical approximations to the bias, we
perform numerical simulations to test independently both the validity of
the analytical estimates and the performance of bias removal procedures
based on the subtraction of the above analytical estimates. The extent to
which these corrected estimates might be improved further by applying
alternative methods to control the bias (Victor, 2002; Nemenman, Shafee, &
Bialek, 2002; Paninski, 2003) will not be investigated here.

6.1 Analytical Estimates of the Magnitude of Bias Properties of Lower-
Bound Estimators. The mutual information is H(R) − H(R|S). ILB1 is
H(R) − Hind(R|S), and ILB2 is χ (R) − Hind(R|S). Thus, the relative sam-
pling properties of the information and its two lower-bound estimators can
be established by considering the sampling properties of the four quantities
H(R|S), Hind(R|S), H(R), and χ (R).

Our approximations to the bias of these quantities were derived on the
assumption that the number of trials per stimulus is large, so that the proba-
bility of each response is empirically sampled on the basis of many available
trials (Panzeri & Treves, 1996). We will use the symbol ≈ to indicate that we
report only the leading term of the perturbative evaluation in 1/N of the
bias (N being the total number of trials across all stimuli).

The bias of a given functional of the probability distributions is defined
as the difference between the trial-averaged value of the functional when
the probability distributions are computed from N trials and the value of
the functional computed with the true probability distributions.

We first consider the noise entropy H(R|S). The analytical expression for
its bias is

Bias[H(R|S)] ≈ − 1
2N ln 2

∑
s

(R̃(s) − 1), (6.1)

where N is the number of trials across all stimuli presentations and R̃(s)
denotes the number of “relevant” responses of the stimulus conditional
response probability distribution P(r|s), that is, the number of different
responses r with nonzero probability of being observed when stimulus s
is presented (Panzeri & Treves, 1996). Like all other entropy quantities, the
noise entropy is biased downward when sampled with limited trials. Since
H(R|S) depends on P(r|s), the number of relevant responses in the numer-
ator of equation 6.1 is of order (M + 1)LC for each stimulus in the sum-
mation. It follows that for this bias to be small, N should be bigger than
S × (M + 1)LC .
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The analytical expression for the bias of H(R) is

Bias[H(R)] ≈ − 1
2N ln 2

(R̃ − 1), (6.2)

where R̃ is the number of relevant responses of P(r). H(R) is still difficult to
sample because R̃ is still of order (M + 1)LC . However, since H(R) depends
on only P(r), its bias is approximately S times smaller than the bias of
H(R|S). This is an advantage when many different stimuli are presented.

The bias of the mutual information I (R;S) is the difference between the
biases of H(R) and H(R|S). As the most biased term is H(R|S), the mutual
information is upward biased Panzeri & Treves, 1996).

Estimating the number of relevant responses to compute the bias in equa-
tions 6.1 and 6.2 from small data samples is nontrivial. Panzeri & Treves,
(1996) have proposed a “Bayes” procedure to estimate these parameters em-
pirically. This approach works well when there are at least two to four times
as many trials per stimulus as the number of parameters describing the re-
sponses, that is, (M + 1)LC (Panzeri & Treves, 1996; Pola et al., 2003). This bias
estimate can be subtracted from the raw information estimate to get accurate
and unbiased results. Throughout this letter, we will use this procedure.

Let us consider now Hind(R|S). Since it can be expressed as the sum of
simpler entropies (see equation 4.5), its bias has the following expression:

Bias[Hind(R|S)] ≈ − 1
2N ln 2

C∑
c=1

L∑
t=1

∑
s

(R̃ct(s) − 1), (6.3)

where R̃ct(s) is the number of relevant responses of the marginal distribu-
tions P(rc(t)|s). As R̃c,t(s) is of order M + 1, the bias of Hind(R|S) is propor-
tional to MLC and is thus much smaller than that of H(R|S). As a conse-
quence, the bias of ILB1 (which is simply the difference between the biases
of H(R) and Hind(R|S)) is dominated by the bias of H(R) and is therefore
smaller by a factor of S than the bias of I (R;S).

Like H(R), χ (R) depends on only the stimulus unconditional probability
distributions. However, it has a feature that makes its bias properties much
better than H(R). Bias arises from the logarithmic form of entropy function-
als. The log in χ (R) depends on Pind(r). Since Pind(r) is better sampled than
P(r), χ (R) has less bias than H(R), whose log depends on P(r). As a conse-
quence, the bias of χ (R) is much smaller than the bias of H(R). In particular,
the bias of χ (R) (whose expression is reported in equation A.4 in the ap-
pendix) scales approximately quadratically with LC , whereas that of H(R)
scales exponentially. Differences in sampling properties between χ (R) and
H(R) get more pronounced if the response space is high dimensional.

The bias of ILB2 is the difference between the biases of χ (R) and
Hind(R;S). Since χ (R) is less biased than H(R), the bias of ILB2 is much
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smaller than that of ILB1 (and thus of that of I (R;S)). From the above math-
ematical considerations, it is also expected that the improvement of the bias
of ILB2 does not come at the expense of an increase in variance.

6.2 Investigation of the Bias Properties of Lower Bounds by Mean of
Computer Simulations. In this section, we perform numerical simulations
to validate the analytical estimates of the bias reported above and test the
performance of bias removal procedures based on the subtraction of the
analytical estimates. We performed extensive simulations with both corre-
lated and uncorrelated data; however, for simplicity, we report only results
from typical simulations, which summarize the general findings.

The first computer simulation (see Figure 2) consists of a neuronal pair.
The response time window was 60 ms long, and spikes were digitized with
a time precision of 10 ms, with each time bin containing 0 or 1 spikes (i.e.,
LC = 12 and M = 1). We considered four stimulus conditions. The firing
rate of each cell in the different stimulus conditions was in the range 12 to
48 Hz. The spike trains were designed to have weak stimulus modulation
of the correlated activity.

We started by studying the bias of the entropy quantities χ (R), H(R),
Hind(R|S), and H(R|S) as a function of the number of trials per stimulus. In
Figure 2A we report the values for the above quantities when obtained by
a direct evaluation of equations 5.9, 2.2, 4.2, and 2.3, without application of
any bias correction procedure. In agreement with the analytical result ob-
tained above, χ (R) and Hind(R|S) were much less downward biased than
H(R) and H(R|S).

We then studied the sampling properties of the mutual information
I (R;S) and its two lower-bound estimators ILB1 and ILB2 (see Figure 2B).
ILB1 had better bias properties than the full mutual information I (R;S).
However, it was two orders of magnitude less data robust than ILB2. Even
without any sampling bias correction procedure, ILB2 was well estimated
with 2 × 102 trials per stimulus, while we needed, respectively, 3 × 104 and
more than 105 to estimate ILB1 and I (R;S) with similar accuracy.

In Figures 2C and 2D, we report the data sampling behavior of both en-
tropy and information quantities after subtracting the bias estimates. The
probabilities entering the bias of χ (R), equation A.4, were estimated di-
rectly from the experimental probabilities, whereas the number of relevant
responses entering the entropy expression was estimated using the proce-
dure of Panzeri & Treves, (1996). Convergence to the asymptotic value of
the corrected estimates (see Figures 2C and 2D) was much better than in the
“raw” case: ILB2 was well estimated with only 50 trials per stimulus, whereas
we needed 3 × 103 and 104 trials per stimulus to estimate ILB1 and I (R;S),
respectively. With LC = 12, the number of possible different responses was
212 = 4096 in this simulation. Thus, approximately two to four times more
trials per stimulus than response classes were needed to obtain precise es-
timates of I (R;S), whereas ILB2 was well sampled with a number of trials
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Figure 2: Sampling behavior of the lower-bound estimators ILB1 and ILB2. We
generated correlated simulated data with weak stimulus modulation of cor-
relation and tested how the estimates depend on the data size. We consid-
ered a neuronal pair responding to four different stimuli in a time window
of 60 ms and a time precision of 10 ms. The simulated spike trains have
been produced as in Figure 1B. The simulation parameters were as follows.
For both cells, the mean rate of the independently generated spikes was, re-
spectively, for the four stimulus conditions 32 Hz, 24 Hz, 16 Hz, and 8 Hz.
The mean rate of the shared spikes was 16 Hz, 12 Hz, 8 Hz, and 4 Hz. In
A and B, we report the raw values of the information estimators, entropy,
and like-entropy terms where in C and D the values are corrected for finite
sampling (see section 6). Results were averaged over repetitions of the sim-
ulation decreasing as the number of trials per stimulus available increases.
(a) Raw values of χ (R), H(R), Hind(R|S), and H(R|S) obtained without using
any bias corrections. (b) Raw values of I (R;S), ILB1, and ILB2. (c) Values of χ (R),
H(R), Hind(R|S), and H(R|S) obtained after subtracting the bias corrections de-
scribed in the text. (d) Corrected values of I (R;S), ILB1, and ILB2. Each value of
the plot is obtained averaging over random repetitions of the same simulation.
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Figure 3: Sampling behavior of the lower-bound estimators ILB1 and ILB2. Con-
ventions are as in Figure 2. We generated spike trains as in Figure 2; however,
this time we considered 64 stimuli.

per stimulus that was approximately 80 times smaller than the number of
possible responses.

In order to study the effect of increasing the number of stimuli while
keeping the number of trials per stimulus fixed, we considered next (see
Figure 3) the same simulated responses as in Figure 2, but using 64 stimulus
conditions rather than 4. Figure 3 shows that H(R) was better sampled than
with 4 stimuli. As a consequence, ILB1 worked much better. However, the
sampling behavior of χ (R) also improved. Both ILB1 and ILB2 improved their
sampling properties when increasing the stimulus set size, but ILB2 retained
overall better sampling properties. The noise entropy H(R|S) was still badly
sampled when the stimulus size was increased but the number of trials per
stimulus was kept fixed. As a consequence, the mutual information I (R;S)
did not improve its sampling properties (see Figure 3D).

The above results on the effect of using a large stimulus set have some
implications for particular stimulation paradigms, such as a dynamic stim-
ulus (Nirenberg et al., 2001) or an m-sequence (Reich et al., 2001) in which
thousands of different stimuli are available. In such cases, both P(r) and
Pind(r) will be extremely well sampled, whereas the stimulus-conditional
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Figure 4: Lower-bounds values and standard deviations of ILB1 and ILB2. We
plotted the mean values and the standard deviations of the lower bounds as a
function of the number of trials per stimulus available. The values of the esti-
mates and the standard deviations are computed averaging over repetitions of
the same simulation (see main text). We simulated a neuronal pair as in Figure 2.
We considered a time precision of 10 ms and time window, respectively, of 20 ms,
40 ms, 60 ms, and 80 ms; thus, LC was 4, 8, 12, and 16 for this neuronal pair. In
these plots, we considered the values corrected for finite sampling as described
in the main text. (a) ILB2 estimates. (b) ILB1 estimates. (c) ILB2 standard deviations.
(d) ILB1 standard deviations.

probabilities will not be as well sampled. Thus, both ILB1 and ILB2 will
be generally well sampled and relatively bias free when using such very
large stimulus set (with ILB2, however, retaining an advantage in tightness),
whereas I (R;S) will not be as well sampled.

In Figure 4 we report a study of the performance of the estimators when
increasing the number of time bins L . We studied both the convergence of
the estimators to the true asymptotic values and the standard deviation of
the estimates on the available number of trials per stimulus. As in Figure 2,
we simulated responses of two neurons to four different stimulus condi-
tions, and we considered windows of length L = 2, 4, 6, 8. In this plot we
considered only bias-subtracted values. In Figure 4A, we show the results
for ILB2. We found that approximately 50 trials per stimulus were enough
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to accurately estimate ILB2, even up to LC = 16 (50 trials is more than three
orders of magnitude less than the size of the response space, that is, 216). A
direct estimation of I (R;S) through equation 2.1 required at least 3 × 105

trials per stimulus. To get accurate estimates of ILB1 (see Figure 4B), we
needed many more data than for ILB2. The downward bias of ILB1 made it
negative in conditions of undersampling (see Figure 4B). In Figures 4C and
4D, we show the standard deviations of ILB2 and ILB1, obtained over dif-
ferent random repetitions of the same simulated process. As the number of
trials per stimulus increased, the standard deviation decreased. Increasing
the number of time bins affected only weakly the standard deviations of
the estimates. The standard deviation of ILB1 was larger than that of ILB2,
suggesting that ILB2 is not only a less biased estimator of the information
than ILB1 but is also less variable.

7 A Tighter Lower Bound Including Short-Time-Range Stimulus-
Dependent Correlations

ILB2 is data robust and can lead to precise and tight information estimates
even in the presence of strong, nonstimulus-modulated, spike timing cor-
relation. However, when there is significant stimulus modulation of corre-
lations and Icor−dep is not negligible, then ILB2 may not quantify precisely
the transmitted information. Although neurophysiological experiments
reported so far have all found Icor−dep to be a small proportion of the total
information, it is conceivable that stimulus modulations of correlation may
convey substantial information in some neural systems or under specific
stimulus conditions. A relevant question is thus how the total information
can be better approximated with a data-robust bound in this case. This sec-
tion addresses this issue by suggesting a new strategy, which consists of
neglecting only stimulus modulations of long time-range correlations.

7.1 The Markov Approximation to Model the Stimulus-Response
Probability. The reason that both Icor−dep and I (R;S) are strongly biased
is that they depend on P(r|s), and the latter takes into consideration the
complete history of firing: the probability of the neuronal response r(t) in
the tth time bin is affected by the neural responses in all the previous time
bins. This is made explicit by expressing P(r|s) using the chain rule (Cover &
Thomas, 1991):

P(r|s) = P(r(1), r(2), . . . , r(t), . . . , r(L − 1), r(L)|s)

= P(r(1)|s)P(r(2)|r(1), s)P(r(3)|r(1), r(2), s) . . .

× P(r(t)|r(1), . . . , r(t − 1), s) . . . P(r(L)|r(1), . . . , r(L − 1), s).

= P(r(1)|s)
L∏

t=2

P(r(t)|r(1), . . . , r(t − 1), s). (7.1)
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However, in many neural systems, correlations are significant only between
spikes that are separated by a short time lag, in the range of 1 to 15 ms
(Gray, König, Engel, & Singer, 1989; Brosch, Bauer, & Eckhorn, 1997; Dan
et al., 1998; Nirenberg et al., 2001; Golledge et al., 2003). In such cases, to
preserve the entire information, it is sufficient to take into account only
correlations extending over a short lag. Our approach will be to approximate
the real probability of current response r(t) given the past firing with a finite-
memory Markov model that looks back to only q time steps, as follows:

P(r(t)|r(1), r(2), . . . , r(t − 1), s) → P̃q (r(t)|r(t − q ), . . . , r(t − 1), s).

(7.2)

The latter is computed from the experimental probabilities via Bayes’ rule:

P̃q (r(t)|r(t − q ), . . . , r(t − 1), s) = P(r(t − q ), . . . , r(t − 1), r(t)|s)
P(r(t − q ), . . . , r(t − 1)|s)

. (7.3)

P(r(t − q ), . . . , r(t − 1), r(t)|s) and P(r(t − q ), . . . , r(t − 1)|s) are marginal
distributions of the full model P(r|s). They can be computed by integrating
away the dependence on all the response variables that do not enter in their
argument:

P(r(t − q ), . . . , r(t − 1), r(t)|s) =
∑

r(1),...,r(t−q−1)

∑
r(t+1),...,r(L)

P(r|s), (7.4)

P(r(t − q ), . . . , r(t − 1)|s) =
∑

r(1),...,r(t−q−1)

∑
r(t),...,r(L)

P(r|s). (7.5)

By using the above equation and the chain rule, one arrives at the following
equation for the q -length Markov probability of the stimulus-conditional
response probability:

P̃q (r|s) = P(r(1)|s)
L∏

t=2

P̃q (r(t)|r(t − q ), . . . , r(t − 1), s),

if q = 1, . . . , L − 1,

P̃0(r|s) =
L∏

t=1

P(r(t)|s) if q = 0 (7.6)

(in particular, P̃ L−1(r|s) = P(r|s)). P̃q (r|s) preserves all correlations (both
cross-cell and within-cell) extending up to q time bins in the past, and it
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Table 1: Number of Free Parameters Required to Specify the Probability Models
for Each Stimulus Configuration s, Computed Assuming That There Is at Most
One Spike per Time Bin (M = 1).

Pind(r|s) LC
P̃0(r|s) L(2C − 1)
P̃1(r|s) 2C − 1 + (2C − 1)2C (L − 1)
. . . . . .
P̃q (r|s) 2qC − 1 + (2C − 1)2qC (L − q )
. . . . . .
P(r|s) 2LC − 1

Notes: P , Pind, and P̃q denote the full proba-
bility model, the independent model, and the
q -step Markov model, respectively. C and L de-
note the number of cells and time bins, respec-
tively.

neglects all correlations of range longer than q . Thus, it is a perfect descrip-
tion of neuronal firing if correlations extend to a lag shorter than or equal to
q time bins. The longer is the range of correlations q included in the model,
the closer is the Markov model to the real distribution P(r|s). The notion of
closeness can be proved rigorously as follows. First, the q -length Markov
model preserves all marginals of the original probability distribution ex-
tending up to q + 1 consecutive time bins:

P̃q (r(t − q ), . . . , r(t − 1), r(t)|s) = P(r(t − q ), . . . , r(t − 1), r(t)|s), (7.7)

for t = q + 1, . . . , L . Second, it can be shown that the conditional Kullback-
Leibler distance between P(r|s) and P̃q (r|s) decreases as q increases,

D(P(r|s) ‖ P̃q (r|s)) ≥ D(P(r|s) ‖ P̃q+1(r|s)), (7.8)

for every q = 0, . . . , L − 2.
As q increases, the probability model gets more and more complex, and

it needs bigger data samples to be well estimated. The number of free pa-
rameters needed to specify the Markov model P̃q (r|s) (reported in Table 1
for the case of M = 1—up to one spike in each time bin) grows with q . It
can be seen that in this case, the number of free parameters of the Markov
model is in between the LC parameters needed to describe the independent
probability model Pind(r|s) and the 2LC − 1 parameters describing the gen-
eral model P(r|s). Thus, Markov models with larger q are more accurate,
whereas Markov models with small q are more data robust.

7.2 Tighter Lower Bounds I q
LB3 to Include the Contribution of Stimulus

Modulation of Correlation. The Markov probabilities can be used to
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compute tighter data-robust lower bounds. For each q = 0, . . . , L − 1, we
define the following information lower bound:

I q
LB3 = χq (R) − Hq (R|S), (7.9)

where

χq (R) = −
∑
r∈R

P(r) log2 P̃q (r),

Hq (R|S) = −
∑
s∈S

P(s)
∑
r∈R

P̃q (r|s) log2 P̃q (r|s), (7.10)

and P̃q (r) = ∑
s P(s)P̃q (r|s). These lower bounds have a very similar expres-

sion to ILB2, the difference being that Pind(r|s) is replaced by P̃q (r|s). The fact
that I q

LB3, for q = 0, 1, . . . , L − 1, are lower bounds to the total information
is proved by the following:

I (R;S) − I q
LB3 = D(P(s|r) ‖ P̃q (s|r)) ≥ 0. (7.11)

To understand the conditions in which I q
LB3 is a tight information lower

bound, we note that D(P(s|r) ‖ P̃q (s|r)), the difference between the total in-
formation and I q

LB3, can be interpreted (see equation. 5.10) as the stimulus-
dependent correlational component related to a correlation coefficient de-
fined as

γ q (r|s) = P(r|s)
P̃q (r|s)

− 1, if P̃q (r|s) �= 0,

γ q (r|s) = 0, if P̃q (r|s) = 0. (7.12)

D(P(s|r) ‖ P̃q (s|r)) is always positive or zero, and it is zero if and only if
γ q (r|s) does not depend on s for every response r. Since γ q (r|s) is nonzero
only when there are correlations extending over a time range greater than q ,
I q
LB3 is not tight only if there are stimulus-modulated correlations occurring

over a time range spanning more than q time steps.

7.3 Bias Properties of Iq
LB3. The bias of I q

LB3 is given by the difference
between the biases of χq (R) and Hq (R|S).

The bias of I q
LB3 is largely characterized by that of Hq (R|S), because

χq (R) is better sampled than Hq (R|S). In fact, (1) χq (R) depends on P̃q (r)
and P(r), while Hq (R|S) is a functional of the stimulus-conditional proba-
bilities P̃q (r|s), and (2) χq (R) depends linearly on P(r), the argument of the
logarithmic part being the much better sampled distributions P̃q (r|s).

The expression for the bias of Hq (R|S) is reported in the appendix (see
equation A.2). As shown in the appendix, Hq (R|S) can be decomposed into
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a sum of lower-dimensional entropies of the marginal probability distribu-
tions of up to q + 1 time bins together. For this reason, the bias of Hq (R|S)
is smaller than that of H(R|S), and it is larger for larger q values. Thus, the
larger the range of the Markov model, the larger the samples needed to get
accurate estimates.

The least biased of all I q
LB3 estimators is I 0

LB3. In this case, the bias of
H0(R|S) is reported in equation A.3.χ0(R) also has a small bias (see equation
A.18 in the appendix), which scales approximately as L2.

We investigated numerically the properties of I 0
LB3 by applying this analy-

sis to synthetic spike trains.5 We simulated a neuronal pair in a poststimulus
time window of 80 ms with spike times digitized with a precision of 10 ms
(thus, LC = 16). In this simulation, the stimulus-dependent correlational
component was about 60% of the total information. The cross-correlations
were short-ranged; data were generated in such a way that the CCG (not
shown) had a gaussian shape with width 1 ms. Thus, given bin sizes of 10 ms,
we would expect to recover all information by using I 0

LB3. Results of the sim-
ulations are reported in Figure 5. Since Icor−dep was a substantial fraction of
the total information, ILB2 was not a tight estimator of the total informa-
tion. However, I 0

LB3 recovered all the information not captured by ILB2. The
behavior of I (R;S), ILB2, and I 0

LB3 when varying the number of trials per
stimulus shows that I 0

LB3 is much more data robust than I (R;S) and almost
as data robust as ILB2. After correcting for the bias, an accurate estimate
of I (R;S) required about 3 × 105 trials per stimulus. Both ILB2 and I 0

LB3 re-
quired only 50 to 100 trials per stimulus. Given that there were 216 = 65, 536
possible responses, this is extremely good sampling behavior.

8 Application to Neurophysiological Data

To illustrate and evaluate their possible practical applications, we apply the
new lower-bound methods to real neuronal recordings from somatosen-
sory cortex of anesthetized rats and from cortical visual area MT of awake
macaques.

8.1 Spike Timing, Spike Count, and Short-Time-Range Correlations
in Rat Somatosensory Cortex. We first apply the new method to spike
trains recorded from the whisker representation in somatosensory (“barrel”)
cortex of rats anesthetized with urethane.

In this example, we analyze and compare two different data sets of S1
neuronal activity recorded with different techniques under the same stim-
ulation paradigm. The first data set (kindly provided to us by M. Lebedev
and M. Diamond; see Lebedev, Mirabella, Erchova, & Diamond, 2000, for

5A detailed numerical investigation of I q
LB3 with q > 0 will appear elsewhere (Panzeri,

2005).
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Figure 5: Sampling behavior of the lower-bound estimators ILB2 and I 0
LB3. The

mutual information and the lower-bound estimates are plotted as a function
of the number of trials per stimulus available; the values of the estimates are
computed averaging over repetitions of the same simulation. We simulated a
neuronal pair responding to four stimuli. We considered a time precision of 10 ms
and a time window of 80 ms; thus, LC was equal to 16 for this pair. We considered
a simulation with a strong stimulus modulation of the correlation. In this case,
the ratio of independent versus shared spikes was modulated with the stimulus
set. As a consequence, the γ (·) coefficients were stimulus dependent. The data
were generated as follows. For both cells, the mean rate of the independently
generated spikes was, respectively, for the four stimuli 16 Hz, 36 Hz, 8 Hz, and
8 Hz; the mean rate of the shared spikes was 32 Hz, 0 Hz, 16 Hz, and 4 Hz.
As in the simulations in Figure 1, the shared spikes in the second neuron
were shifted in time by a random amount chosen anew for each trial from a
zero-mean gaussian distribution with standard deviation of 1 ms; this makes
neurons nearly synchronous. (a) Lower-bounds estimates compared with the
true mutual information. The values are not corrected for finite sampling.
(b) Bias-corrected values of the lower-bounds estimates and the mutual infor-
mation.

further details) consisted of single-neuron activity, each neuron being from
a different tungsten electrode. The second data set consisted of multiunit
activity (MUA) that was recorded from each electrode of a silicon electrode
array (see Petersen & Diamond, 2000, for further details). For this MUA data
set, it has been estimated that each electrode captured the spikes of a small
cluster of neurons (≈2–5; see Petersen & Diamond, 2000). In both data sets,
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neural activity was recorded in response to individual stimulation of one
of nine different whiskers (whisker D2 and its eight nearest neighbors); in-
dividual whiskers were stimulated near their base by a piezoelectric wafer,
controlled by a voltage generator. The stimulus was an up-down step func-
tion of 80 µm amplitude and 100 msec duration, delivered once per second.
The trials per stimulus available were 50 for the single-unit data set and 500
for the MUA data set.

The interest in comparing the two data sets arises from the fact that the
single-unit and the MUA data set have very different numbers of trials
per stimulus available (50 versus 500) and that the MUA activity is more
correlated than the single-unit activity. In fact, previous analysis(Panzeri,
Petersen, et al., 2001; Petersen et al., 2001; Petersen & Diamond, 2000) on
these S1 neurons has shown that spikes from the same cell have a weak neg-
ative autocorrelation (a period of refactoriness or inhibition follows a spike
from the same cell), whereas nearby neurons have a substantial positive,
near-synchronous cross-correlation (Lebedev et al., 2000). Thus, MUA con-
tains also a positive correlation (resulting from correlations between nearby
neurons) that is not present in the single-unit spike trains. It is interest-
ing to study how our methods behave in these two different conditions of
sampling and correlation sources.

The time course of the estimates of the information transmitted about
stimulus location by spike times of single cells (averaged over all 10 single
cells in this dataset) is reported in Figure 6A. We used the procedure of
Panzeri and Treves (1996) described in section 6 to correct the information
estimates for finite sampling. We increased the poststimulus time windows
from 0 to 80 ms, using 10 ms time bins to digitize the spike train. We com-
pared the time course of the full spike timing information I (R;S) to that
of the lower bounds ILB1 and ILB2. To quantify whether spike timing added
extra information to that conveyed by spike counts alone, we also com-
puted the time course of the spike count information Ic(R;S), the latter
being computed from equation 2.1 after quantifying neuronal responses as
the total number of spikes emitted in each trial in the poststimulus window
considered. The full spike timing information increased smoothly until 30
to 40 ms and then diverged rapidly. This is due to failure of removing the
sampling bias, consistent with the rules of thumb for sampling correction,
given in section 6, which predict that, with 50 trials per stimulus available,
the mutual information should be well estimated only up to three to four
time bins.

In contrast to the total spike timing information I (R;S), its two lower-
bound estimators did not diverge over time. This indicated that ILB1 and
ILB2 were better sampled than I (R;S), consistent with the above simulation
results. The spike count information Ic(R;S) also varied smoothly with time
and was well sampled given that the firing rates in this data set were low
(Lebedev et al., 2000). ILB2 was very close to the total spike timing infor-
mation I (R;S) for the whole 0 to 40 ms range, in which both quantities
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Figure 6: Lower-bounds ILB1 and ILB2 to estimate the spike timing information
in rat somatosensory cortex. We report the information analysis performed on
(A) 10 single units and (B) 7 single MUA spike trains. In both cases, the spike
trains were analyzed one at a time and then averaged across the population.
The total spike timing information I , ILB1, ILB2, and spike count information Ic

is plotted.

were well sampled, indicating that ILB2 is a tight estimator. The use of ILB2

demonstrated that spike timing conveys information above and beyond
that carried by spike counts: at 0 to 80 ms poststimulus, the spike timing
information computed with ILB2 was 90% higher than the spike count infor-
mation. ILB1 was close to ILB2 up to 60 ms poststimulus and then dropped
by 30% at 80 ms, consistent with the simulation predictions that ILB1 is less
data robust than ILB2 and that it tends to be downward biased in conditions
of undersampling (see Figure 4).

The time course of the estimates of the information transmitted about
stimulus location carried by spike times recorded from a single MUA chan-
nel are reported in Figure 6B. Seven single channels were analyzed sepa-
rately and then averaged. With respect to the single-unit case above, the
tenfold increase in the number of trials improved the sampling of all infor-
mation estimates: I (R;S) now increased smoothly up to 60 ms, and both
ILB1 and ILB2 varied smoothly with time in the whole 0 to 80 ms window
considered. This is consistent with the simulation results in Figure 4. ILB2

was close to the total information in the range 0 to 60 ms, suggesting that
ILB2 was tight. Despite the good sampling, ILB1 remained very close to the
spike count information and was unable to reveal the presence of any extra
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spike timing information. At 0 to 80 ms, ILB2 was 28% higher than both
the spike count information and ILB1, thus demonstrating that spike timing
conveys information above and beyond that carried by spike counts.

There are two interesting differences between single-unit and MUA re-
sults. For MUA, we found that (1) ILB1 was not tight and (2) ILB2 was still
tight, but there was less extra spike timing information than for single cells.
Both facts can be accounted for by the fact that MUA contains more positive
correlations between spikes. The loss of tightness of ILB1 is expected from
the addition of correlations between local neurons introduced by MUA (the
fewer correlation sources there are, the tighter ILB1). The loss of timing in-
formation is accounted for by the fact that 20% of the information carried by
single S1 neurons is due to stimulus-indepedent negative autocorrelations
(Panzeri, Petersen, et al., 2001) and that the addition of cross-correlation
between nearby neurons introduces stimulus-independent positive cross-
correlations that decrease the spike timing information considerably
(Petersen et al., 2001).

Overall, these examples show that ILB2 can reliably reveal the presence
of genuine spike timing information, even in cases when there would not
be enough data to compute the full spike timing information and the use
of ILB1 would fail to reveal it. They also show that the performance of the
estimators on real data sets with different characteristics is consistent with
the analytical and numerical results derived in previous sections.

To study how the performance of the estimators varies when increasing
the population size, we next considered pairs of S1 MUA recording chan-
nels. We analyzed only pairs located in the same barrel column recorded
with silicon electrodes spaced by ≈0.4 mm. Their activity is known to
be cross-correlated with short time lag (Lebedev et al., 2000; Petersen &
Diamond, 2000). In Figure 7, we report the time course of the information
analysis performed on the three same-column S1 pairs available (results av-
eraged across pairs). We increased the poststimulus time windows in steps
of 10 ms from 0 to 80 ms, and we used 10 ms time bins to digitize the spike
times. Since we also wanted to investigate the role of short-time-range stim-
ulus modulations of cross-channel correlations, we considered I 0

LB3 along-
side ILB1 and ILB2. According to the numerical and analytical considerations
above, both ILB2 and I 0

LB3 were well sampled in the time range considered.
Consistent with this prediction, they behaved smoothly as a function of
time. ILB1 was significantly smaller than both ILB2 and I 0

LB3, and it decreased
dramatically after 50 ms. ILB1 performed worse for longer windows when
analyzing pairs than when analyzing single channels. This is because ILB1

was less data robust than the other two estimators. In particular, after five
time bins (LC = 10), the response entropy in ILB1 (see Figure 4) gets strongly
downward biased, giving rise to the pattern in the figure. I 0

LB3 was consis-
tently higher than ILB2 (it was 9% higher at 0–80 ms poststimulus). Since
I 0
LB3 considers only the effects of stimulus modulation of cross-correlations

within the same time bin, these results show that stimulus modulations
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Figure 7: Lower-bounds ILB1, ILB2, and ILB3 to estimate the spike timing infor-
mation conveyed by the MUA activity recorded from paired electrodes in rat
somatosensory cortex. We report the information analysis performed on pairs of
MUA spike trains recorded simultaneously from two different electrodes (both
located in the same barrel column; see main text). We analyzed three such paired
spike trains; they were analyzed one at a time and then averaged across the pop-
ulation. Data were averaged across the population. The bias-corrected values of
ILB1, ILB2, and I 0

LB3 are plotted.

of short-lag correlations contribute to information transmission. This was
consistent with the finding that the strength of cross-correlation was weakly
modulated by the stimulus: the Pearson cross-correlation coefficient of the
joint spike counts (computed in the same 10 ms long sliding windows as for
the information, and then averaged across all windows and cell pairs) was
slightly smaller in response to stimulation of the principal whisker than in
response to other whiskers (0.04 and 0.06, respectively). The contribution of
stimulus modulation of correlations in this MUA pair data set was higher
than in the corresponding analysis of pairs of single units (reported by
Petersen et al., 2001). One possible explanation is that MUA pairs effectively
sample a larger population and that correlations play a more important con-
tribution for larger populations.

In the case of MUA pairs, computation of the full mutual information
was possible only for the first two or three time bins, after which the esti-
mate diverged dramatically (data not shown). This illustrates that the lower-
bound techniques developed here significantly extend the time range over
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which the spike timing information carried by neuronal populations can be
analyzed. When analyzing pairs, our new approach allowed us to estimate
the spike timing information with the 500 trials per stimulus, as opposed
to the hundreds of thousands of trials that would have been required to
estimate the total spike timing information.

8.2 Spike Timing and Coding of Motion Direction in the MT Visual
Cortex of the Awake Macaque. In this section, we apply our new analysis
to multiunit recordings collected from the MT visual area of a behaving
monkey, and we show how our techniques could be successfully used to in-
vestigate whether neurons (such as those in MT) encode information about
stimuli (such as motion direction) by means of spike timing.

The MT neuronal responses analyzed in this section were recorded as fol-
lows. MUA was recorded through electrodes placed in area MT of a macaque
monkey. MUA was subjected to thresholding to discriminate spike times.
Although in general it was not possible to isolate spikes emitted by indi-
vidual cells, in a few cases we were confident that there was only one single
unit in the MUA (on the basis of standard clustering and autocorrelogram
analysis criteria). The monkey was trained on a direction discrimination
task and, during recording of neuronal activity, was fixating a screen cen-
trally (fixation window ±0.5 degree). A structured background was back-
projected onto the screen. After a randomized period of time, a grating was
projected onto the screen moving in one of four possible directions along
the cardinal axes, positioned over the receptive fields of the neurons under
study. Luminance contrast (i.e., visibility) of the stimulus was randomized
(0%, 2%, 4%, 17%). The monkey performed a reaction time task and in-
dicated the perceived direction of motion by a hand movement to one of
four touch bars located in front of the chest. Neural data analyzed in this
article were from high-luminance stimulus conditions. (For more detailed
information, see Thiele, Distler, & Hoffmann, 1999). Forty to 50 trials per
stimulus were available. In this example analysis, we considered two differ-
ent MUA recordings from MT (see Figures 8 and 9), which illustrate different
ways in which information about motion direction might be encoded by MT
neurons.

An analysis of the first example of MUA single-channel recording is
shown in Figure 8. The poststimulus time histograms (PSTHs) to differ-
ent stimulus conditions (see Figure 8A) showed that neuronal activity from
this electrode was strongly modulated by motion direction. In particular,
responses to up and down motion directions were particularly strong, with
large response peaks between 50 and 100 ms poststimulus. Although the
peaks to up and down motion were of similar magnitude (≈150 Hz), there
was a latency difference between responses to up and down motion (80 ms
versus 70 ms, respectively). Responses to left and right motions were
smaller in magnitude and occurred with longer latencies. These stimulus-
related latency differences suggest that spike timing may convey important
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Figure 8: Information about motion direction transmitted by MUA in MT visual
cortex. We quantified the information that spike times and spike counts convey
about motion direction by applying the information analysis MUA recorded
from one electrode in MT of an awake behaving monkey. Information conveyed
by spike timing (computed with our ILB2 lower bound) is compared to the
information in the spike count. The recording site considered here presents
strong extra spike timing information not available in the spike count. The gray
areas represent a (bootstrap-computed) confidence band for the spike count
information: if the spike timing information lies in this area, it is likely (with
a probability of 0.95) that the spike timing information equals the spike count
information; hence, there is not extra information in the timing of spikes not
provided in the count. (A) PSTHs of the neuron. (B) spike timing (ILB2) and
spike count information in sliding windows from 0 to 200 ms, increased in steps
of 50 ms. (C) Spike timing (ILB2) and spike count information in cumulative
windows from 50 to 100 ms, increased in steps of 10 ms.

information about motion direction in this case. We investigated this hy-
pothesis by using the lower-bound estimate ILB2, which, on the basis of the
≈50 trials per stimulus available, was well enough sampled up to 12 time
bins, and compared it to the information conveyed by spike counts. We
first examined the information transmitted in sliding windows of 50 ms
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ranging from 0 to 200 ms.6 We found (see Figure 8B) that in the 50 to 100 ms
time interval, there was twice as much information in spike times as in
spike counts (0.6 bits versus 0.3 bits). This difference in information was
highly significant, as the spike timing information ILB2 was far above the
(P < 0.05) bootstrap-computed confidence interval of the spike count in-
formation (the gray area in Figure 8B). The time course of the information
conveyed by the spikes in the 50 to 100 ms time window was magnified in
Figure 8C, where we report the cumulative plot of information in the time
windows [50,60] ms, [50,70] ms, [50,80] ms, [50,90] ms, and [50,100] ms.
There was rapidly increasing extra information in spike timing after 80 ms
poststimulus (the time when an observer of neuronal activity could use
the latency difference between up and down motion direction responses to
discriminate the stimulus).

In Figure 9 we considered a second example of MUA activity. In this
case, from PSTH inspection, it is likely that the MUA channel contains a
smaller neuronal population than that in the previous example. Also in this
case, PSTHs to different motion directions (see Figure 9A) showed that neu-
ronal activity was strongly modulated by motion direction. Responses to left
and right motion directions were particularly strong. However, responses
were more tonic than in the previous case, and there was no marked la-
tency difference between the motion directions eliciting stronger response.
Thus, in this case, we expected that spike times did not add much infor-
mation about motion direction to that provided by spike counts alone.
Results of the information analysis using our new lower bound (see
Figures 9B and 9C) confirmed this expectation: the lower-bound analysis
could not find any evidence that knowledge of spike times further increased
the information provided by spike counts.

In both examples, we could not estimate the full information reliably out
of 50 trials per stimulus for time windows as long as that analyzed here.

This application is useful in showing that the new lower bounds reliably
and consistently pick up spike timing information originating by stimulus-
related differences in the temporal shape of PSTHs, and they can achieve
this by using the number of data that can be collected from a behaving
animal. This shows that our bounds could become a useful tool to probe the
importance of spike timing in neural coding in awake behaving animals,
when it is usually not possible to record responses to hundreds of repetitions
of the same stimulus.

We would like to stress that we report this example only as a demonstra-
tion of the applicability of the new method. We do not draw from it general
conclusions about the role of spike timing in coding of visual information

6 This means that we computed the information estimations in four time intervals:
[0,50] ms, [50,100] ms, [100,150] ms, and [150,200] ms. The information in each of these
four time periods was computed after digitizing the spike trains with 10 ms precision.
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Figure 9: Information about motion direction transmitted by MUA in MT visual
cortex. In this second example, this recording site presented here does not convey
any extra information by spike timing. Conventions are as in Figure 8.

in area MT, which still has to be determined. In particular, the use of MUA
recording rather than single units may affect the spike timing results (as
shown in the previous section). For examples the MUA channel in Figure 8
may carry significant spike timing information because it contains more
than one cell with different latencies. In general, we found that in all but a
few cases analyzed so far in which a single unit could be reliably discrim-
inated, there was very little extra information carried by spike timing. For
the present purpose, we preferred to report only the two above examples
of MUA activity in MT, because those two examples show very clearly the
relation between stimulus-related PSTH temporal properties and ILB2 spike
timing information.

9 Discussion

Multiple electrodes are a widely used tool in neuroscience research that
makes it possible to study the simultaneous activity of neuronal popula-
tions (Brown, Kass, & Mitra, 2004). The information-theoretic analysis of
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such simultaneously recorded neuronal activity offers a principled way to
study how spike timing and correlation contribute to neuronal population
coding of sensory information (Nirenberg & Latham, 2003; Pola et al., 2003;
Schneidman et al., 2003; Averbeck & Lee, 2004). However, despite the fact
that information theory has had widespread use in single-neuron analysis
(Optican & Richmond, 1987; Rieke et al., 1996; Borst & Theunissen, 1999),
relatively few studies have used it for analysis of population spike trains
(e.g., Petersen et al., 2001; Nirenberg et al., 2001; Rolls et al., 2003). The main
reason for this has been the unpractically large numbers of data that are
often required for information-theoretic analysis of populations (Brown
et al., 2004). This article presents several advances that can help in allevi-
ating this problem and extending the range of applicability of information
theory to multi-spike-train analysis.

First, this study alleviates the limited sampling problem by providing
data-robust quantities that approximate precisely the information under
very general conditions. This new approach complements other recent ad-
vances on the sampling problem (Victor, 2002; Paninski, 2003; Nemenman,
Bialek, & de Ruyter van Steveninck, 2004).

Second, the estimators introduced here approximate the mutual informa-
tion from below: this means that any such estimate of information contained
by spike timing does not contain any spurious information due to sampling
artifacts. Thus, a demonstration, obtained with these methods, that popu-
lation spike timing conveys substantial information not available in spike
counts would be very robust and statistically significant. The examples re-
ported in Figures 8 and 9 show that this is possible even with the numbers
of data recoded from awake-behaving animals. Thus, the method opens up
the possibility of quantitative investigations of the role of spike timing in
some cognitive and perceptual tasks.

Third, the information estimators developed here lend themselves to
investigations of the role of correlated firing in coding. In fact, all estima-
tors ILB2 and I q

LB3 can take into account the effect of stimulus-independent
correlations. Moreover, the estimators I q

LB3 also take into account the effect
of stimulus modulations of correlations between spikes that are separated
by q time steps or fewer. By varying q within the range allowed by the
data size available in a particular experiment, one could use the I q

LB3 esti-
mates to obtain a quantitative characterization of the timescales over which
correlations contribute to population coding. This approach will succeed
in determining the timescales over which correlations carry information if
all the informative stimulus-dependent correlations are short-time-ranged.
However, a practical problem is that determining with our approach the
presence or absence of long time-range correlations may require large num-
bers of data. Thus, when working with typical neurophysiological data sets,
it is useful to complement the q -time-steps analysis presented here with a
rigorous assessment of long-range correlations based on other statistical
methods (e.g., Oram et al., 2001).
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It is important to note that the finding that the new estimators ILB2 and
I q
LB3 are less biased and more data robust than the mutual information is gen-

eral and due to the intrinsic properties of these functionals. In fact, these es-
timators depend on (1) entropies that are “lower dimensional” than the full
spike timing response entropy and are thus more data robust, and (2) other
nonentropy quantities (such as χ ) that are intrinsically less biased than en-
tropies. However, the actual performance of each estimator may depend on
the particular method used to remove the sampling bias. Here we corrected
for the bias using an analytical approximation based on the assumption that
the number of trials N used to compute the probabilities was bigger than
the number of possible responses R (Panzeri & Treves, 1996). Although the
bias subtraction method presented here performs extremely well for nonen-
tropy quantities (such as χ ) and relatively well for the entropy quantities, it
is possible that estimating entropy quantities on which ILB2 and I q

LB3 depend
by using recent advances on the entropy sampling problem (Paninski, 2003;
Nemenman et al., 2004; Victor, 2002) may push the performance of the
approach presented here much further. We are currently investigating in
a systematic way, by means of computer simulations, how various bias
elimination methods perform when applied to the probability functionals
developed and studied here (Panzeri, 2005).

Appendix: Bias Expressions of χ (R), χ0(R), and Hq (R|S)

This appendix reports explicit expressions for the bias approximations of
the quantities Hq (R|S), χ (R), and χ0(R) that were not reported in the main
text. These approximations to the bias can be subtracted from the estimates
of the functional obtained from limited sampled probabilities to correct for
the sampling problem.

The bias of a given functional of the probability distributions is defined
as the difference between the trial-averaged value of the functional when
the probability distributions are computed from N trials only and the value
of the functional computed with the true probability distributions (obtained
from an infinite number of observations). There are several ways to derive
the bias correction: we have followed a simple procedure equivalent to that
used and detailed in appendix B of Pola et al. (2003). In brief, we used a
Taylor series expansion of the functional around the true probability value
and then averaged over all possible outcomes of the N trials. We considered
only the first two terms in the expansion (corresponding to the effect of mean
and variance of the estimates of the probabilities obtained with N trials).
This corresponds to computing the bias to first order in 1

N (see Pola et al.,
2003). Thus, all bias equations reported in this appendix are valid to the 1

N
order. This approximation is good if there are enough experimental trials
N so that fluctuations of the estimated probability distributions around the
asymptotic value are small. In this appendix, we report schematically the
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derivation of only the bias expressions that were not derived in Pola et al.
(2003).

A.1 Bias of Hq (R|S). The bias for Hq (R|S) q = 1, . . . , L − 1 can be cal-
culated by expressing it as a sum of lower-dimensional noise entropies:

Hq (R|S) = H(R1, . . . ,Rq |S) +

+
L∑

t=q+1

[H(Rt−q , . . . ,Rt|S) − H(Rt−q , . . . ,Rt−1|S)], (A.1)

where, in the above, H(R1, . . . ,Rq |S) is the noise entropy of the marginal
probabilities P(r(1), . . . , r(q )|s). By applying equation. 6.1 (whose derivation
is reported in Panzeri & Treves, 1996, and Pola et al., 2003) to all noise
entropies in the above, we obtain:

Bias[Hq (R|S)] ≈ − 1
2N log 2

∑
s

(R̃1,...,q (s) − 1)

− 1
2N log 2

L∑
t=q+1

∑
s

[R̃t−q ,...,t(s) − R̃t−q ,...,t−1(s)], (A.2)

where R̃1,...,q (s), R̃t−q ,...,t(s), and R̃t−q ,...,t−1(s) stand, respectively, for the num-
ber of relevant responses of the probability distributions P(r(1), . . . , r(q )|s),
P(r(t − q ), . . . , r(t)|s), and P(r(t − q ), . . . , r(t − 1)|s). As for the case of the
full probability distribution P(r|s), the determination of the number of the
number of relevant bins of these marginal probabilities may not be straight-
forward when data are scarce. As discussed in the main text, an approach
to this problem was presented by Panzeri and Treves (1996).

The bias of H0(R|S) can be derived in an analogous way and has the
following simpler expression:

Bias[H0(R|S)] ≈ − 1
2N ln 2

∑
s

∑
t

(R̃t(s) − 1), (A.3)

where R̃t(s) is the number of relevant responses of the marginal distributions
P(r(t)|s).

A.2 Bias of χ (R). The derivation of the bias of χ (R) follows almost
exactly the one reported in appendix B of Pola et al. (2003) and is very
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similar to the derivation of the bias of χ0(R) (reported below). Thus, for
conciseness, here we report only the full result:

Bias[χ (R)] ≈ � + �LC + �L2C2

2N ln 2
, (A.4)

The coefficients �, �, and � are functionals of the stimulus conditional
probability distributions P(r|s), the marginal distributions P(rc(t)|s), and
P(s). Their values are given by

� = 1 −
∑̂

r

P(r)
Pind(r)

∑
s

Pind(r|s)β(r|s)

+
∑̂

r

P(r)
P2

ind(r)

〈(
1 + α(r|s)

Pind(r|s)
+ β(r|s)

)
P2

ind(r|s)
〉

s

−
∑̂

r

2
Pind(r)

〈
P(r|s)[Pind(r|s) + α(r|s)]

〉
s
, (A.5)

� =
∑̂

r

1
Pind(r)

∑
s

Pind(r|s)[2P(s)P(r|s) − P(r)], (A.6)

� =
∑̂

r

P(r)
P2

ind(r)

∑
s

Pind(r|s)[Pind(r) − P(s)Pind(r|s)], (A.7)

where
∑̂

r is a summation restricted to the response variables r such that
Pind(r) �= 0. α(r|s) and β(r|s) are defined as follows,

α(r|s) =
∑
c,tc

Pind(r|s)
P(rc(tc)|s)

, (A.8)

β(r|s) =
∑

(b,tb )�=(c,tc )

P(rb(tb), rc(tc)|s)
P(rb(tb)|s)P(rc(tc)|s)

, (A.9)

where in the last equation, we sum up over every b, tb , c, and tc such that
the couple of values (b, tb) is different from (c, tc). It is worth stressing that
both α(r|s) and β(r|s) are regular and finite quantities.

The bias coefficients �, �, and � are functionals of the full probability
distributions. Thus, an interesting question is how to compute these terms
from raw data. In this letter, we have performed this evaluation by plug-
ging the empirically obtained probabilities into the above expression for
�, �, and �. Although this may potentially introduce systematic inaccu-
racies in the determination of these terms, the numerical simulations pre-
sented in Figures 2 and 3 show that this problem is negligible and that a
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very accurate estimation of the bias of χ (R) can in general be reached even
with small data sets.

A.3 Bias of χ0(R). We start the derivation with a reminder that χ0(R)
can be expressed as

χ0(R) = −
∑̂

r
P(r) log2 P̃0(r), (A.10)

where the notation
∑̂

r reminds that the summation over responses is re-
stricted to r such that P̃0(r) �= 0. The first step to compute the bias of χ0(R)
is to perform a second-order series expansion of χ0(R) around the true
probability distributions,

Bias[χ0(R)] ≈ 1
2

∑
s

δ2χ0

δP(s)2 σ 2
N[P(s), P(s)]

+ 1
2

∑
s,s ′,s �=s ′

δ2χ0

δP(s)δP(s ′)
σ 2

N[P(s), P(s ′)]

+ 1
2

∑
s

∑
t

∑
r̃(t)

δ2χ0

δP(r̃(t)|s)2 σ 2
N[P(r̃(t)|s), P(r̃(t)|s)]

+ 1
2

∑
s

∑
t,t′,t �=t′

∑
r̃(t),r̃(t′)

δ2χ0

δP(r̃(t)|s)δP(r̃(t′)|s)

× σ 2
N[P(r̃(t)|s), P(r̃(t′)|s)]

+
∑

s

∑
t

∑
r̃(t)

∑
r̂

δ2χ0

δP(r̃(t)|s)δP(r̂|s)
σ 2

N[P(r̃(t)|s), P(r̂|s)]

+ o
(

1
N

)
, (A.11)

where δχ0

δP stands for the functional derivative of χ0(R) with respect to re-
sponse probability distributions (computed in the true asymptotic value
obtained with an infinite amount of data). σ 2

N[·, ·] are the variances and
covariances of the probability distributions. We introduced r̃(t) and r̂ to
distinguish them from r, which is a running variable used to define χ0(R)
(see equation 7.10). While r̃(t) corresponds to the neuronal population re-
sponse in the tth time bin only, r̂ stands for the neuronal response in all the
time bins. Computing the functional derivatives explicitly, and omitting for
brevity all the terms that simplify away, we obtain the following expression
for the leading term of the bias of χ0(R):
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Bias[χ0(R)] = 1
2 ln 2

∑
s

∑̂
r

P̃0(r|s)
P̃0(r)

(
P(r)
P̃0(r)

P̃0(r|s) − 2P(r|s)
)

× σ 2
N[P(s), P(s)]

+ 1
2 ln 2

∑
s,s ′,s �=s ′

∑̂
r

(
P(r)

P̃0(r)2
P̃0(r|s)P̃0(r|s ′)

− P(r|s)P̃0(r|s ′) + P̃0(r|s)P(r|s ′)
P̃0(r)

)
σ 2

N[P(s), P(s ′)]

+ 1
2 ln 2

∑
s

∑
t

∑
r̃(t)

∑̂
r
P2(s)

P(r)
P̃0(r)2

(
P̃0(r|s)

P(r̃(t)|s)

)2

× δ[r(t),r̃(t)]σ
2
N[P(r̃(t)|s), P(r̃(t)|s)]

+ 1
2 ln 2

∑
s

∑
t,t′,t �=t′

∑
r̃(t),r̃(t′)

∑̂
r
P(s)

× δ[r(t),r̃(t)]δ[r(t′),r̃(t′)]
P̃0(r|s)

P(r̃(t)|s)P(r̃(t′)|s)

× P(r)
P̃0(r)

(
P(s)P̃0(r|s)

P̃0(r)
− 1

)
σ 2

N[P(r̃(t)|s), P(r̃(t′)|s)]

− 1
ln 2

∑
s

∑
t

∑
r̃(t)

∑̂
r
P2(s)δ[r(t),r̃(t)]

P̃0(r|s)
P(r̃(t)|s)P̃0(r)

× σ 2
N[P(r̃(t)|s), P(r|s)] + o

(
1
N

)
, (A.12)

where δ[r(t),r̃(t)] is a Kronecker delta (i.e., δ[r(t),r̃(t)] = 1 if r(t) = r̃(t) and
δ[r(t),r̃(t)] = 0 if r(t) �= r̃(t)). The values of the variances and covariances are as
follows:

σ 2
N[P(s), P(s)] = P(s)(1 − P(s))

N
+ o

(
1
N

)
, (A.13)

σ 2
N[P(s), P(s ′)] = − P(s)P(s ′)

N
+ o

(
1
N

)
, (A.14)

σ 2
N[P(r̃(t)|s), P(r̃(t)|s)] = P(r̃(t)|s)(1 − P(r̃(t)|s))

Ns
+ o

(
1
Ns

)
, (A.15)

σ 2
N[P(r̃(t)|s), P(r̃(t′)|s)] = − P(r̃(t)|s)P(r̃(t′)|s)

Ns
+ P(r̃(t), r̃(t′)|s)

Ns

+ o
(

1
Ns

)
, (A.16)
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σ 2
N[P(r̃(t)|s), P(r|s)] = − P(r̃(t)|s)P(r|s)

Ns
+ δ[r(t),r̃(t)]

P(r|s)
Ns

+ o
(

1
Ns

)
. (A.17)

After replacing the explicit values of variances and covariances in equa-
tion A.12, and after performing some algebra, we obtain the following final
expression for the bias of χ0(R):

Bias[χ0(R)] ≈ �0 + L�0 + L2�0

2N ln 2
. (A.18)

The coefficients �0, �0, and �0 are functionals of the stimulus conditional
probability distributions P(r|s) and of the marginal distributions P(r(t)|s),
and P(s). Their values are given by

�0 = 1 −
∑̂

r

P(r)
P̃0(r)

∑
s

P̃0(r|s)β0(r|s)

+
∑̂

r

P(r)
P̃0(r)2

∑
s

P(s)
(

1 + α0(r|s)
P̃0(r|s)

+ β0(r|s)
)

P̃0(r|s)2

−
∑̂

r

2
P̃0(r)

∑
s

P(s)P(r|s)[P̃0(r|s) + α0(r|s)], (A.19)

�0 =
∑̂

r

1
P̃0(r)

∑
s

P̃0(r|s)[2P(s)P(r|s) − P(r)], (A.20)

�0 =
∑̂

r

P(r)
P̃0(r)2

∑
s

P̃0(r|s)[P̃0(r) − P(s)P̃0(r|s)], (A.21)

where
∑̂

r is a summation restricted to the response variables r such that
P̃0(r) �= 0. α0(r|s) and β0(r|s) are defined as follows:

α0(r|s) =
∑

t

P̃0(r|s)
P(r(t)|s)

, (A.22)

β0(r|s) =
∑

t,t′,t �=t′

P(r(t), r(t′)|s)
P(r(t)|s)P(r(t′)|s)

. (A.23)
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