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How to analyze data?
(statistics, machine

learning, data
mining, bioinformatics)

How biology learns?
(neuroscience, cog. sci.,

signaling, regulation)

Neural coding
in H1

Regulation in
B cells



Studying signal transduction

in outProcessor

Relation = I

What is the richness of ins/outs?
How faithful is the output to the input? 
How does it coding input?

Molecular
Neural
Cognitive
Evolutionary



Studying signal transduction

What is the in/out relation?
Efficiency of estimation?
Efficiency of encoding?

Neural



Studying signal transduction

Synergies for multiple ins/outs?

in

in

out

out



Reconstructing
interaction models

A
B

C

strong

strong

I (A,C) !min I (A,B), I (B,C)[ ]

weak

A B

C



Variances and Correlations

!(x, x2 ) = 0

! f (x),g(y)( ) " !(x, y)

One-to-one transformations of microarray
expression data completely destroys the ranking of
correlations. Even sign of correlations may change.
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Entropy (unique measure of
randomness, in bits)

S[X] = ! px log px
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Mutual Information
(interactions, shared data)

I[X;Y ] = log
pxy

px py

!!!!!!!!!!!!= S[X]+ S[Y ]! S[X,Y ]

0 " I[X;Y ] "min(S[X],S[Y ])
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Why MI?
 Captures all dependencies (zero iff

joint probabilities factorize)
 Reparameterization invariant
 Unique metric-independent measure of

“how related”

(Nemenman and Tishby 2005)



Why is IT not common in
statistics?
Maximum likelihood estimation: 
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Why is IT not common in
statistics?
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Fluctuations underestimate entropies and
overestimate mutual informations.

(Need smoothing.)

log K



Correct smoothing possible

S ! logN

(often not enough)

For estimation of entropy at                    see:
Grassberger 1989, 2003, Antos and Kontoyiannins 2002, Wyner and
Foster 2003, Batu et al. 2002, Paninski 2003, Panzeri and Treves
1996, Strong et al. 1998

K / N ! 1

Incorrect smoothing = over- or underestimation.

Developed for problems ranging from
mathematical finance to computational biology.

i =   1     2     3     4     5     6 



What if S>logN ?
But there is hope (Ma, 1981):

For uniform K-bin distribution the first coincidence
occurs for

 

N
c
! K = 2S

S !!2!logN
c

Can make estimates for square-root-fewer samples!
Can this be extended to nonuniform cases?

• Assumptions needed (won’t work always)
• Estimate entropies without estimating distributions.

Time of first coincidence



What is unknown?
Binomial distribution:

S = ! p log p !

!!!!(1! p)log(1! p)

p     1-p uniform (no assumptions)

p S



What is unknown?

Selection of wrong “unknown”
biases the estimation.

(Even worse for large K.)

! =
S
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" S

true
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t



One possible uniformization
strategy for S (NSB)

 Posterior variance scales as
 Little bias, except in some known cases.
 Counts coincidences and works in Ma

regime (if works).
 Is guaranteed correct for large N.
 Allows infinite # of bins.

1 / N

(Nemenman et al. 2002, Nemenman 2003)



If fails: What if we need only
S and I ranks?

Smoothing strength



 Can we understand the code?
 Which features of it are important?

 Is this a rate or a timing code?
 What/how much does the fly know?
 Is there an evidence for optimality?

Now: apply all this to study
neural coding

Motion estimation is nontrivial and
behaviorally important



(Lewen et al, 2001)

Recording from fly’s H1
light

record

stimulus



Natural stimuli
 ~2 ms resolution known

to be important for white
noise stimuli

 Could such “brisk” spikes
be due to ~1 ms
correlations in stimulus?

 What if stimulus has
natural correlations?

! = 60ms

(Land and Collett, 1974)

response = 30ms



Natural stimulus and response

5s



Highly repeatable spikes
(not rate coding)

1.8s

10ms

0.72ms
0.81ms 0.21ms

Is high precision timing for natural stimuli relevant for
information transmission, or just anecdotal?



Analysis
 Collect joint samples of stimuli and responses
 No useful linear features observed
 Analyze I(s,r)
 Analyze r up to 30-60 ms, at discretization up

to 0.2 ms -- words up to 150 symbols
 Severely undersampled (100 to 10000

samples). Couldn’t be done before:



Information rate at T=30ms
• Information present up

to τ =0.2-0.3 ms
• 30% more information

at τ<1ms. Encoding by
refractoriness?

• ~1 bit/spike at 170
spikes/s and low-
entropy correlated
stimulus.  Design
principle?

• Efficiency >50% for τ
>1ms, and ~75% at
30ms. Optimized for
natural statistics?0.2 ms -- comparable to channel opening/

closing noise and experimental noise.



Synergy from spike
combinations

Spike pairs

Redundancy due
to stimulus



New bits
• Spikes are very

regular (15 oscillat.);
decoding?

• Corr. Func. at half its
value, but fly gets
new bits every 30 ms

• Independent info
(even though
entropies are T
dependent).

Behaviorally
optimized code!



Information about…

Signal shape Zero-crossings time

Best estimation at 25ms delay. Little time for reaction.



Same IT techniques needed
(have been used) to study:
 Adaptation of the code to stimuli

statistics (to maximize information
transmission)

 Speed of adaptation
 Individuality of animals
 Effects of multiple neurons
 Predictive features selection by the fly



Reconstructing
interaction networks

B

C

A
     Stat    Co     GM     Biochem.  

Small data requirements ✖✔ ✔ ✖✔ ✖

Robustness to fluct. ✔ ✔ ✖✔ ✖

Computational complexity ✖ ✔ ✖ ✖✔

Conditional interactions ✔ ✖✔ ✔ ✖✔

Reparam inv., non-param. ✖✔ ✖✔ ✖✔ ✔

Irreducibility ✔ ✖ ✔    ✖

A

B C

I > 0I > 0

I > 0



Two separate problems
 What is an interaction?
 Realistic algorithm to uncover them



Kullback-Leibler divergence

DKL[P ||Q] = px log
px

qxx

!

0 " DKL

How easy it is to mistake P for Q?
(KS test, etc.)



MI as MaxEnt
Find least constrained (highest entropy)
approximation q to       , s.t.p
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Higher order dependencies

(Nemenman and Tishby 2005)

I
XYZ

= log
p
xyz

p
x
p
y
p
z

(Axiomatically) Amount of all dependencies
(in bits) among variables.

But these are not irreducible.



By analogy:
Example of irreducibility

A

B C

I > 0I > 0

I > 0

PABC =
PABPAC

PA
=
1

Z
fAB fBC

MaxEnt approximation without BC:

Q
ABC

=
1

Z
exp(!"

AB
!"

AC
) !!!!D

KL
[P

ABC
||Q

ABC
] = 0

No irreducible interaction!
For other links, e.g., AB:  D

KL
[P

ABC
||Q

ABC
] > 0

Irreducible interaction.



Higher order irreducible
dependencies

Node

Irreducible
interaction

How much dependency is
there in a set of nodes

that is not present in any
of its subsets?

(Schneidman et al. 2003, Nemenman 2004)
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MaxEnt approximations
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MaxEnt approximations
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MaxEnt approximations
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MaxEnt approximations
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Q =
1

Z
exp[!"12345 !"12346 !"12456 ]



MaxEnt approximations
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Q =
1

Z
exp[!"12345 !"12346 !"12456 ]

Q ' =
1

Z
exp[!"12345 !"12346 !"12456 !"356 ]



MaxEnt approximations

!I356 = DKL
[ !Q ||Q]

!I
356

> 0" Irreducible interaction present



MaxEnt factorization of PDFs

 

P(x1,…xM ) =

!!!= exp ! " i (xi )
i

# ! " ij (xi , x j )
ij

# ! " ijk (xi , x j , xk )
ijk

# !!
$

%
&

'

(
)

• N-particle potentials
• Spin models (for discrete variables)
• Random lattices
• Message passing
• Markov Networks



 What is an interaction?

Two separate problems

 Realistic algorithm to uncover them

An irreducible statistical dependency.

• Biologically sound assumptions (new
knowledge from verifying assumptions).

• Know the order.
• Focus on high precision (irreducibility,

no false positives), not so much on high
recall (no false negatives).



Interaction network

1

2

3

4

5

6

(Basso et al. 2005, Margolin et al. 2005)



Disregard
high orders (few data)
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Locally tree-like approximation
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Locally tree-like approximation
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Locally tree-like:
signals decorrelate fast
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ARACNE: No false positives
Where 2-way -- it’s 2-way

More care needed for loops of size 3

I (A,C) !min I (A,B), I (B,C)[ ]

Techniques for MI estimation needed again!



Synthetic networks
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Synthetic networks
benchmarks (N=1000)

Graceful decay for smaller N



Complete B-cell network
(400 arrays)

Cell CycleCell Cycle

Ribosomal ComplexRibosomal Complex

~129000 interactions

Learning



c-MYC subnetwork
• Protooncogene,
• 12% background

binding,
• one of top 5% hubs
• significant MI with

2000 genes

Total interactions: 56
Pre-known: 22
Ch-IP validated: 11/12

Ch-IP

other info



Also validated in…
 Other hubs
 Various yeast data sets
 RBC metabolic network

 

~80% precision
20-80% recall (depending on N)



3rd order interactions
(modulated, conditional)

1

2

3

4

5

6
Nontranscriptional modulators!



Computational constraint:
large modulators/hubs only

2

3

5

64

1
modulator

hub



3rd order interactions
 Focus on important hubs (c-MYC)
 Pre-filter candidate modulators by dynamic

range and other conditions.
 Find modulators whose expression inflicts

large changes on hubs’ interactions
 No guarantee of irreducibility
 Validate in GO w.r.t. to transcription factors

and kinases among modulators



c-MYC modulators
 1117 candidate modulators (825 with known

molecular function in GO)
 82 (69) candidate modulators identified
 Kinases: 10/69 (backgr. 42/825), p=1e-3
 TFs: 15/69 (backgr. 56/825), p=1e-6; binding

signature for co-TFs (E2F5, MEF2B) found.
 Total: 25/69 (backgr. 98/825),  p=3e-8
 Other modulators: ubiquitin conjugating enzyme,

mRNA stability, DNA/chromatin modification, known
protein-protein target.



Many correlated modulators

Over 70% cluster overlap

|expression| change in interactions



Reducibility:
modulating pathways

LYN FYNHCK

BTK BLNK

AKT

GSK3

SYKIgα
Igβ

CD22 BCR

PLCγ

PKC

DAG IP3

Ca2+

ERK MAPKJNK
IKK

IκB
NFAT

NF-κB

MYC

predicted modulators

not in the candidate list

TF’s not predicted

Targets

Protein complex



Currently
 Biochemical validation
 Search for irreducible modulators



Summary
 IT quantities better measures of dependency
 Problem: estimation. Solutions: NSB (“don’t know” about

entropies), stability of ranks
 Application: analysis of neural code at high resolution. Found:

timing code, synergy, redundancy removal, photon counting --
optimality?

 Problems: what is an irreducible interaction? Algorithms with
controlled approximations? Solutions: MaxEnt approximations,
ARACNE, conditional ARACNE

 Application: B-cells microarrays analysis. Found: great
performance on synthetic data, c-MYC targets (high precision
validation), c-MYC modulators (to be validated, many confirmed
by literature)
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