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Gene Regulation at the
Single-Cell Level

Nitzan Rosenfeld,1* Jonathan W. Young,3 Uri Alon,1

Peter S. Swain,2* Michael B. Elowitz3.

The quantitative relation between transcription factor concentrations and the
rate of protein production from downstream genes is central to the function
of genetic networks. Here we show that this relation, which we call the gene
regulation function (GRF), fluctuates dynamically in individual living cells,
thereby limiting the accuracy with which transcriptional genetic circuits can
transfer signals. Using fluorescent reporter genes and fusion proteins, we
characterized the bacteriophage lambda promoter PR in Escherichia coli. A
novel technique based on binomial errors in protein partitioning enabled
calibration of in vivo biochemical parameters in molecular units. We found
that protein production rates fluctuate over a time scale of about one cell
cycle, while intrinsic noise decays rapidly. Thus, biochemical parameters,
noise, and slowly varying cellular states together determine the effective
single-cell GRF. These results can form a basis for quantitative modeling of
natural gene circuits and for design of synthetic ones.

The operation of transcriptional genetic cir-

cuits (1–5) is based on the control of pro-

moters by transcription factors. The GRF is

the relation between the concentration of

active transcription factors in a cell and the

rate at which their downstream gene products

are produced (expressed) through transcrip-

tion and translation. The GRF is typically

represented as a continuous graph, with the

active transcription factor concentration on

the x axis and the rate of production of its

target gene on the y axis (Fig. 1A). The shape

of this function, e.g., the characteristic level of

repressor that induces a given response, and

the sharpness, or nonlinearity, of this response

(1) determine key features of cellular behavior

such as lysogeny switching (2), developmen-

tal cell-fate decisions (6), and oscillation (7).

Its properties are also crucial for the design

of synthetic genetic networks (7–11). Cur-

rent models estimate GRFs from in vitro

data (12, 13). However, biochemical parame-

ters are generally unknown in vivo and could

depend on the environment (12) or cell history

(14, 15). Moreover, gene regulation may vary

from cell to cell or over time. Three funda-

mental aspects of the GRF specify the behav-

ior of transcriptional circuits at the single-cell

level: its mean shape (averaged over many

cells), the typical deviation from this mean,

and the time scale over which such fluctua-

tions persist. Although fast fluctuations should

average out quickly, slow ones may introduce

errors in the operation of genetic circuits and

may pose a fundamental limit on their ac-

curacy. In order to address all three aspects, it

is necessary to observe gene regulation in in-

dividual cells over time.

Therefore, we built Bl-cascade[ strains of

Escherichia coli, containing the l repressor

and a downstream gene, such that both the

amount of the repressor protein and the rate

of expression of its target gene could be

monitored simultaneously in individual cells

(Fig. 1B). These strains incorporate a yellow

fluorescent repressor fusion protein (cI-yfp)

and a chromosomally integrated target pro-

moter (P
R
) controlling cyan fluorescent pro-

tein (cfp). In order to systematically vary

repressor concentration over its functional

range (in logarithmic steps), we devised a

Bregulator dilution[ method. Repressor pro-

duction is switched off in a growing cell, so

that its concentration subsequently decreases

by dilution as the cell divides and grows into

a microcolony (Fig. 1C). We used fluores-

cence time-lapse microscopy (Fig. 1D; fig.

S1 and movies S1 and S2) and computational

image analysis to reconstruct the lineage tree

(family tree) of descent and sibling relations

among the cells in each microcolony (fig.
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Fig. 1. Measuring a
gene regulation func-
tion (GRF) in individual
E. coli cell lineages. (A)
The GRF is the depen-
dence of the produc-
tion rate of a target
promoter ( y axis) on
the concentration of
one (or more) tran-
scription factors (x ax-
is). (B) In the l-cascade
strains (16) of E. coli,
CI-YFP is expressed
from a tetracycline
promoter in a TetRþ
background and can
be induced by anhydro-
tetracycline (aTc). CI-
YFP represses produc-
tion of CFP from the PR
promoter. (C) The reg-
ulator dilution experi-
ment (schematic): Cells are transiently induced to express CI-YFP and then
observed in time-lapse microscopy as repressor dilutes out during cell growth
(red line). When CI-YFP levels decrease sufficiently, expression of the cfp target
gene begins (green line). (D) Snapshots of a typical regulator dilution

experiment using the OR2*–l-cascade strain (see fig. S3) (16). CI-YFP protein
is shown in red and CFP is shown in green. Times, in minutes, are indicated on
snapshots. (Insets) Selected cell lineage (outlined in white). Greater time
resolution is provided in fig. S1.
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S2). For each cell lineage, we quantified over

time the level of repressor (x axis of the

GRF) and the total amount of CFP protein

(Fig. 2A). From the change in CFP over time,

we calculated its rate of production (y axis of

the GRF) (16).

Regulator dilution also provides a natural

in vivo calibration of individual protein fluo-

rescence. Using the lineage tree and fluores-

cence data, we analyzed sister cell pairs just

after division (Fig. 2B). The partitioning of

CI-YFP fluorescence to daughter cells obeyed

a binomial distribution, consistent with an

equal probability of having each fluorescent

protein molecule go to either daughter (16).

Consequently, the root-mean-square error in

CI-YFP partitioning between daughters

increases as the square root of their total CI-

YFP fluorescence. Using a one-parameter fit,

we estimated the fluorescence signal of

individual CI-YFP molecules (Fig. 2B and

supporting online material). Thus, despite

cellular autofluorescence that prohibits detec-

tion of individual CI-YFP molecules, obser-

vation of partitioning errors still permits

calibration in terms of apparent numbers of

molecules per cell.

The mean GRFs obtained by these tech-

niques are shown in Fig. 3A for the P
R

pro-

moter and a point mutant variant (fig. S3).

These are the mean functions, obtained by

averaging individual data points (Fig. 3B) in

bins of similar repressor concentration, indi-

cating the average protein production rate at a

given repressor concentration. Their coopera-

tive nature would have been Bsmeared out[ by

population averages (6, 17, 18).

These mean GRF data provide in vivo

values of the biochemical parameters under-

lying transcriptional regulation. Hill func-

tions of the form f(R) 0 b/E1 þ (R/k
d
)n^ are

often used to represent unknown regulation

functions (1, 6–10). Here, k
d

is the con-

centration of repressor yielding half-maximal

expression, n indicates the degree of effective

cooperativity in repression, and b is the maxi-

mal production rate. Hill functions indeed fit

the data well (Fig. 3A and Table 1). The mea-

sured in vivo k
d

is comparable to previous

estimates (2, 12, 13, 19) (see supporting online

text). The significant cooperativity observed

(n 9 1) may result from dimerization of repres-

sor molecules and cooperative interactions

between repressors bound at neighboring sites

(2, 12, 13, 19, 20). A point mutation in the

O
R
2 operator, O

R
2* (20) (fig. S3), significant-

ly reduced n and increased k
d

(Fig. 3A and

Table 1). Note that with similar methods it is

even possible to measure effective coopera-

tivity (n) for native repressors without fluores-

cent protein fusions (16).

We next addressed deviations from the

mean GRF. At a given repressor concentra-

tion, the standard deviation of production

rates is È55% of the mean GRF value. Such

variation may arise from microenvironmen-

tal differences (21), cell cycle–dependent

changes in gene copy number, and various

sources of noise in gene expression and other

cellular processes (22). We compared micro-

colonies in which induction occurs at differ-

ent cell densities (16). The results suggested

that the measured GRF is robust to possible

differences among the growth environments

in our experiments (fig. S6). We analyzed

the effect of gene copy number, which varies

twofold over the cell cycle as DNA repli-

cates. The CFP production rate correlated

strongly with cell-cycle phase; cells about to

divide produced on average twice as much

protein per unit of time as newly divided

cells (16). Thus, gene dosage is not com-

pensated. Nevertheless, after normalizing pro-

duction rates to the average cell-cycle phase

(16), substantial variation still remains in the

production rates, and their standard devia-

tion is È40% of the mean GRF (Fig. 3). The

deviations from the mean GRF show a log-

normal distribution (see supporting online text

and fig. S5).

These remaining fluctuations may arise

from processes intrinsic or extrinsic to gene

expression. Intrinsic noise results from sto-

chasticity in the biochemical reactions at an

individual gene and would cause identical

copies of a gene to express at different levels.

It can be measured by comparing expression

of two identically regulated fluorescent pro-

teins (22). Extrinsic noise is the additional

variation originating from fluctuations in

cellular components such as metabolites,

ribosomes, and polymerases and has a global

effect (22, 23). Extrinsic noise is often the

dominant source of variation in E. coli and

Saccharomyces cerevisiae (22, 24).

To test whether fluctuations were of intrin-

sic or extrinsic origin, we used a Bsymmetric

branch[ strain (16) that produced CFP and

YFP from an identical pair of P
R

promoters

(Fig. 4D, movie S3). The difference between

CFP and YFP production rates in these cells

indicates È20% intrinsic noise in protein

production Eaveraged over 8- to 9-min in-

tervals (16)^, suggesting that the extrinsic

component of noise is dominant and con-

tributes a variation in protein production

rates of È35%.

Our measurements provide more detailed

analysis of extrinsic noise in two ways. First,

in previous work (22), extrinsic noise included

fluctuations in upstream cellular components,

including both gene-specific and global fac-

tors. Here, we quantify the extrinsic noise at

known repressor concentration, and so extrin-

sic noise encompasses fluctuations in global

cellular components such as polymerases or

Fig. 2. Data and calibration.
(A) Fluorescence intensities
of individual cells are plotted
over time for the experiment
of Fig. 1D. Red indicates CI-
YFP, which is plotted on a log-
arithmic y axis to highlight its
exponential dilution: As CI-YFP
is not produced, each division
event causes a reduction of
about twofold in total CI-YFP
fluorescence. Green indicates
CFP, which is plotted on a
linear y axis to emphasize its
increasing slope, showing that
CFP production rate increases
as the CI-YFP levels decrease.
A selected cell lineage is high-
lighted (also outlined in Fig.
1D). (B) Analysis of binomial errors in protein partitioning to find vy, the
apparent fluorescence intensity of one independently segregating fluores-
cent particle (16). Cells containing Ntot copies of a fluorescent particle
(total fluorescence Ytot 0 vy I Ntot) undergo division (inset). If each
particle segregates independently, N1 and N2, the number of copies
received by the two daughter cells, are distributed binomially, and satisfy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1j N2

2

� �2
D Er

0
ffiffiffiffiffiffiffiffi
Ntot

p
=2. A single-parameter fit thus determines the value of

vy. Here we plot kN1 – N2k=2 (in numbers of apparent molecule dimers) versus
Ntot 0 N1 þ N2. Blue dots show the scatter of individual division events. Crosses
(red) show the root-mean-square (RMS) error in protein partitioning and its
standard error. The expected binomial standard deviation is shown in black.
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ribosomes but not in the concentration of the

repressor, CI. Second, dynamic observations

permit us to measure extrinsic noise in the

rate of protein expression rather than in the

amount of accumulated protein. The present

breakdown should be more useful for model-

ing and design of genetic networks.

In cells, fast and slow fluctuations can

affect the operation of genetic networks in dif-

ferent ways. Previous experiments (22, 24–26)

used static Bsnapshots[ to quantify noise at

steady state and were thus unable to access

the temporal dynamics of gene expression.

However, a similar steady-state distribution

of expression levels can be reached by

fluctuations on very different time scales

(Fig. 4). Fluctuations can be characterized by

their autocorrelation time, t
corr

(16). The

magnitude of t
corr

compared with the cell-

cycle period is crucial: Fluctuations longer

than the cell cycle accumulate to produce

significant effects, whereas more rapid fluc-

tuations may Baverage out[ as cellular

circuits operate (27, 28). In these data, three

types of dynamics are observed (Fig. 4, A to

C): Fast fluctuations, periodic cell-cycle

oscillations due to DNA replication, and

aperiodic fluctuations with a time scale of

about one cell cycle.

We found that the trajectories of single-

cell lineages departed substantially from the

mean GRF over relatively long periods (Fig.

3B), with t
corr

0 40 T 10 min (Fig. 4E). This

value is close to the cell cycle period, t
cc

0
45 T 10 min, indicating that, overall,

fluctuations typically persist for one cell

cycle. Therefore, if a cell produces CFP at a

faster rate than the mean GRF, this over-

expression will likely continue for roughly

one cell cycle, and CFP levels will accumu-

late to higher concentrations than the mean

GRF would predict.

Fig. 3. The GRF and its
fluctuations. (A) The mean
regulation function of the
wild-type l-phage PR pro-
moter (blue squares) and its
OR2-mutated variant (OR2*,
orange circles) are plotted
with their respective standard
deviations (dashed/dotted
lines). Hill function approxi-
mations (using parameters
from Table 1) are shown
(solid lines). (B) Variation in
the OR2* GRF. Individual
points indicate the instanta-
neous production rate of CFP,
as a function of the amount
of CI-YFP in the same cell, for
all cells in a microcolony of
the OR2*–l-cascade strain. The time courses of selected lineages in this
microcolony are drawn on top of the data, showing slow fluctuations
around the mean GRF. CI-YFP concentration decreases with time, and

consecutive data points along a trajectory are at 9-min intervals. Typical
measurement errors (black crosses) are shown for a few points. Data are
compensated for cell cycle–related effects (16).
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Table 1. In vivo values of effective biochemical
parameters. Molecular units are estimated using
binomial errors in protein partitioning (16) (Fig.
2B), which may have systematic errors up to a
factor È2. Concentrations are calculated from
apparent molecule numbers divided by cell vol-
umes estimated from cell images (16), with an
average volume of 1.5 T 0.5 mm3 (for which 1 nM 0
0.9 molecule/cell).

Parameter PR PR (OR2*)

n (degree of
cooperativity
in repression)

2.4 T 0.3 1.7 T 0.3

kd [concentration of
repressor yielding
half-maximal
expression (nM)]

55 T 10 120 T 25

b [unrepressed production
rate (molecules I
cellj1 I minj1)]

220 T 15 255 T 40
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Fig. 4. Fluctuations in gene regulation. (Left) Three types of variability observed here. (A) Fast
fluctuations in CFP production, similar to those produced by intrinsic noise. (B) Periodic, cell cycle–
dependent oscillations in CFP production, which can result from DNA replication. (C) Slow
aperiodic fluctuations, such as extrinsic fluctuations in gene expression. (D) Intrinsic and extrinsic
noise can be discriminated using a symmetric-branch strain (16) of E. coli, containing identical,
chromosomally integrated l-phage PR promoters controlling cfp and yfp genes. The strain also
expresses nonfluorescent CI-YFP from a Tet-regulated promoter. (E) The autocorrelation function
of the relative production rates in the l-cascade strains (blue squares) shows that the time scale
for fluctuations in protein production is tcorr È 40 min (blue). The difference between production
rates of YFP and CFP in the symmetric branch strain has a correlation time of tintrinsic G 10 min
(red). The data and correlations presented are corrected for cell cycle–related effects (16).
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In contrast, the autocorrelation of the

intrinsic noise (16) decays rapidly: t
intrinsic

G
10 min ¡ t

corr
(Fig. 4E). Thus, the observed

slow fluctuations do not result from intrinsic

noise; they represent noise extrinsic to CFP

expression (see supporting online text). The

concentration of a stable cellular factor would

be expected to fluctuate with a time scale of

the cell cycle period (7, 10). For instance,

even though intrinsic fluctuations in produc-

tion rates are fast, the difference between the

total amounts of YFP and CFP in the

symmetric branch experiments has an auto-

correlation time of t
total

0 45 T 5 min (16). A

similar time scale may well apply to other

stable cellular components such as ribosomes,

metabolic apparatus, and sigma factors. As

such components affect their own expression

as well as that of our test genes, extrinsic

noise may be self-perpetuating.

These data indicate that the single-cell

GRF cannot be represented by a single-valued

function. Slow extrinsic fluctuations give the

cell and the genetic circuits it comprises a

memory, or individuality (29), lasting roughly

one cell cycle. These fluctuations are sub-

stantial in amplitude and slow in time scale.

They present difficulty for modeling genetic

circuits and, potentially, for the cell itself: In

order to accurately process an intracellular

signal, a cell would have to average its

response for well over a cell cycle—a long

time in many biological situations. This

problem is not due to intrinsic noise in the

output, noise that fluctuates rapidly, but rather

to the aggregate effect of fluctuations in other

cellular components. There is thus a funda-

mental tradeoff between accuracy and speed

in purely transcriptional responses. Accurate

cellular responses on faster time scales are

likely to require feedback from their output

(1, 4, 6, 10, 30). These data provide an

integrated, quantitative characterization of a

genetic element at the single-cell level: its

biochemical parameters, together with the

amplitude and time scale of its fluctuations.

Such systems-level specifications are neces-

sary both for modeling natural genetic circuits

and for building synthetic ones. The methods

introduced here can be generalized to more

complex genetic networks, as well as to

eukaryotic organisms (18).
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Noise Propagation in
Gene Networks

Juan M. Pedraza and Alexander van Oudenaarden*

Accurately predicting noise propagation in gene networks is crucial for
understanding signal fidelity in natural networks and designing noise-tolerant
gene circuits. To quantify how noise propagates through gene networks, we
measured expression correlations between genes in single cells. We found that
noise in a gene was determined by its intrinsic fluctuations, transmitted noise
from upstream genes, and global noise affecting all genes. A model was
developed that explains the complex behavior exhibited by the correlations and
reveals the dominant noise sources. The model successfully predicts the
correlations as the network is systematically perturbed. This approach provides
a step toward understanding and manipulating noise propagation in more
complex gene networks.

The genetic program of a living cell is de-

termined by a complex web of gene networks.

The proper execution of this program relies on

faithful signal propagation from one gene to

the next. This process may be hindered by

stochastic fluctuations arising from gene ex-

pression, because some of the components in

these circuits are present at low numbers, which

makes fluctuations in concentrations un-

avoidable (1). Additionally, reaction rates can

fluctuate because of stochastic variation in the

global pool of housekeeping genes or because

of fluctuations in environmental conditions that

affect all genes. For example, fluctuations in

the number of available polymerases or in any

factor that alters the cell growth rate will

change the reaction rates for all genes. Recent

experimental studies (2–5) have made sub-

stantial progress identifying the factors that

determine the fluctuations in the expression of

a single gene. However, how expression fluc-

tuations propagate from one gene to the next

is largely unknown. To address this issue, we

designed a gene network (Fig. 1A) in which

the interactions between adjacent genes could

be externally controlled and quantified at the

single-cell level.

This synthetic network (6) consisted of

four genes, of which three were monitored in

single Escherichia coli cells by cyan, yellow,

and red fluorescent proteins (CFP, YFP, and

RFP). The first gene, lacI, is constitutively

transcribed and codes for the lactose repres-

sor, which down-regulates the transcription of

the second gene, tetR, that is bicistronically

transcribed with cfp. The gene product of

tetR, the tetracycline repressor, in turn down-

regulates the transcription of the third gene,

reported by YFP. The fourth gene, rfp, is under
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