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ABSTRACT

We present a step towards the metabolome-wide computational inference of cellular met-
abolic reaction networks from metabolic profiling data, such as mass spectrometry. The
reconstruction is based on identification of irreducible statistical interactions among the
metabolite activities using the ARACNE reverse-engineering algorithm and on constraining
possible metabolic transformations to satisfy the conservation of mass. The resulting algo-
rithms are validated on synthetic data from an abridged computational model of Escherichia
coli metabolism. Precision rates upwards of 50% are routinely observed for identification of
full metabolic reactions, and recalls upwards of 20% are also seen.
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1. INTRODUCTION

Prior to the widespread availability of annotated metabolic databases, metabolic network

reconstruction was carried out primarily with biochemical assays of enzymatic activity (Schuster et al.,

1999; Francke et al., 2005; Karp et al., 2002) resulting in a pathway-centric depiction of chemical reactions

occurring in a cell. For some organisms, it has been possible to assemble these data into genome-wide

metabolic networks by means of various Metabolic Flux Analysis (MFA) techniques (Schilling et al., 2000;

Kauffman et al., 2003; Förster et al., 2003; Bonarius et al., 1997; Edwards and Palsson, 2000; Edwards et al.,

2001). Now, recent developments in the burgeoning field of metabolic profiling (Steinhauser and Kopka,

2007; Trethewey et al., 1999; Saghatelian et al., 2004) and especially mass-spectrometry metabolomics

(Enders et al., 2010; Rabinowitz, 2007; De Vos et al., 2007; Bennett et al., 2009; Ideker et al., 2001), which

aims at high-throughput, real-time characterization of the entire cellular metabolic state, have opened up yet

another way of approaching the metabolic network reconstruction problem, focusing on statistical interac-

tions among metabolites. This parallels the transition that had happened in the analysis of transcriptional

regulatory networks with the advent of gene expression profiling (Friedman, 2004; Margolin et al., 2006a,b;

Faith et al., 2007; Bansai et al., 2007; Ideker et al., 2001), which similarly characterizes the genome-wide

transcriptional state of the cell.

Specifically, distinct cellular phenotypes, phases of the cell cycle, or intrinsic and extrinsic perturbations

result in changes in cellular metabolite concentrations. However, even with such changes, concentrations of
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metabolites that transform into each other should stay correlated, and the observed dependencies can be

used to predict metabolic reactions computationally even if the identities of the metabolites are unknown,

preventing the application of MFA methods. We attempted this approach (Nemenman et al., 2007) using

the ARACNE statistical reverse engineering method, first developed in the context of inferring tran-

scriptional networks from mRNA expression profiles (Margolin et al., 2006a,b; Basso et al., 2005).

However, mass-spectrometry methods provide a wealth of information about the metabolites in addition to

their abundances: MS-MS methods and isotopic labeling (Enders et al., 2010; Rabinowitz, 2007; De Vos et

al., 2007; Bennett et al., 2009; Ishi, 2007) can recover the molecular structure, and, especially crucial for

this article, masses of metabolites are typically measured to the accuracy of 10�4 … 10�5. Since mass must

be conserved in any metabolic transformation, this information presents an additional source of data for

reverse engineering methods that has not been widely used. Namely, a statistical dependence among

metabolites can indicate an actual metabolic transformation only if the putative chemical reaction con-

structed from these metabolites conserves mass. This rule can be applied even when identities of metab-

olites are unknown, and therefore, it is especially useful for high-throughput global metabolic profiling

where spectral peaks cannot necessarily be identified.

In this article, we present a Mass-Constrained adaptation of the ARACNE algorithm, ARACNE-MC, which

should be considered as a first foray into the field, laying the foundation for future studies. Note that, in the case of

metabolism, we are not content with knowing just the statistical dependencies among the metabolites, even if

they correspond to bona-fide metabolic transformations. Instead we aim at a substantially more complicated task

of reconstructing complete metabolic reactions, identifying all of their substrates and products.

We test the algorithm on reduced toy models of the Escherichia coli metabolome with in silico simulated

metabolic profiles. Applications to real-world biological problems will have to wait for larger experimental

datasets.

2. RESULTS

2.1. Outlines of the algorithms

2.1.1. The ARACNE algorithm. The basis of the reverse engineering approach we undertake is the

notion that molecular species that participate in biochemical reactions have statistically dependent ex-

pressions (Nemenman et al., 2007). Within the ARACNE framework (Margolin et al., 2006a,b; Basso

et al., 2005), one views metabolite expressions as random variables sampled from stationary probability

distributions. This randomness accounts for effects of unknown states of unobserved metabolites and other

chemical species and of the experimental noise. Chemical transformations correspond to nonzero multi-

variate statistical dependencies among metabolite concentrations (Margolin et al., 2010). In particular, the

relevant measure of statistical dependency between two variables (c1,c2) is their mutual information (MI),

which is defined as in Cover and Thomas (1991)

I[c1; c2]¼ log2

P(c1, c2)

P(c1)P(c2)

� �
P(c1, c2)

, (1)

where P(c1, c2) denotes their joint probability distribution, P(ci) are the marginal probability distributions,

and h. . .iP is the average over the distribution P.

The MI is generally nonzero for bona fide interacting metabolites, but it may also be nonzero for

chemicals that are connected through an intermediate and do not transform into each other directly. In fact,

such false positives are generally a bigger problem than false negatives (i.e., missing a true interaction) in

computational networks reverse engineering: false positives are plentiful and lower the confidence in the

validity of every specific prediction.

The ARACNE algorithm (Margolin et al., 2006a,b; Basso et al., 2005) eliminates some of the false

positives by using the data processing inequality (DPI) (Cover and Thomas, 1991) to isolate statistical

interactions that have the highest chance of corresponding to true biological transformations. Specifically,

under certain assumptions that are often applicable in transcriptional (Margolin et al., 2005) and metabolic

(Nemenman et al., 2007) contexts, if

I[c1; c3] � min (I[c1; c2], I[c2; c3]); (2)
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then the c1$ c3 interaction is indirect. Hence, ARACNE starts with a fully connected graph of the

measured chemical species as putative interaction partners, compares MIs for every triplet of chemical

species in the dataset, and removes the weakest pairwise interaction in every such triplet from further

consideration (for details of the protocol, cf. Margolin et al., 2005). Practical complications in the appli-

cation of ARACNE revolve around accurate, unbiased estimation of MI and of the threshold (5–15% for

typical applications) above which a difference between two MI values becomes significant for the DPI

application (Margolin et al., 2006a,b). Though developed for reverse engineering transcriptional networks,

ARACNE has also been validated in the context of synthetic metabolic networks (Nemenman et al., 2007).

2.1.2. The ARACNE-MC algorithm. As we have emphasized, mass-spectrometry provides addi-

tional information about the metabolic state of a cell, namely, masses of the metabolites. This creates extra

means for eliminating false positive metabolic transformations beyond those tried in Nemenman et al.

(2007): even if statistical dependencies suggest an interaction, the implied putative chemical reaction may

not conserve mass and hence be impossible. To use this additional constraint, we propose the ARACNE-

MC algorithm (MC stands for Mass Constrained). Like the original ARACNE, ARACNE-MC aims at

reducing false positives, potentially at the cost of increasing the false negatives.

For a list of metabolites ma with masses ma and metabolic activities in i0th spectrometer run cai, we start

by building a list of putative metabolic reactions allowed by mass conservation, focusing on a limited set of

template reactions that are allowed in the analysis. In this article, we consider only three templates (a) 1 · 1,

ll1
$ lr2

; (b) 1 · 2, ll1
$ lr1

þ lr2
; and (c) 2 · 2, ll1

þ ll2
$ lr1

þ lr2
(indexes l and r stand for left and

right, respectively). See Figure 1 for example reactions of each template. Eliminating more complicated

reactions from consideration will result in the elimination of bona fide statistical interactions, and hence in

extra false negatives, which we accept. We build a list of all putative reactions that fall into the allowed

template classes and satisfy the mass conservation,
P

mli �
P

mri
j j � e

P
mli , where e is the mass equality

tolerance, set to e¼ 10�4 throughout this article. We refer to such reactions as conforming reactions.

Identifying them has a computational complexity of O(Ma), where a is the maximum number of metab-

olites on either side of the template (2 in this article).

While possible in principle, a conforming reaction may not exist in a real cell due to a multitude of

factors. If present, it should result in statistical dependencies among its reactants and products. There will

be up to one such dependence for a 1 · 1 reaction (two choose two), three for a 1 · 2 reaction (three choose

two), and six for a 2 · 2 reaction (four choose two). Therefore, we prune the list of conforming reactions by

identifying those that are supported by statistical dependencies. To do so, we apply ARACNE to metabolite

activity profiles, cai. Specifically, we estimate the pairwise MIs I[ca, cb] using the algorithms of Margolin

et al. (2006a,b) and then apply the DPI to the list of MIs to select the interactions that have the highest

chance of being direct. Then the conforming reactions are ranked by how many of their pairwise member

metabolite interactions are identified as direct by ARACNE. We expect that reactions that are conforming

FIG. 1. Examples of three types

of metabolic reactions included in

the synthetic network and generated

by the mass constraints algorithm.

Type 1 reactions are termed two-

by-two reactions, Type 2a and 2b

reactions are termed one-by-two

reactions, and Type 3 reactions are

termed one-by-one reactions. Che-

mical structures from KEGG are

provided for illustration.

INFERENCE OF METABOLIC NETWORKS 149



and supported statistically will have a high chance to be bona fide metabolic reactions. The ARACNE-MC1

algorithm thus requires selection of the threshold for the number of ARACNE-supported metabolite pairwise

interactions, and identifies all of the conforming reactions passing the threshold as putative reactions.

We notice that the same metabolic statistical interaction may be a part of multiple reactions. One

‘‘strong’’ reaction may be responsible for much of the MI associated with a particular link, and thus for the

corresponding interaction surviving the ARACNE DPI application. However, ARACNE-MC1 would count

this interaction in support of every conforming reaction to which it belongs. To avoid this multiple

counting, we sort all conforming reactions by their ‘‘strength’’ as measured by the cumulative mutual

information in all of its interactions. We then ensure that an interaction is counted as supporting only the

strongest of its associated reactions; this is the ARACNE-MC2 algorithm.

Flowcharts of both algorithms are illustrated in Figure 2. The algorithms, implemented in MATLAB,

are available at http://menem.com/*ilya/wiki/index.php/Bandaru_et_al.,_2011. The performance of the

algorithms will depend on a variety of choices, such as the DPI and mass comparison tolerances, MI

estimation parameters, or thresholds for the number of interaction supports needed to proclaim a reaction as

existing. Some of these choices are explored later in the article. For others, which we believe may differ

dramatically for synthetic and for experimental data, we leave the detailed analysis to future publications.

2.2. Synthetic tests of ARACNE-MC

2.2.1. Data generation and performance metrics. To validate performance of ARACNE-MC, we

used the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Ogata et al., 1999) to create synthetic

metabolic networks, which then served as a source of simulated data for tests. KEGG provides a detailed

description of metabolites and reactions found in the metabolic pathways of various model organisms.

The entirety of the metabolic pathways of Escherichia coli were downloaded and pruned to include only

mass-balanced reactions of the three types shown in Figure 1. Two different synthetic networks were

FIG. 2. Flowchart of the

ARACNE-MC algorithm.
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constructed to test the performance of ARACNE-MC on metabolic networks of different sizes: a small

network, containing 86 unique metabolites and 50 metabolic reactions, and a large network with 218

metabolites and 136 reactions. Detailed specifications of the networks are available at http://menem.com/

*ilya/wiki/index.php/Bandaru_et_al.,_2011.

Since a majority of kinetic rates are unknown in KEGG, for each of the reactions we randomly generated

forward and backward rates, with the forward to backward ratio being, on average, a hundred. We used the

open-source COPASI software (Hoops et al., 2006) to simulate the dynamics of the network multiple times,

perturbing the kinetic rates each time by a random multiplicative factor with a standard deviation of 15%.

This is similar to the approach in Margolin et al. (2006a,b) and is supposed to represent changes to the rates

due to different extracellular environments and phenotypic and metabolic states of the cells. Each simu-

lation started with equal metabolite concentrations of 1 mM and was run to a steady state. One thousand

steady states were simulated this way and used as synthetic metabolic profiles for input to ARACNE-MC.

To measure the algorithm performance, we choose the metrics of precision and recall. Precision,

p¼NTP=(NTPþNFP), measures the fraction of true predictions among all predictions (where indices T, F,

P, and N stand for true, false, positives, and negatives). Precision corresponds to the expected success rate

in the experimental validation of computational predictions. Similarly, recall, q¼NTP=(NTPþNFN), in-

dicates the fraction of all reactions recovered by the algorithm. Precision and recall values of 1 indicate

perfect performance. However, there is generally a tradeoff between the two. We emphasize that all of

these metrics are calculated based on recovery of complete metabolic reactions, rather than simple sta-

tistical correlations among the metabolites, as in Nemenman et al. (2007).

2.2.2. ARACNE-MC performance. We performed two tests to verify that accurate knowledge of

both the metabolite profiles and the mass constraints is necessary for ARACNE-MC1 and 2 performance.

Firstly, we randomized entries in the mass-conforming reactions while leaving the statistical relations

intact. Secondly, we randomized metabolic profiles while preserving the correct mass constraints. In both

cases, ARACNE-MC1 and 2 failed to predict metabolic reactions beyond chance, indicating an equal

reliance on the two types of data (results not shown).

Table 1 details the results from the ARACNE-MC1 algorithm in the reconstruction of the large (218

metabolites) and small (86 metabolites) synthetic networks. Precisions well over 50% with significant

recall rates are seen for many parameter combinations. The results suggest that the ARACNE algorithm is

robust to changes in network size and topology. We emphasize again that, for our performance metrics, all

substrates and products of a reaction must be predicted correctly for the reaction to be counted as correct.

This is a very stringent performance test.

Performance of ARACNE-MC2 is illustrated in Table 2. We see that removing multiple counting of

interactions has an effect of increasing the precision (sometimes to the maximum level of 1) with only a

marginal loss in the recall.

To illustrate the dependence of the ARACNE-MC reconstruction on the DPI tolerance parameter,

Table 1 shows performance of ARACNE-MC1 for the tolerance of 1 (i.e., no DPI applied). While per-

formance is weaker compared to the tolerance of 0, the effect is not dramatic, suggesting weak sensitivity to

Table 1. Performance of ARACNE-MC1 for Different Networks and DPI Tolerances

Template ARACNE interactions TP FP Precision Recall

1·1 1 1/0/15 4/0/11 0.20/0/0.58 0.50/0/0.71

2·1 3 2/7/6 1/8/10 0.67/0.47/0.38 0.11/0.37/0.16

2 6/14/20 2/17/33 0.75/0.45/0.38 0.32/0.74/0.53

2·2 6 0/5/9 0/21/2 0/0.19/0.82 0/0.17/0.12

5 1/10/14 3/31/2 0.25/0.24/0.88 0.03/0.34/0.18

4 4/18/20 6/98/29 0.40/0.16/0.41 0.14/0.62/0.26

3 12/23/48 28/369/355 0.30/0.06/0.12 0.41/0.79/0.62

2 21/28/61 227/969/77 0.08/0.03/0.02 0.72/0.97/0.79

The first value in each cell in the four right columns corresponds to the small network with zero tolerance; the second value is for the

small network with the tolerance of one; and the third value is for the large network. All data is for 1000 simulated metabolic profiles.

When the DPI tolerance is 0, precisions over 80% are possible with recalls in the teens when large ARACNE support for a conforming

reaction is requested, and recall of 25–50% still leaves the precision around 40%.
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the parameters. The specific best value of the parameter will likely depend on the size of the dataset and on

the experimental noise, and will need to be established for each particular application independently as in

Wang et al. (2009).

Finally, a crucial feature of any computational reverse engineering algorithm is the dependence of its

performance on the size of the experimental dataset. We test this for ARACNE-MC2 in Table 3. Speci-

fically, both the precision and the recall degrade gracefully as the data set size decreases from 1000 to 100,

and no meaningful reconstruction is possible when the size becomes comparable to the number of the

analyzed metabolic species. This explains, in particular, why our application of the algorithms to the

existing experimental data set of Ishii et al. (2007), which includes approximately 30 steady-state metabolic

profiles of Escherichia coli and 195 metabolites in each profile, has failed.

3. DISCUSSION

The ARACNE-MC1 and 2 algorithms represent the first computational step towards identification of

metabolic reaction networks from high-throughput mass-spectrometry profile data, armed with detailed

Table 2. Performance of ARACNE-MC2 for the Small and the Large Networks

Template

ARACNE

interactions

Surviving ARACNE

interactions TP FP Precision Recall

1·1 1 N/A 0/0 0/0 0/0 0/0

2·1 3 3 1/3 0/0 1/1 0.5/0.8

2 2/6 0/0 1/1 0.11/0.16

1 2/6 0/0 1/1 0.11/0.16

2 2 1/5 0/0 1/1 0.05/0.13

1 3/12 0/0 1/1 0.16/0.32

2·2 6 6 0/5 0/2 0/0.71 0/0.06

5 0/9 0/2 0/0.82 0/0.12

5 5 0/14 0/2 0/0.88 0/0.28

4 0/14 0/2 0/0.88 0/0.28

3 0/14 0/2 0/0.88 0/0.28

4 4 3/12 7/14 0.43/0.46 0.1/0.16

3 4/19 9/16 0.44/0.54 0.14/0.25

2 4/20 10/18 0.4/0.53 0.14/0.26

3 3 8/21 17/40 0.47/0.34 0.28/0.27

2 10/35 28/62 0.36/0.36 0.35/0.45

1 10/38 34/91 0.29/0.29 0.35/0.49

2 2 10/22 66/178 0.15/0.11 0.34/0.29

1 13/41 113/305 0.12/0.12 0.45/0.53

The first value in each cell in the four right columns corresponds to the small network and the second value corresponds to the large

network. The DPI tolerance for both networks is 0. Note an increase in precision and/or recall for various template and interaction

thresholds.

Table 3. Performance for Selected Template and Interaction Thresholds

from the Large Network Against a Varying Number of Input Metabolic

Profiles Using the ARACNE-MC2 Algorithm

2 · 1/3/2 2 · 2/4/3
Number of

samples Precision Recall Precision Recall

1000 1 0.16 0.54 0.25

500 1 0.13 0.58 0.25

250 1 0.13 0.43 0.19

100 1 0.03 0 0

Generally, precision and recall decrease with fewer input metabolite profiles.
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knowledge of metabolite masses. Performance of the algorithm on synthetic data sets is encouraging,

warranting further development and application to real-life data sets, when available. Selection of optimal

values of many parameters of the algorithm, which we expect to depend on the details of the experimental

data, will need to be performed at that time. Further, depending on the experimental resolution for many

small, common metabolites, additional modifications of ARACNE-MC will need to be considered. In

particular, to reduce the rate of false negatives, frequent interactions among common substrates (ATP,

water, NADP, etc.) can be treated as supported statistically for every conforming reaction.

As implemented now, the algorithm is data-intensive, requiring more metabolic profiles than the number

of considered metabolites. Current absence of such large datasets is the biggest obstacle in application of

the algorithm to real-world problems. However, we expect that ion-mobility mass spectrometry with

nanoliter chemostat cultures (Enders et al., 2010) will be able to provide the necessary amounts of data in

the immediate future.

4. METHODS

4.1. Synthetic networks generation

Synthetic metabolic networks were created from the KEGG database. Using Escherichia coli as a model

system for these synthetic networks, we downloaded mass-balanced reactions randomly, selecting reactions

from the entirety of Escherichia coli metabolic pathways, so that the final analyzed network is represen-

tative of the metabolism of E. coli. A small synthetic network containing 86 unique metabolites and 50

metabolic reactions and a large synthetic network containing 218 metabolites and 136 metabolic reactions

were generated. See the author’s website for detailed descriptions of the metabolites in each network and

their corresponding masses.

4.2. Analysis and simulation parameters

Two main parameters of ARACNE algorithm are the p-value for accepting an MI estimate as nonzero

and the DPI tolerance threshold. For the purposes of this study, the DPI tolerance was varied between 1 (no

DPI application) and 0 (stringent edge elimination), and the p-value threshold was set to the default level of

1e-4. Additionally, the mass comparison relative tolerance was 1e-4.
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