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Abstract Biological information processing networks consist of many components, which
are coupled by an even larger number of complex multivariate interactions. However, analyses
of data sets from fields as diverse as neuroscience, molecular biology, and behavior have
reported that observed statistics of states of some biological networks can be approximated
well by maximum entropy models with only pairwise interactions among the components.
Based on simulations of random Ising spin networks with p-spin (p > 2) interactions, here
we argue that this reduction in complexity can be thought of as a natural property of densely
interacting networks in certain regimes, and not necessarily as a special property of living
systems. By connecting our analysis to the theory of random constraint satisfaction problems,
we suggest a reason for why some biological systems may operate in this regime.

Keywords Collective dynamics · p-spin models · Numerical simulations

1 Introduction

The increased throughput of biological experiments now allows joint measurements of activ-
ities of many basic components underlying collective dynamics in biological systems. Such
multivariate data must be interpreted within models. Within this context, Maximum Entropy
(MaxEnt) models [1] have been some of the most successful. The logic of such models is
that, ultimately, one wants to find an approximation Q(x) to the joint probability distribution
P(x) of the observed multivariate data {xi } = x, i = 1, . . . , N . Unfortunately, for a large
number of components, N , the datasets can never be large enough to estimate P directly
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from data. One may only be able to estimate various expectation values of functions of the
data, 〈 fκ (x)〉P = f̃κ , κ = 1, . . . , K . Then one can search for Q that matches the reliable
estimates. If additionally one requests that Q has no structure beyond that required by the
matching, then this is equivalent to asking for Q with the maximum entropy, subject to the
constraints imposed by the matching,

Q = arg max S(Q) −
∑

κ

λκ

(〈 fκ 〉Q − f̃κ
)
, (1)

where the entropy S is defined as

S(Q) ≡ S(x) = −
∑

x

Q(x) log2 Q(x). (2)

A common special case of this general formulation is when the variables are binary,
which we will denote as xi = σi ∈ {−1, 1}, and the data constrain their various low-order
correlation functions, such as 〈σi 〉 or 〈σiσ j 〉. In this case, the MaxEnt approximation Q is
[2]:

Q(σ ) = 1

Z
exp

⎛

⎝
∑

i

hiσi +
∑

i j

Ji jσiσ j +
∑

i jk

Ki jkσiσ jσk + · · ·
⎞

⎠ . (3)

Here every constrained correlation function gets a term in the exponent, Z is the partition
function, and the Lagrange multipliers hi , Ji j , Ki jk, . . . must be chosen to satisfy the con-
straints. This is generally not an analytically solvable problem, and even numerics are hard
[3–9].

Equation (3) has the form of the Ising spin problem, allowing a wholesale import of intu-
ition from statistical physics to MaxEnt data analysis. Correspondingly, these ideas have been
applied to many biological systems in the last decade [10], starting with neurophysiological
recordings from salamander retina [11]. There N was a few dozen neurons, and σi = ±1
corresponded to the i’th neuron spiking/not spiking at a certain time. A surprising result was
that truncating Eq. (3) at the quadratic order in σi (or, in other words, constraining Q up
to pairwise correlations) provided a good fit to P . We will refer to this finding as pairwise
sufficiency from now on.

The pairwise sufficiency was later found in other neural systems [12–14] (though it is
violated at larger N [15]). It was observed further for natural images [16]; for discrete, yet
non-binary x in sequencing data [17,18]; and for real-valued velocities of birds in flock-
ing experiments [19]. Even for some non-MaxEnt approaches, similar findings were also
reported [20,21]. One can interprete these observations in the context of biological systems
operating in a special regime [22,23]. However, the wide applicability of the findings sug-
gests an alternative: pairwise sufficiency may emerge for a wide class of biological and
non-biological networks generically. Indeed, sparse sampling of variables in experiments is
similar to decimation in statistical physics, and the resulting renormalization group-like flow
may decrease the importance of the higher order couplings [24]. Further, in a perturbative
regime, where fluctuations away from the independence are small, the pairwise sufficiency
also appears [25]. Here we propose one more possibility, arguing that the pairwise sufficiency
arises naturally in strongly coupled multivariate systems.

In what follows, we first introduce the idea in an intuitive toy model, and then develop it
numerically by analyzing randomly generated networks. We show that the pairwise MaxEnt
models approximate such random networks surprisingly well. Further, we explore distribu-
tions of states of these networks and their models, leading to an explanation of the pairwise
sufficiency. Finally, we discuss why diverse biological systems may find themselves in the
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pairwise-sufficient regime, but we leave it for the future to investigate if this mechanism is
responsible for the sufficiency in experimental networks.

2 Results

2.1 Building Intuition: Networks of XORs

For a tractable example of emergence of the pairwise sufficiency, we focus on Boolean gates.
These are the limit of Ising spin networks in the low temperature (strong coupling) regime
[2,26]. For example, σ3 = σ1 OR σ2 can be written as P(σ3|σ2, σ1) = 1

Z exp[J (σ1σ3+σ2σ3+
σ3)] with J → ∞. Indeed, log [P(σ3 = 1|σ1, σ2)/P(σ3 = −1|σ1, σ2)] = 2J (σ1 + σ2 + 1),
which gives the OR truth table, as can be readily verified. If also P(σ1 = ±1) =
P(σ2 ± 1) = 1/2, then 1/4P(σ3|σ2, σ1) = P(σ1, σ2, σ3). Thus the joint probabil-
ity distribution for OR has the pairwise MaxEnt form, Eq. (3). Similarly, for J → ∞,
σ3 = σ1 AND σ2 is equivalent to P(σ1, σ2, σ3) = 1

Z exp[J (σ1σ3 + σ2σ3 − σ3)], or, alter-
natively, log [P(σ3 = 1|σ1, σ2)/P(σ3 = −1|σ1, σ2)] = 2J (σ1 + σ2 − 1). This is again a
pairwise MaxEnt distribution. However, σ3 = σ1 XOR σ2, is equivalent to P(σ1, σ2, σ3) =
1
Z exp(−Kσ1σ2σ3), K → ∞. This is an example of a purely third-order gate, with no
pairwise interactions.

In Fig. 1, we now couple of a few such third-order gates to each other. The spins σ1, σ2, σ3

are connected by an XOR (left column, first row), and there is no simpler equivalent represen-
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Fig. 1 Emergence of pairwise interactions in a network of XOR gates. On the left, we show small networks
of spins σi (grey circles). The spins interact (yellow squares) by means of third order XOR interactions. On
the right, an equivalent network is shown, where some of the XORs get replaced by EQUAL and assignment
operations, which are the second and the first order interactions, respectively (Color figure online)
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tation of the network (right column, first row). We then add the fourth spin, σ4 = σ2 XOR σ3

(left column, second row). However, then σ4 = σ1. This can be represented as an effective
model P(σ4|σ1, . . . , σ3) = P(σ4|σ1) = 1

Z exp(Jσ1σ4), J = K → ∞. Thus the third order
XOR interaction is equivalent to a pairwise EQUAL interaction (right column, second row).
The latter is effective and nonlocal, in the sense that σ4 is coupled to σ1, with which it does
not interact in the original construction. Note that this equivalence is true only for the zero
temperature, deterministic case (J = K → ∞). For nonzero temperature, probabilities of
excited states are not equal in the models on the left and on the right. For example, the state
σ = {+1,+1,+1,+1} has the probability e−2K /Z for the model on the left, and 1/Z for
the model on the right. Similarly, the state σ = {−1,+1,−1,+1} has the probabilities 1/Z
and e−2K /Z , respectively.

We further add σ5 = σ2 XOR σ4 (third row), and this is equivalent to an effective model
σ5 = σ3. In short, of the three third order interactions, each constraining one spin and
hence “carrying” 1 bit of information, two can be represented without any error as pair-
wise interactions. Now this deterministic network can exist in four distinct global states
out of 25 = 32, determined by σ1,2 = ±1 (namely, σ (1) = {−1,−1,−1,−1,−1},
σ (2) = {−1,+1,+1,−1,+1}, σ (3) = {+1,−1,+1,+1,+1}, and σ (4) = {+1,+1,−1,

+1,−1}). Thus it is far from the perturbative regime of Ref. [25]. We can grow the network
further so that each new spin is coupled by a third order interaction to two existing spins.
Then the number of spins, N , and the number of interactions, M , are related as N = M + 2,
and all but one third order interaction can be represented as a second order one. In other
words, a fully pairwise model of such deterministic networks has a relative error of only
1/(N − 2) when accounting for the statistics of the network states, even if the network was
originally constructed with third order gates only.

Alternatively, we can add more XORs without adding new nodes. This may be incon-
sistent or redundant with already existing couplings. Or in a case such as σ1 = σ2 XOR σ4

(fourth row), this sets σ2 = −1 (thus adding the bias, or the first order term), and all other
spins are equal to each other, so that the pairwise effective model is exact. Finally, adding
σ3 = σ4 XOR σ5 sets every spin to -1, and makes even the first-order model exact (bottom
row).

We see that networks of deterministic XORs can exhibit the pairwise sufficiency non-
perturbatively for their ground states because of emergence of chains of effective pairwise
interactions. Formation of such chains and singleton frozen spins, see e. g., Fig. 1 (third row),
has been explored previously in hSAT and related Boolean (deterministic gates) problems,
under the names of hyperloops, backbone, total constraining, and freezing [27,28]. However,
the relation between hyperloop formation and pairwise sufficiency has not been explicitly
articulated. Formation of hyperloops is a generic phenomenon in such networks when the
density of constraints (gates) is high. Of course, more realistic physical or biological systems
are non-deterministic (J, K < ∞), and these arguments do not immediately apply. How-
ever, the examples above and the previous work for the deterministic case [27,28] give hope.
Indeed, one may expect effective pairwise models to approximate more complex networks
well when nodes in the network interact strongly and densely, and the space of network states
is sufficiently constrained. In such cases, even for networks with J, K < ∞, there might be
many pairs of nodes that are relatively strongly correlated simply by chance, thus forming
a nondeterministic equivalent of a hyperloop. This would still allow replacement of higher
order interactions with pairwise ones. In what follows, we will develop this intuition further
using numerical studies.
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2.2 Pairwise Approximations to Random Networks with Higher Order
Interactions

To verify our intuition, we proceed by generating random networks that have only higher order
nondeterministic interactions among spins (p-spin models, p > 2 [29]). We then quantify the
accuracy with which lower order MaxEnt models approximate these networks. We explore
networks with p = 3, 4 to ensure that our findings do not depend on the exact structure of
the true higher order interactions. Further, systems with only fourth order couplings have the
Z2 symmetry, and thus cannot include any first order terms in their MaxEnt approximations,
Eq. (3). Studying them will allow us to understand if the eventual freezing to a single well-
defined state, as in the last row of Fig. 1, is crucial for the pairwise sufficiency, or if it emerges
even for nonperturbative networks with more than one highly probable state.

To generate the random networks, we first specify N , the number of nodes, and M the
number of interactions. Then for each interaction μ = 1, . . . , M , we generate its coupling
constant Kμ from a zero-mean Gaussian distribution with a certain variance s2. We then
choose three or four spins at random to couple. The overall probability of states for these
networks is

P3(σ ) = 1

Z
exp

⎛

⎝
M∑

μ=1

Kμσμ1σμ2σμ3

⎞

⎠ , 3-spin model, (4)

P4(σ ) = 1

Z
exp

⎛

⎝
M∑

μ=1

Kμσμ1σμ2σμ3σμ3σμ4

⎞

⎠ , 4-spin model, (5)

where μ1 < μ2 < μ3 < μ4, so that the spins do not self-interact. To specify these distribu-
tions (and later calculate various errors of approximations), we need to know Z . To decouple
studying the problem of the pairwise sufficiency from a hard problem of efficient sampling,
we focus on N ≤ 22, which allows us to estimate Z by direct summation fast enough to do
it many times and collect statistics. We generate many such distributions P3 and P4, every
time picking random N ∈ [10, 22], M ∈ [1, 250], and s ∈ [0.2, 2.0].

For each generated distribution, we estimate its individual and pairwise marginals P(σi ),
P(σi , σ j ) for all i, j = 1, . . . , N by direct marginalization (hereafter we drop subscripts 3
or 4 for P if it does not cause confusion). We then calculate the first order (or independent)
MaxEnt approximation

Q(1)(σ ) =
N∏

i=1

P(σi ). (6)

Next we fit the pairwise MaxEnt model Q(2) to P . While good algorithms exist for this
purpose (see e.g., [3–9]), it is unclear if their assumptions are satisfied by our networks.
Trying again to decouple the problems of efficient inference and the pairwise sufficiency, we
choose a classic, well understood Iterative Proportional Fitting Procedure (IPFP) algorithm
[30,31]. That is, we start with Q(1) as a guess for Q(2), calculate Q(2)(σi , σ j ), and redefine

Q(2)(σ ) → Q(2)(σ )
P(σi , σ j )

Q(2)(σi , σ j )
. (7)

We cycle through all pairs i, j in order, starting from {i, j} = {1, 2} through {i, j} =
{N −1, N } , and iterate until Q(2)(σi , σ j ) ≈ P(σi , σ j ) for all i and j , up to a relative error of
10−5. This is achieved within ∼ 100 . . . 105 iterations (or more for larger N ) depending on
how close the final Q(2) is to Q(1), and each iteration itself involves N (N−1)/2 applications of
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Fig. 2 Error of the MaxEnt fits versus the normalized entropy of the network state space, S. The left panel
shows errors of the independent, D(1), and the pairwise, D(2), approximations for 3-spin networks. We used
∼800 random networks with 11 ≤ N ≤ 20 spins and with a varying number of interactions, M . We partitioned
all the networks by their S in bins of width of 0.1 and calculated the mean and the standard deviation of D for
each bin. These are indicated by triangles and the error bars. Wherever the data points for individual networks
showed little scatter, we plotted these points instead of the bin averages. Themiddle panel presents similar data,
D(1) and D(2), for 4-spin networks. Here over 4000 random networks were generated with 11 ≤ N ≤ 22.
D(2) was again averaged within ten bins, and the means and the standard deviations are plotted. For D(1),
data for individual networks are presented. These merge into a perfect straight line due to the Z2 symmetry
of 4-spin distributions. For both the 3- and the 4-spin cases, the pairwise sufficiency is clear at low S. The
right panel replots the D(2) data for the 4-spin networks, but splits them according to α, which measures
the average strength of interactions per spin within a network. Large α curves are significantly below their
small α counterparts, indicating that, other things being equal, densely and strongly interacting networks are
more likely to be pairwise sufficient. Notice that large α curves end abruptly since such networks cannot have
large S (Color figure online)

Eq. (7) for different pairs of the variables. The algorithm is known to converge to the solution
of the MaxEnt problem (at least when there are no zeros in the pairwise marginals) largely
irrespective of the specific order in which pairs {i, j} are taken, or the initial condition [31].
However, the speed of convergence can strongly depend on these choices. Thus to ensure that
the algorithm does not get trapped by very slow convergence rates, we also verify that starting
with a random initial condition, or using a random choice of {i, j} at every step results in the
same solution.

To measure the quality of the MaxEnt models, we calculate the Kullback-Leibler (KL)
divergence between the true distribution P3,4 and each approximation, normalized by the
number of spins in the system:

D(1) = D(1)
KL

N
≡ 1

N

∑
σ P(σ ) log2

P(σ )

Q(1)(σ )
, (8)

D(2) = D(2)
KL

N
≡ 1

N

∑
σ P(σ ) log2

P(σ )

Q(2)(σ )
. (9)

Since our maximum N is rather small, this is done by direct summation. Notice that both
D(1) and D(2) are between zero (perfect fit) and one (the worst fit) if single-spin marginals
of Q and P are equal.

In Fig. 2, we plot the values ofD(1) andD(2) measured over different ensembles of random
networks versus the normalized entropy of the network’s state space S = S(σ )/N , which
also varies between 0 and 1. For all types of networks and approximations, the quality of fit
is high (D(·) is low) when S ∼ 1, so that the networks are unconstrained, and nearly all states
are possible. This is trivial since even the zeroth order approximation (each spin up or down
with 50% probability) would work well here.
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As S decreases, the fit errors increase. When S reaches small values, the independent
approximation, D(1), starts behaving differently for the different network types. In the 4-spin
case, by construction, P(σ ) = P(−σ ). Thus 〈σi 〉 = 0 for any i , and the best independent
approximation is the uniform distribution. For this construction, the smallest possible entropy
is S = 1/N , where the network exists in two mirror states, and there the error of Q(1) is
D(1)

4 = 1 − 1/N . In contrast, a 3-spin network freezes at S = 0, and each spin is strongly
biased (as in our XOR networks above). Thus the independent approximation provides a
perfect fit in this case.

The distinction between P3 and P4 decreases for the pairwise MaxEnt approximation.
Here, for both 3- and 4-spin networks, the fit errors behave similarly: for S decreasing from
1, D(2) grows from 0 and reaches its peak at about D(2) ≈ 0.25 . . . 0.3 near S ≈ 0.5 . . . 0.6.
This is already interesting: D(2) almost never goes above 0.3 for all networks we tried.
Thus even in some of the worst cases, pairwise approximation is quite good! Further, for
even smaller entropies, D(2) rapidly drops, approaching zero faster than linearly in S. For
S ≈ 0.25, D(2)

3 ≈ 0.07. It is even smaller, D(2)
4 ≈ 0.04, for the quartic case. This is because

min S4 = 1/N , so that the whole D(2)
4 curve is slightly shifted compared to D(2)

3 at low S.
In summary, for all the networks we have considered, pairwise sufficiency emerges

robustly at low (but not too low) entropy. In fact, at S ≈ 0.25, our networks can be in
more than 2S = 2NS ≈ 25 = 32 highly probable states. Thus the networks are not totally
frozen, and yet the pairwise approximation is nearly sufficient! Crucially, this finding is robust
to the changes in the network size: D versus S curves are stable over the entire range of N
we explored, though if the results hold at even larger N is unclear.

Within a single narrow bin of S, D(2) may still have a rather large range. We explore this
variability in the rightmost panel of Fig. 2. For this, we define α = sM/N (recall that s is
the standard deviation of the random couplings used to generate the networks). α measures
the strength of interactions (or constraints) per spin, analogously to a similar parameter in
the random constraint satisfaction problems [32,33]. For quartic networks, where we have
enough samples, we then plot D(2) versus S for different ranges of α. Crucially, we find that,
for the same S, a larger α results in better pairwise fits. In other words, a denser and stronger
interacting network is more likely to be pairwise sufficient. This is potentially a good news
for MaxEnt approaches to biological systems, which are known for the immense complexity
of the underlying biophysical interactions.

Here we would like to stress that partitioning by α can potentially mix together dense
networks with weak interactions (small s, large M) and sparse networks with nearly deter-
ministic interactions (large s, small M). The latter will have high entropies and are unlikely
to result in the pairwise sufficiency. In other words, α cannot be the sole control parameter
responsible for the sufficiency. This precipitated the use both S and α in Fig. 2 (right), and,
indeed, D(2) varies a lot for the same α depending on S. Additional analytical investigations
are required to verify if there are better choices of control parameters, or if a single control
parameter combining S and α can be formed to analyze the pairwise sufficiency.

We conclude this section by stressing that high probability states of pairwise sufficient
p-spin networks are not close to each other. To illustrate this, we focus on the 4-spin case
with N ≥ 20, and on small but not negligible S. We then evaluate the magnitude of the
overlap, |σμ · σ ν | /N , among all highly probable network states and plot the distribution of
the overlaps in Fig. 3. For purely randomly distributed states, we would expect the standard
deviation of overlaps to be ∼0.22, and a peak near zero. And we would expect magnitudes
of overlaps near 1 if all highly probable states were clustered near a dominant one. Instead,
the distribution in Fig. 3 is not concentrated near 1, and the standard deviation is ≈ 0.39.
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Fig. 3 The pairwise sufficiency emerges in the nonperturbative regime. We select all highly probable states
σμ, defined somewhat arbitrary as P(σμ) > 0.001. We then calculate the overlap for all pairs of such states.
Finally, we plot the histogram of the magnitudes of the overlaps from all 4-spin networks with N ≥ 20, and
with 0.1 ≤ S ≤ 0.3. Such networks can exist in many states, but still very few compared to 2N . Most of
the overlap magnitudes are away from 1, indicating small to moderate similarity among the highly probable
states. Thus these states are broadly dispersed and do not cluster together (Color figure online)

Therefore, there is some clustering of probable states, but certainly not strong clustering.
Thus the state space of our networks cannot be described as small fluctuations around a
dominant state, and the pairwise sufficiency here is not perturbative [25]. It likely emerges
due to a previously not investigated mechanism.

2.3 The Structure of the State Space of the Pairwise Sufficient Networks

The toy example of the XOR network suggests that the pairwise sufficiency may emerge
when the network “freezes” to a few (but not necessarily just one) highly probable states, and
different relatively tightly coupled clusters of spins (hyperloops) decouple from each other.
Is this also true for our networks with a nonzero temperature? How do energy landscapes of
the sufficient and the insufficient networks differ from each other? And are the MaxEnt fits
for both cases structurally different?

To explore this, we extract hi and Ji j from Q(2) (recall that IPFP inferes the distribution,
and not the coupling constants). The easiest way to do this is to start with ≥ N (N + 1)/2
states with the highest probabilities from Q(2) found by IPFP and to get the energy of each
such state as E(σ ) = − log Q(2)(σ ). We then solve the system of linear equations that relate
E to hi and Ji j . Starting with > N (N +1)/2 states creates an overdetermined system, which
will have a solution only if Q(2) has been determined accurately. This acts as an additional
consistency check. Finally, we calculate the eigenvalue spectra of the inferred Ji j , having
set Jii = 0. The averaged spectra are shown in Fig. 4 for different combinations of S and
D(2). We see that the success of Q(2) is correlated with the magnitude of the eigenvalues
of Ji j—larger magnitudes, which correspond to stronger interactions and more constrained
distributions, give the pairwise sufficiency. This is true irrespective of S (though S and α are
somewhat dependent, as we have discussed).

Further, we observe that rescaling the spectra by their largest eigenvalue (Fig. 4, inset),
makes them collapse within the (rather large) error bars. Thus the Ji j (or the energy land-
scapes) of the pairwise sufficient and the pairwise insufficient fits in this Figure are not
intrinsically different: a rescaling (change in temperature) can morph one into the other. This
is an interesting observation, but it should not be overinterpreted. Indeed, in this Figure, we
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Fig. 4 Spectra of the pairwise coupling matrices Ji j for MaxEnt approximations to random 4-spin networks,
N ≥ 20. We order eigenvalues from the largest (lowest energy) to the smallest (highest energy). We then plot
the mean spectra (with standard deviations, where it does not obstruct the figures), averaged over different
subsets of 4000 networks. Low S subset corresponds to 0.1 ≤ S < 0.2. Such networks are fit extremely well
by pairwise models, with mean D(2) ≈ 6 × 10−3. High S corresponds to 0.3 ≤ S < 0.4. Here the pairwise
fits are bad, so that the mean D(2) ≈ 0.15. Finally, for the intermediate range 0.2 ≤ S < 0.3, the quality of
fits is diverse. We further partition this range into well fitted, D(2) ≤ 0.06, and badly fitted, D(2) ≥ 0.12,
subsets, leaving intermediate fits off the plot. The four average spectra show that the pairwise sufficiency is
directly correlated with the scale of the spectra, with larger magnitude eigenvalues resulting in smaller D(2).
The inset shows the averages for each of the four ranges, where each spectrum is normalized by its largest
magnitude eigenvalue. The four curves are very close for much of their range. However, as discussed in the
text, we do not expect a similar collapse for arbitrary networks (Color figure online)

only look at S < 0.4, and we always have s < 2.0, so that strong individual interactions are
unlikely. Thus to have low entropies, all networks in Fig. 4 must be densely coupled. Then
the rescaling property is not that surprising, and it certainly will not generalize to arbitrary
networks.

Having analyzed the pairwise sufficient and insufficient solutions, Q(2), we now focus on
the landscapes of the p-spin networks themselves. The freezing that results in the decrease
of D(2) and the growth of the eigenvalues of J can create the landscapes of different types.
For example, the highly probable states may be essentially uncorrelated, reminiscent of the
landscapes of the classical Hopfield network in the ferromagnetic phase [34]. This has been
discussed as a possible picture for neural data [11]. Alternatively, as in our XOR network,
entire groups of spins can form strongly correlated clusters (hyperloops [27]), which then
(nearly) decouple from each other. Then the low energy network states would be direct
products of the states of the clusters, which would be far from independence.

To disambiguate the two scenarios, we calculate pairwise spin-spin correlations ci j =
cov (σi ,σ j )

std σi std σ j
by direct summation of P (note that, for 4-spin networks, the correlation is equal

to the covariance since 〈σi 〉 = 0). We then (hierarchically) cluster the spins based on the
absolute value of their correlations, thus putting highly correlated and anti-correlated spins
together. We emphasize here that interactions in the underlying “true” model couple spins
completely at random. However, due to the random nature of these interactions, certain
spins become correlated with some spins stronger than with the others, resulting in some
clustering within the co-variance matrix. The question of whether the low-energy states
are not independent is equivalent to the question whether the observed clusters in the spin
co-variance are statistically significant.
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Fig. 5 4-Spin networks decouple into spin clusters in the pairwise sufficient regime. The three panels show
typical values of

∣∣ci j
∣∣ for N = 21, sorted into correlated clusters. Left panel a nearly perfectly pairwise

sufficient network with S = 2.05 bits and D(2) = 8.0 × 10−5. In accord with the entropy value, the network
splits into two clusters, with spins nearly perfectly correlated within each, but almost independent across.
Middle panel a good pairwise fit with S = 3.9 bits and D(2) = 0.032. Correspondingly, four clusters
of different sizes are seen. However, now the spins also exhibit some correlations across clusters, which
presumably leads to the increase in D(2). Right panel a network with S = 5.7 bits and D(2) = 0.16—a bad
(though not disastrous) pairwise fit. There are now many small clusters, but correlations within and across the
clusters are not very different (Color figure online)

Figure 5 shows the clusters for 4-spin networks (note that since the number, the size, and
the spin assignment for clusters are different for each network, we only show typical cases).
A network with a near-zero D(2) (left panel) shows a perfect partitioning into two clusters;
S(σ ) ≈ 2 bits is a result of this partitioning. As networks with larger entropies are considered,
the number of clusters increases, and their boundaries become fuzzy, leading to worse MaxEnt
fits. When the definite cluster structure disappears, D(2) grows dramatically. In other words,
the existence of well-defined spin clusters co-occurs with the pairwise sufficiency. Thus the
emergence of hyperloops [27] is probably not unique to networks of Boolean gates, and the
landscape of our networks looks qualitatively similar.

For 3-spin networks, in addition to the pairwise interactions, there are also nonzero single
spin biases in the MaxEnt fits. Thus the entropy and correlations among spins are generally
smaller for the same D(2). Nonetheless, as seen in Fig. 6, the (fuzzy) cluster structure for
these networks is not that much different from the 4-spin case.

To further explore the network landscapes, we point out that an inferred symmetric Ji j
can be rewritten as

Ji j =
N∑

ν=1

λ(ν)ξ
(ν)
i ξ

(ν)
j , (10)

where λ(ν) and ξ
(ν)
i are the eigenvalues and the eigenvectors, correspondingly. The eigen-

values take both large positive and large negative values for the pairwise sufficient networks
(cf. Fig. 4). The positives correspond to wells in the landscape, and the negatives correspond
to peaks. In other words, our networks are not well approximated by the classical Hopfield
network [34] with attractive eigenvalues only, but are generalized Hopfield networks, such
as discussed in, for example, Refs. [35,36]. If the wells and the peaks were clearly separated,
then spin configurations in the vicinity of the well center, distinct from it by just a single
spin flip, would have similar high probabilities (this is what allows an eigenvector to act as a
broad attractor in the classical Hopfield network [34]). The repulsive peaks far away from the
wells would have little effect on D(2) since the probability of states away from the wells is
small in the low temperature regime even without the peaks. In contrast, were spins to form
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Fig. 6 A 3-spin network also
decouples into spin clusters in the
pairwise sufficient regime. For
brevity, here we show |ci j | only
for one network similar to the
middle panel in Fig. 5: S ≈ 3.5,
D(1) ≈ 0.58, and D(2) ≈ 0.038.
Four to seven partially
overlapping clusters can be seen
(Color figure online)
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Fig. 7 Repulsive eigenvalues of the MaxEnt coupling matrix Ji j contribute to the approximation error. We

plot the fit error, D(2), as a function of the number of the eigenvalues of Ji j included in the fit for a 4-spin

distribution with N = 21, S ≈ 0.1, and D(2) ≈ 0.014. The blue line includes eigenvalues in the order from
the most attractive to the most repulsive, and the red one includes them in the order of their absolute values.
The red line reaches the limiting value of D(2) quicker, while the blue one requires inclusion of all eigenvalues
for this to happen. As explained in the text, this is consistent with emergence of spin clusters (Color figure
online)

strongly interacting clusters, flipping just a single spin would lead to a large energy increase.
To achieve this, peaks (negative eigenvalues) would be needed to repel the system away from
such states, which are near a well, but break the coupling among the in-cluster spins. In other
words, negative eigenvalues would decrease the probability of otherwise likely states, and
hence would affect D(2) strongly.

To verify which of the two scenarios holds, for 4-spin networks, we construct the coupling
matrix and the pairwise MaxEnt distribution from only n ≤ N eigenvalues,

Ji j (n) =
n∑

ν=1

λ(ν)ξ
(ν)
i ξ

(ν)
j , (11)

Q(2)(n) = 1

Z
exp

⎛

⎝
∑

i, j

Ji j (n)σiσ j

⎞

⎠ . (12)

We then evaluate D(2) between P and Q(2)(n) as a function of n. Figure 7 shows this depen-
dence for a typical pairwise-sufficient distribution and for two different ways of including
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eigenvalues into J . In the first, we proceed from the largest eigenvalue to the smallest one. In
the second, we proceed from the largest magnitude eigenvalue to the smallest magnitude one.
Since sorting by magnitude (which includes strong repulsive eigenvalues earlier) approaches
the terminal D(2) faster, wells and peaks must both affect probabilities of high-probability
spin configurations. As discussed above, this is consistent with the clustering picture, though
by itself is certainly not a sufficient condition for clustering.

2.4 The Mechanism of Emergence of the Pairwise Sufficiency

The clustered structure of the network landscapes allows us to propose a hypothesis for why
densely coupled p-spin networks exhibit the pairwise sufficiency. We re-group terms in the
energies, which define P3 and P4 in Eqs. (4, 5). For example, all terms that couple σi and σ j

for the 4-spin network can be rewritten as

σiσ j

∑

μ

Kμσμ3σμ4δi,μ1δ j,μ2 ≡ σiσ jJi j , (13)

where δ·,· is a Kronecker delta. (Here we slightly abused the notation and imposed that i, j
only occur in μ1 and μ2.) This equation defines a random coupling Ji j , which depends both
on the current network state and on the quenched randomness that went into building the
network. For a large number of couplings, fluctuations in Ji j will be large enough so that,
averaged over the accessible network states, Ji j stays far from zero compared to its standard
deviation σJi j . This creates large effective pairwise coupling among spins, so that clusters of
spins start behaving coherently. Then the state of every spin in the cluster can be defined by
choosing a cluster representative, setting its value, and then coupling each cluster member to
the representative through a pairwise interaction—higher order couplings are not needed! The
pairwise MaxEnt fit is nearly exact, even though the network is far from frozen since values of
the cluster representatives are not necessarily constrained. We illustrate this in Fig. 8, which
shows that higher order couplings average to produce large effective pairwise interactions for
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Fig. 8 Formation of effective couplings in 4-spin networks. For the same network as in Fig. 5, middle, we plot
〈Ji j 〉 (left) and 〈Ji j 〉 in units of the standard deviation (right) for each pair of spins versus ci j . For correlated
spins, higher order coupling terms add up, on average, to strong pairwise couplings. Typically, the signs of
Ji j ’s and ci j are the same, as excepted (Color figure online)
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correlated spins. In other words, the intuition about the structure of the landscape of random
networks of deterministic Boolean gates [27] qualitatively holds for networks in Eqs. (4, 5)
as well.

3 Discussion

In this numerical study, we showed that pairwise MaxEnt models are more effective in
approximating random p-spin networks (p = 3, 4) than one would naively expect. Even in
the worst cases, the error of such models was rarely above D(2) ∼ 0.3, and it was much lower
for densely coupled networks, with lower entropy per spin. In particular, this is consistent
with the findings in Ref. [37] that the number of constraints required for a MaxEnt model to
accurately approximate the underlying probability distribution is an increasing function of
the entropy of the system.

We traced the emerging pairwise sufficiency to formation of coherent clusters of spins,
largely decoupled among themselves, resulting in a multitude of dependent attractors for the
system. Formation of these clusters is reminiscent of hyperloops in the context of random
hSAT networks [27]. This is not a perturbative effect and is a new proposal for explaining
pairwise sufficiency. Such collective behavior introduces substantial redundancy, and would
allow error correction. However, this error correction is of a very different nature compared
to, for example, the Hopfield network [34].

Does the mechanism presented here explain the pairwise sufficiency in any real biological
system? This is unclear since our analysis was limited to specific simulated networks, which
may or may not be good models of real biology. Specifically, the network in the original
paper that observed the pairwise sufficiency [11] had much smaller entropy per spin (neu-
rons rarely fired), and correlations among spins rarely exceed 0.2. In contrast, while 3-spin
networks in our simulations had smallerS and smaller spin-spin correlations than their 4-spin
counterparts, these numbers were still larger than those in the experiments. At the same time,
pairwise MaxEnt models do not fit experimental data perfectly (certainly worse than some
of our nearly perfect fits) [15]. It may be that some structural features of real systems allow
them to operate at higher D(2) for smaller S compared to the simple models we investigated
here—and exploring a wider class of networks for signatures of behaviors that we observed
would be the next step. This is especially important since large coherent deviations from
the most probable state into 10 . . . 100 metastable states seems to be a crucial feature of
many experimental systems (such as bursts of neural activity in the retina that predominantly
stays quiet [15]). Such metastable states far away from the ground state at least resemble the
models that we studied. In addition, MaxEnt models in other fields may have very different
properties compared to those in neuroscience, including different typical entropies and cor-
relation strengths. Therefore, we hope that our models and their generalizations will be able
to inform interpretation of experimental data, even if they do not match the experiments in
some important properties.

With (approximate) pairwise sufficiency seen in many collective biological phenomena,
it is important to ask why these systems operate in the regime that allows it to hold. Indeed,
within our model, the pairwise sufficiency is not generic: low D(2) happens only for small S,
and preferentially when the strength of the interactions is high, α = Ms/N � 1 (cf. Fig. 2).
The need for redundancy and error correction is a potential explanation – but there is no
obvious reason why the redundancy must result in the pairwise sufficiency (indeed, simple
parity-based codes probably do not). Taking the improvement in D(2) with the increase in
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α seriously, we propose a different explanation (a similar argument was first suggested in
Ref. [38]).

One can view evolution as trying to satisfy a growing list of constraints imposed upon a
biological network by its interactions with the environment. These constraints can include
efficient information processing, low energy consumption, robustness to perturbations, fitting
within a certain physical size, responding quickly enough so that actions are relevant in
the changing world, etc. Some of these global constraints may be equivalent to a large
number of local constraints. For example, efficient information transmission in the visual
system typically includes removal of redundancy present in the natural stimuli [39], which
is equivalent to a multitude of constraints on activities of nearby neurons. When contraints
are added, fewer and fewer states of the network remain accessible. Importantly, at least
for certain abstract constraint satisfaction problems [27,33,40], before there are no more
states left, the accessible states organize themselves in a handful of small, well-separated
groups. Whether these states are uncorrelated, or consist of collective flipping of clusters
of spins, they can be well represented by pairwise MaxEnt models. (In the former case,
such MaxEnt model would have a Hopfield network structure with attractive eigenvalues
[34]; in the latter, pairwise interactions would determine cluster assignments.) Therefore,
it can be that the pairwise sufficiency is a signature of a biological network nearing the
unsatisfiability threshold, being pushed towards it by evolution. Exploring landscapes of
satisfiability problems with more realistic ensembles of constraints (or interactions) and
comparing them to the landscapes observed in experiments would address this hypothesis.
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