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Outline

• A curious observation.

• Quantifying predictability.

• Predictability and optimization in sensory information processing.

• Learning and predictive information.

• Testing models used by animals.

• Bonus material.
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S(N) = −
2N−1∑
k=0

PN(Wk) log2 PN(Wk)

For this chain, P (W0) = P (W1) = P (W3) = P (W7) = P (W12) = P (W14) = 2,

P (W8) = P (W9) = 1, and all other frequencies (probabilities) are zero. Thus,

S(4) ≈ 2.95 bits.
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Entropy of 3 generated chains

• Jij = δi,j+1

• Jij = J0 δi,j+1, J0 is taken
at random from N (0, 1) every
400000 spins

• Jij is taken at random from
N (0, 1

i−j) every 400000 spins

1 · 109 spins total.
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Entropy of 3 generated chains

• Jij = δi,j+1

• Jij = J0 δi,j+1, J0 is taken
at random from N (0, 1) every
400000 spins

• Jij is taken at random from
N (0, 1

i−j) every 400000 spins

1 · 109 spins total.
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Entropy is extensive!

It shows no distinction between the cases.
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Subextensive component of the entropy

. . . shows a qualitative distinction between the cases!
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Other examples:
const periodic sequences,

chaotic sequences (finite
correlation length)

log systems at phase
transitions, or at the
onset of chaos (divergent
correlation length)

power natural texts, DNA
sequences, (possibly) some
exotic transitions, (many
divergent correlation lengths)
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Subextensive component of the entropy

. . . shows a qualitative distinction between the cases!
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Other examples:
const periodic sequences,

chaotic sequences (finite
correlation length)

log systems at phase
transitions, or at the
onset of chaos (divergent
correlation length)

power natural texts, DNA
sequences, (possibly) some
exotic transitions, (many
divergent correlation lengths)

• Entropy density or channel capacity do not distinguish these cases.

• Theory of phase transitions may not distinguish between the last two cases.

• Complexity of underlying dynamics intuitively increases from const to power.
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Objectives

• unified description of complexity and learning

• make distinction between useful and unusable data

• do this using physical quantities

• understand models used by organisms to represent the world

• understand biological designs by means of optimization principles
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Solution – predictability

• we learn (estimate parameters, extrapolate, classify, . . . ) to generalize and

predict from training examples; estimation of parameters is only an

intermediate step
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Solution – predictability

• we learn (estimate parameters, extrapolate, classify, . . . ) to generalize and

predict from training examples; estimation of parameters is only an

intermediate step

• nonpredictive features in any signal are useless since we observe

now and react in the future

• high predictability sources (more details to predict, not easier predictions)

are generated by more complex sources (in particular, regular and random

sources have low complexity)

• measuring organisms’ learning and prediction performance for

signals of different complexity may reveal the underlying models

• optimizing predictive information may be the design principle



Ilya Nemenman, IBM – Functional Genomics and System Biology Seminar, March 4, 2004 8

Quantifying predictability

Information theory: non-metric, universal way to quantify learning

-s
nowpast future

xT,N T ′, N ′0
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〈
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Extensive component cancels in predictive information.

Predictability is a deviation from extensivity!
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Quantifying predictability

Information theory: non-metric, universal way to quantify learning

-s
nowpast future

xT,N T ′, N ′0

Ipred(T, T ′) =

〈
log2

[
P (xfuture|xpast)

P (xfuture)

]〉
= S(T ) + S(T ′)− S(T + T ′)

S(T ) = S0 ·T + S1(T )

Extensive component cancels in predictive information.

Predictability is a deviation from extensivity!

Ipred(T ) ≡ Ipred(T,∞) = S1(T )
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Properties of Ipred(T )

• Ipred(T ) is information, so Ipred(T ) ≥ 0
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Properties of Ipred(T )

• Ipred(T ) is information, so Ipred(T ) ≥ 0

• Ipred(T ) is subextensive, limT→∞
Ipred(T )

T = 0

• diminishing returns, limT→∞
Ipred(T )

S(T ) = 0

• prediction and postdiction are symmetric

• it relates to and generalizes many relevant quantities

– learning: universal learning curves
– complexity: complexity measures
– coding: model coding length
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How can Ipred behave?

limN→∞ Ipred = const no long-range structure
• simply predictable (periodic, constant, etc.) processes
• fully stochastic (Markov) processes
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parameters
• learning finite-parameter densities
• well known as I(N,parameters) = Ipred(N)
• physical system at criticality
• (possibly) nonextensive statistics systems
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How can Ipred behave?

limN→∞ Ipred = const no long-range structure
• simply predictable (periodic, constant, etc.) processes
• fully stochastic (Markov) processes

limN→∞ Ipred = const× log2 N precise learning of a fixed set of
parameters
• learning finite-parameter densities
• well known as I(N,parameters) = Ipred(N)
• physical system at criticality
• (possibly) nonextensive statistics systems

limN→∞ Ipred = const×N ξ learning more features as N grows
• learning continuous densities
• language
• some critical phenomena (wetting transitions)
• not well studied
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Ipred optimization in biology
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Sφ(ω) ∝ ω−α
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“bug”



Ilya Nemenman, IBM – Functional Genomics and System Biology Seminar, March 4, 2004 11

Ipred optimization in biology
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Sφ(ω) ∝ ω−α

output, v
“bug”

τ
dv

dt
= −v + gφ(t) + gη(t), 〈η(t)η(0)〉 = 1/I0 δ(t)



Ilya Nemenman, IBM – Functional Genomics and System Biology Seminar, March 4, 2004 11

Ipred optimization in biology

- -

'

&

$

%input, φ

Sφ(ω) ∝ ω−α

output, v
“bug”

τ
dv

dt
= −v + gφ(t) + gη(t), 〈η(t)η(0)〉 = 1/I0 δ(t)

I([φ], [v]) = lim
T→∞

1
2T

∫ T/2

−T/2

dω

2π
log

(
1 +

Sφ(ω)
1/I0

)

Maximization w.r.t. τ is meaningless.
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Predictive information maximization
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Predictive information maximization

I([vpast], [φfuture]) – too difficult
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I([vpast], [φfuture]) – too difficult
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〈φ2〉 −
g2〈φ2

f
〉2
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Predictive information maximization

I([vpast], [φfuture]) – too difficult

I(v0, φ0) = log
〈φ2〉

〈φ2〉 −
g2〈φ2

f
〉2

〈v2〉

Solution – matching filter: τ = I
−1/α
0 .

1/τ ω

S
signal

signal=noise

noise
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Specific examples: problem setup

Q(~x|α) p. d. f. for ~x parameterized by unknown parameters α

dim α = K dimensionality of α, may be infinite

P(α) prior distribution of parameters

~x1 · · · ~xN random samples from the distribution
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Specific examples: problem setup

Q(~x|α) p. d. f. for ~x parameterized by unknown parameters α

dim α = K dimensionality of α, may be infinite

P(α) prior distribution of parameters

~x1 · · · ~xN random samples from the distribution

P (~x1, ~x2, · · · , ~xN|α) =
∏N

i=1 Q(~xi|α)

P (~x1, ~x2, · · · , ~xN) =
∫

dKαP(α)
∏N

i=1 Q(~xi|α)

S(~x1, ~x2, · · · , ~xN) ≡ S(N)

= −
∫

d~x1 · · · d~xN P ({~xi}) log2 P ({~xi})
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Separating the terms

S0 =
∫

dKαP(α)
[
−

∫
d~x Q(~x|α) log2 Q(~x|α)

]
S1(N) = −

∫
dKᾱ dN ~xiP(ᾱ)

∏
Q(~xi|ᾱ) log2

∫
dKαP(α)e−NEN
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Separating the terms

S0 =
∫

dKαP(α)
[
−

∫
d~x Q(~x|α) log2 Q(~x|α)

]
S1(N) = −

∫
dKᾱ dN ~xiP(ᾱ)

∏
Q(~xi|ᾱ) log2

∫
dKαP(α)e−NEN

EN ≡ 1
N

∑
i

log
[
Q(~xi|ᾱ)
Q(~xi|α)

]
anneal−→

∫
d~x Q(~x|ᾱ) log

Q(~x|ᾱ)
Q(~x|α)

Annealed approximation (almost) always works.
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Density of states

Z(ᾱ;N) =
∫

dε ρ(ε; ᾱ) exp[−Nε]

ρ(ε; ᾱ) =
∫

dKαP(α)δ[ε−DKL(ᾱ||α)]
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Density of states

Z(ᾱ;N) =
∫

dε ρ(ε; ᾱ) exp[−Nε]

ρ(ε; ᾱ) =
∫

dKαP(α)δ[ε−DKL(ᾱ||α)]∫
dε ρ(ε; ᾱ) =

∫
dKαP(α) = 1 annealing works!

The density ρ could be very different for different targets.

Learning is annealing at decreasing temperature.

Nonzero ρ =⇒ consistency in learning.
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Density at ε → 0, Ipred, and learning

Occam factor, generalization error, prediction error, fluctuation

determinant:

D(ᾱ;N) ≈ − log
∫

dε ρ(ε; ᾱ)e−Nε



Ilya Nemenman, IBM – Functional Genomics and System Biology Seminar, March 4, 2004 16

Density at ε → 0, Ipred, and learning

Occam factor, generalization error, prediction error, fluctuation

determinant:
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Density at ε → 0, Ipred, and learning

Occam factor, generalization error, prediction error, fluctuation

determinant:

D(ᾱ;N) ≈ − log
∫

dε ρ(ε; ᾱ)e−Nε

Predictive information:

Ipred(N) ≈
∫

dKᾱP(ᾱ)D(ᾱ, N)

Universal learning curves:

Λ(ᾱ;N) ≡ DKL(ᾱ||αest) ≈
dD(ᾱ;N)

dN

Λ(N) ≡
∫

dᾱP(ᾱ)Λ(ᾱ;N) ≈ dIpred

dN
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Finite number of states and finite Ipred

ρ(ε; a1) =
M∑
i=1

Piδ(di − ε)
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Finite number of states and finite Ipred

ρ(ε; a1) =
M∑
i=1

Piδ(di − ε)

D(a1;N) = C1 − C2 exp[−NC3]

Λ(a1;N) ≈ C2C3 exp[−NC3]

Ipred saturates as N →∞
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Power–law density function

ρ(ε → 0; ᾱ) ≈ A(ᾱ)ε(d−2)/2
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Power–law density function

ρ(ε → 0; ᾱ) ≈ A(ᾱ)ε(d−2)/2

Example: sound finite parameter models, dim α = d.

DKL(ᾱ||α) α→ᾱ−→ 1
2

∑
µν

(ᾱµ − αµ)Fµν(ᾱν − αν) + · · ·

ρ(ε; ᾱ) ε→0−→ P(ᾱ)
2πd/2

Γ(d/2)
(detF)−1/2

ε(d−2)/2

Ipred ≈ S
(a)
1 ≈ d

2
log2 N
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Power–law density function

ρ(ε → 0; ᾱ) ≈ A(ᾱ)ε(d−2)/2

Example: sound finite parameter models, dim α = d.

DKL(ᾱ||α) α→ᾱ−→ 1
2

∑
µν

(ᾱµ − αµ)Fµν(ᾱν − αν) + · · ·

ρ(ε; ᾱ) ε→0−→ P(ᾱ)
2πd/2

Γ(d/2)
(detF)−1/2

ε(d−2)/2

Ipred ≈ S
(a)
1 ≈ d

2
log2 N

Speed of approach to this asymptotics is rarely investigated.
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Another example

Learning Q(~x1 · · · ~xN|α), a finite parameter Markov process with

long range intrinsic correlations such that

S [{~xi}|α] ≡ −
∫

dN~x Q({~xi}|α) log2 Q({~xi}|α)

→ NS0 + S∗0 ; S∗0 =
K ′

2
log2 N
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Another example

Learning Q(~x1 · · · ~xN|α), a finite parameter Markov process with

long range intrinsic correlations such that

S [{~xi}|α] ≡ −
∫

dN~x Q({~xi}|α) log2 Q({~xi}|α)

→ NS0 + S∗0 ; S∗0 =
K ′

2
log2 N

S
(a)
1 (N) ≈ K + K ′

2
log2 N

Predictive information does not distinguish predictability coming

from unknown parameters and from intrinsic long–range correlations.

This is similar to describing physical systems with correlations using

order parameters.
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Essential singularity in the density

ρ(ε → 0; ᾱ) ≈ A(ᾱ) exp
[
−B(ᾱ)

εµ

]
, µ > 0

S
(a)
1 (N) ∝ Nµ/(µ+1)
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Essential singularity in the density

ρ(ε → 0; ᾱ) ≈ A(ᾱ) exp
[
−B(ᾱ)

εµ

]
, µ > 0

S
(a)
1 (N) ∝ Nµ/(µ+1)

• finite parameter model with increasing number of parameters K ∼
Nµ/(µ+1); S1(N) ∼ Nµ/µ+1, not S1(N) ∼ Nµ/µ+1

2 log N

• as µ →∞ complexity grows and then vanishes to the leading order

when S
(a)
1 becomes extensive
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Example of the power–law Ipred

Learning a smooth nonparameteric density Q(x) = 1/l0e−φ(x),

x ∈ [0, L] (Bialek, Callan, and Strong 1996), Complete model.

P[φ(x)] =
1
Z

exp

[
− l

2

∫
dx

(
∂φ

∂x

)2
]

δ

[
1
l0

∫
dx e−φ(x) − 1

]
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Example of the power–law Ipred

Learning a smooth nonparameteric density Q(x) = 1/l0e−φ(x),

x ∈ [0, L] (Bialek, Callan, and Strong 1996), Complete model.

P[φ(x)] =
1
Z

exp

[
− l

2

∫
dx

(
∂φ

∂x

)2
]

δ

[
1
l0

∫
dx e−φ(x) − 1

]
ρ(D → 0; φ̄) = A[φ̄(x)]ε−3/2 exp

(
−B[φ̄(x)]

ε

)
S

(a)
1 (N) ∝

√
N

(
L

l

)1/2
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Example of the power–law Ipred

Learning a smooth nonparameteric density Q(x) = 1/l0e−φ(x),

x ∈ [0, L] (Bialek, Callan, and Strong 1996), Complete model.

P[φ(x)] =
1
Z

exp

[
− l

2

∫
dx

(
∂φ

∂x

)2
]

δ

[
1
l0

∫
dx e−φ(x) − 1

]
ρ(D → 0; φ̄) = A[φ̄(x)]ε−3/2 exp

(
−B[φ̄(x)]

ε

)
S

(a)
1 (N) ∝

√
N

(
L

l

)1/2

• increasing number of “effective parameters” (bins) of adaptive size ∼
√

l/NQ(x)
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Learning a smooth nonparameteric density Q(x) = 1/l0e−φ(x),

x ∈ [0, L] (Bialek, Callan, and Strong 1996), Complete model.

P[φ(x)] =
1
Z

exp

[
− l

2

∫
dx

(
∂φ

∂x

)2
]

δ

[
1
l0

∫
dx e−φ(x) − 1

]
ρ(D → 0; φ̄) = A[φ̄(x)]ε−3/2 exp

(
−B[φ̄(x)]

ε

)
S

(a)
1 (N) ∝

√
N

(
L

l

)1/2

• increasing number of “effective parameters” (bins) of adaptive size ∼
√

l/NQ(x)

• heuristic arguments for the dimensionality ζ and the smoothness exponent η give
S1(N) ∼ N ζ/2η — demonstrates a crossover from complexity to randomness
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Nonuniform D

Nested finite parameter models, r = 1 . . .∞, K = K(r), P(r):

P(αµ|r) =
{

p(αµ) , µ ≤ K(r)
δ(αµ) , µ > K(r)

P(α|r) =
R∏

µ=1

P(αµ|r)



Ilya Nemenman, IBM – Functional Genomics and System Biology Seminar, March 4, 2004 22

Nonuniform D

Nested finite parameter models, r = 1 . . .∞, K = K(r), P(r):

P(αµ|r) =
{

p(αµ) , µ ≤ K(r)
δ(αµ) , µ > K(r)

P(α|r) =
R∏
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D (   ) α
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α r α

ε

r



Ilya Nemenman, IBM – Functional Genomics and System Biology Seminar, March 4, 2004 22

Nonuniform D

Nested finite parameter models, r = 1 . . .∞, K = K(r), P(r):

P(αµ|r) =
{

p(αµ) , µ ≤ K(r)
δ(αµ) , µ > K(r)

P(α|r) =
R∏

µ=1

P(αµ|r)

ρ(ε; ᾱ) =
∑

r: Dr(ᾱ)≤ε

P(r)P(α̂r|r)

2πK(r)/2

Γ[K(r)/2]
[ε2 −D2

r(ᾱ)][K(r)−2]/4√
detFK(r)

D (   ) α

Ar

α r α

ε

r
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Nonuniform D

Nested finite parameter models, r = 1 . . .∞, K = K(r), P(r):

P(αµ|r) =
{

p(αµ) , µ ≤ K(r)
δ(αµ) , µ > K(r)

P(α|r) =
R∏

µ=1

P(αµ|r)

ρ(ε; ᾱ) =
∑

r: Dr(ᾱ)≤ε

P(r)P(α̂r|r)

2πK(r)/2

Γ[K(r)/2]
[ε2 −D2

r(ᾱ)][K(r)−2]/4√
detFK(r)

D (   ) α

Ar

α r α

ε

r

Another complete model!
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Density near atypical solutions

ρ(ε; ᾱ) ∼ εε−1/(2η−1)`−1

D ∝ N1/2η

(
log N

`

)1−1/2η
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Density near atypical solutions

ρ(ε; ᾱ) ∼ εε−1/(2η−1)`−1

D ∝ N1/2η

(
log N

`

)1−1/2η

• nested model is at most log worse

than the QFT

• QFT may be a power law worse
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ρ(ε; ᾱ) ∼ εε−1/(2η−1)`−1

D ∝ N1/2η

(
log N

`

)1−1/2η

• nested model is at most log worse

than the QFT

• QFT may be a power law worse

 

 

0

 

 

 

 

0

 

 
0

 

 

 

 

 

 

α
1
+

α
2
+

ρ

nested
QFT



Ilya Nemenman, IBM – Functional Genomics and System Biology Seminar, March 4, 2004 23

Density near atypical solutions

ρ(ε; ᾱ) ∼ εε−1/(2η−1)`−1

D ∝ N1/2η

(
log N

`

)1−1/2η

• nested model is at most log worse

than the QFT

• QFT may be a power law worse

• for natural (structured) data nested

case is better

• alignment may be imperfect for

finite precision ε
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Which model is being used?

• for QFT or nested asymptotics
kicks in fast

• asymptotic decay rate should
signify the model



Ilya Nemenman, IBM – Functional Genomics and System Biology Seminar, March 4, 2004 24

Which model is being used?

(Gallistel et al., 2001)

• for QFT or nested asymptotics
kicks in fast

• asymptotic decay rate should
signify the model

• decay rate too fast to observe

• noisy learning
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Which model is being used?

(Gallistel et al., 2001)

• for QFT or nested asymptotics
kicks in fast

• asymptotic decay rate should
signify the model

• decay rate too fast to observe

• noisy learning

• maybe FDT? ∂Λ
∂N = −ζNΛν
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Fluctuations (drifting target) and dissipation
(learning curve)
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Fluctuations (drifting target) and dissipation
(learning curve)

∆rms =

{
ν1/νΓ

(
3
2ν

)
Γ

(
1
2ν

)}1/2 (
Ω
ζ

)1/(2ν)
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The hidden extras. . .
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Which complexity do we want to define?

• complexity of dynamics that generates a time series (not

computational or descriptive complexity); thus it must be zero

for totally random and for easily predictable processes

• usable for Occam–style punishment in statistical inference

• expressible in conventional physical terms

• must be attached to an ensemble, not a single realization
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Complexity measure

• some kind of entropy (we proclaim Shannon’s postulates: monotonicity,

continuity, additivity)
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Complexity measure

• some kind of entropy (we proclaim Shannon’s postulates: monotonicity,

continuity, additivity)

• invariant under invertible temporally local transformations (xk →
xk + ξxk−1: measuring device with inertia, article with misprints, same book in

different languages – same universality class)

log P1(x) = log P2(x) + loc. oper. ⇒ C[P1(x)] = C[P2(x)]

This may present a problem in higher dimensions.
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Complexity measure

• some kind of entropy (we proclaim Shannon’s postulates: monotonicity,

continuity, additivity)

• invariant under invertible temporally local transformations (xk →
xk + ξxk−1: measuring device with inertia, article with misprints, same book in

different languages – same universality class)

log P1(x) = log P2(x) + loc. oper. ⇒ C[P1(x)] = C[P2(x)]

This may present a problem in higher dimensions.

The divergent subextensive term measures complexity uniquely!
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Relations to other definitions . . .

. . . are mostly straightforward.
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For Kolmogorov complexity:

• partition all strings into equivalence classes

• define Kolmogorov complexity CK(s) of a sequence s with respect

to the partition as a length of the shortest program that can

generate a sequence from the class s belongs to
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generate a sequence from the class s belongs to

• equivalence = indistinguishable conditional distributions of futures
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Relations to other definitions . . .

. . . are mostly straightforward.

For Kolmogorov complexity:

• partition all strings into equivalence classes

• define Kolmogorov complexity CK(s) of a sequence s with respect

to the partition as a length of the shortest program that can

generate a sequence from the class s belongs to

• equivalence = indistinguishable conditional distributions of futures

If sufficient statistics exist, then CK ≈ Ipred. Otherwise CK > Ipred.

CK is unique up to a constant.



Ilya Nemenman, IBM – Functional Genomics and System Biology Seminar, March 4, 2004 30

Not finite size scaling!
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What’s next?

extraction separating predictive information from non–predictive

using the ‘relevant information’ technique

physics of phase transitions, connection to subextensive statistical

mechanics

statistics extensions of MDL (predictive information is a property

of the data, not of the model)

learning unification of approaches: Bayesian, SRM, MDL, Cucker-

Smale. . .

bioinformatics what is predictive information of natural symbolic

sequences? (DNA, languages, spike trains) can we use changes in

predictability for data partitioning? for model building?

dynamical systems theory what is predictive information and

complexity of various systems?


