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Abstract
Biochemical processes typically involve huge numbers of individual reversible steps, each
with its own dynamical rate constants. For example, kinetic proofreading processes rely upon
numerous sequential reactions in order to guarantee the precise construction of specific
macromolecules. In this work, we study the transient properties of such systems and fully
characterize their first passage (completion) time distributions. In particular, we provide
explicit expressions for the mean and the variance of the completion time for a kinetic
proofreading process and computational analyses for more complicated biochemical systems.
We find that, for a wide range of parameters, as the system size grows, the completion time
behavior simplifies: it becomes either deterministic or exponentially distributed, with a very
narrow transition between the two regimes. In both regimes, the dynamical complexity of the
full system is trivial compared to its apparent structural complexity. Similar simplicity is likely
to arise in the dynamics of many complex multistep biochemical processes. In particular, these
findings suggest not only that one may not be able to understand individual elementary
reactions from macroscopic observations, but also that such an understanding may be
unnecessary.

1. Introduction

Considering the ever increasing quantity of known
biochemical reactions, one cannot help but be amazed and
daunted by the incredible complexity of implied cellular
networks. For example, just a handful of different proteins can
form a combinatorially large number of interacting molecular
species, such as in the case of immune signaling [1], where
multiple receptor modification sites result in a model with
354 distinct chemical species. One must then ask: When
do all details of this seemingly incomprehensible complexity
actually matter, and when is there a smaller set of coarse-
grained dynamical variables, parameters, and reactions that
approximate the salient features of the system’s dynamics?
What determines which features are relevant and which are
3 Contributed equally

not? And if the networks have a simple equivalent dynamics,
did nature choose to make them so complex in order to fulfill a
specific biological function? Or is the unnecessary complexity
a ‘fossil record’ of the evolutionary heritage?

In this paper, we begin investigation of these questions in
the context of certain biochemical kinetics networks, namely
a reversible linear pathway, a kinetic proofreading (KPR)
scheme [2], their combination and an extension to a much
more general multistep completion process. These motifs
are common in a variety of cellular processes—including
DNA synthesis and repair [3, 4], protein translation [2, 5],
molecular transport [6], receptor-initiated signaling [7–12]
and other processes—where assembly of large biochemical
structures requires multiple reversible steps. However, in this
paper, we leave aside the functional behavior of these networks
and focus instead on a different question: Do these complex
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Figure 1. Schematic description of the model. The process begins
at the site i = 0, represented with a star. At each site, the process
may transition one step to the right with the forward rate k, one step
to the left with the backward rate r, or all the way back to the origin
with the return rate γ . The right-most site, i = L is an absorbing
site (cloud) at which the process is completed.

kinetic schemes have a simplified, yet accurate description?
Since multistep structural complexity (see figure 1) is crucial
for kinetic proofreading, the KPR process is an ideally suited
example for this analysis, but our conclusions will extend to
numerous other complex biochemical processes.

We show analytically and numerically that, over broad
ranges of parameters, different kinetic schemes exhibit the
behavior of either a deterministic process, or a single-step
exponential-waiting-time process. We also propose intuitive
arguments for the result, which leads us to believe that
similar simplifications of complex behavior may be wide-
spread, and even universal. We support this conjecture by
numerically studying more complex systems, but leave a
general mathematical proof of this conjecture to future work.

1.1. The model

For this study, we begin with a general KPR (gKPR) model [2],
for which many properties can be computed analytically. The
model is represented by the Markov chain in figure 1. At time
t = 0, the dynamics begins at the point represented by the star
(i = 0). The process can leave this state at some exponentially
distributed waiting time, defined by a forward rate k, and the
process can continue in the forward direction with rate k until
it reaches the final absorbing point (cloud) at i = L. At each
interior point, i ∈ {1, 2, . . . , L − 1}, the process can also
move one step to the left with a backward rate r or all the way
back to the origin with a return or proofreading rate γ . The
forward and the backward rates emphasize the reversibility of
all reactions, and the return rate corresponds to a catastrophic
failure, after which the whole process must start anew. For
example, in immune signaling, γ would represent the rate
of receptor-ligand dissociation, which destroys receptor cross-
linking and prevents future forward events for a relatively long
period of time [1].

This model is substantially simplified compared to
detailed models of real biological processes [1] in that, in
nature, all three rates may depend on i, and the nodes may not
form a single linear chain. Even so, a detailed understanding
of this simplified model provides an excellent starting point in
the process of understanding these more complicated systems.
Indeed, we will also show here that all qualitative conclusions
made for the gKPR scheme also hold in numerical studies of
more complicated systems in which rates are site dependent
and where the connections of the nodes are much more varied
than a simple linear chain.

1.2. The relevant features

To determine if a kinetic model can be well approximated by a
simpler one, we must first decide which of its features must be
retained. To illustrate this question, consider the activation of
a signaling cascade by an extracellular ligand (as represented
in figure 1). The ligand binding initiates the process, bringing
it from state i = 0 to state i = 1. With the exception of
this transition, the extracellular environment does not affect
the process. Similarly, the downstream signaling pathways
are only affected when the signaling construct attains its fully
activated state at i = L. Thus, as far as the rest of the cell is
concerned, only the times of process initiation and completion
are controllable, observable or otherwise important. That is,
the system can be characterized by the distribution of the first
passage or the escape time between the release at i = 0 at t = 0
and the completion at i = L. Analysis of this distribution
and showing its very simple limiting behavior is the main
contribution of our work.

We note that, even though a lot is known about the
first passage times in different scenarios [13–19] and about
temporal dynamics of KPR schemes [10, 11, 20], to our
knowledge, the distribution of the first passage time for KPR-
type process has not yet been analyzed rigorously and little
is known regarding how this first passage time depends upon
biochemical parameters such as system size and reaction rates.

2. Results

In the following subsections, we provide analytical solution
for the Laplace transform of the completion time distribution
for the full model followed by precise analyses of three
different cases of the gKPR scheme depicted in figure 1, each
corresponding to a different continuous time/discrete space
Markov chain with exponential transition times (our results
can be generalized to the case of non-exponentially distributed
transition times using the methods of [21]). First is a normal
random walk process (that is γ = 0) with an absorbing
boundary at i = L and a reflecting boundary at i = 0. This
model is denoted as the transmission mode (TM) process [13].
The second model is the directed KPR (dKPR) scheme where
(k > 0, r = 0, γ > 0). The third model is the full gKPR
process, where all rates are non-zero. For each model, we
provide exact solutions for the escape time distributions in the
Laplace domain and explicit expressions for the mean (μ) and
variance (σ 2) of the escape times. By considering the squared
coefficient of variation, CV2 ≡ σ 2/μ2, for these processes
(see figures 3 and 5), we explore how these distributions
change as the system parameters are adjusted and expose the
fact that all three processes exhibit similar, yet not identical,
behavior. In particular, we find that all three processes
exhibit sharp transitions from near-deterministic (CV2 � 1)
to exponential (CV2 = 1) completion times distribution as
the critical parameters change, but that the actual location of
this transition differs between the TM and dKPR processes.
Furthermore, we observe that all these processes have the
same limiting behaviors on either side of the transition, and
that the transition from one behavior to the other becomes
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sharper as the system size increases. Finally, in subsections 2.6
and 2.7, we also numerically explore the first passage time
properties for more complicated cases where the reaction
rates are site dependent and where more complicated reaction
events are possible. For these processes, we again observe the
same simplifying behavior in the process dynamics and sharp
transitions that depend on the size of the system (see figures 8
and 9).

2.1. Analytical solution of the general model

Let the vector p = [p0(t), p1(t), . . . , pL(t)]T denote the
probabilities of each state in the kinetic diagram shown in
figure 1. This distribution evolves according to the master
equation (ME), which can be written: ṗ(t) = Ap(t), where
the infinitesimal generator matrix A is

Aij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−k for i = j = 0,

−k − γ − r for 0 < i = j � L − 1,

γ + r for (i, j) = (0, 1),

γ for i = 0 and 2 � j � L − 1,

r for i = j − 1 and 2 � j � L − 1,

k for i = j + 1 and 2 � j � L − 1,

0 everywhere else.

(1)

By applying the Laplace transform,

Pi(s) =
∫ ∞

0
pi(t) e−st dt, (2)

one can convert the ME to a set of linear algebraic equations:

(s − A)P(s) = p(t = 0) = [1 0 . . . 0]T . (3)

Note that this equation includes the specification of the initial
condition, pi (t = 0) = δi,0, where δ is the Kronecker delta.

We now construct a general solution for this equation in
the form

Pi(s) = C1λ
i
1 + C2λ

i
2. (4)

Inserting this into the expression for 0 < i < L − 1, one finds
that the space-independent parameters λ1,2 satisfy

k

s + k + γ + r
+

r

s + k + γ + r
λ2

μ − λμ = 0. (5)

Similarly, the coefficients C1 and C2 must obey the equations
for P0(s) and PL−1(s) in (3), which can be written as

(s + k)(C1 + C2) = 1 + r (C1λ1 + C2λ2)

+ γ

(
C1

[
1 − λL

1

1 − λ1
− 1

]
+ C2

[
1 − λL

2

1 − λ2
− 1

])
(6)

C1λ
L−1
1 + C2λ

L−1
2 = k

s + k + r + γ

(
C1λ

L−2
1 + C2λ

L−2
2

)
, (7)

where we have applied the geometric series identity,∑L−1
i=1 λi = 1−λL

1−λ
− 1.

Since pL(t) is the cumulative probability that the system
has reached the absorbing state, the first passage time
probability density, f (t) = dpL(t)/dt , can be written in the
Laplace domain as

F(s) = kPL−1(s). (8)

Once this quantity is known, all uncentered moments of the
escape time are easily derived as

T (m) =
∫ ∞

0
tmf (t) dt = (−1)m

dmF(s)

dsm

∣∣∣∣
s=0

. (9)

With this in mind, we now consider the three special cases in
the following subsections.

2.2. Transmission mode (TM)

The first case to be considered is the transmission mode:
the continuous time, discrete space random walk, where the
process can only move forward (with rate k) or backward
(with rate r) to its nearest neighbor. Applying the boundary
conditions as expressed in equation (7) yields the expressions
for C1 and C2:

C1 = 1

(s + k − rλ2)
[

λ2−1
λ1−1 − (

λ1
λ2

)L] and C2 = −C1
λL

1

λL
2

,

(10)

where λ1 and λ2 are obtained from equation (5):

λ1,2 = s + k + r ±
√

(s + k + r)2 − 4kr

2r
. (11)

Following simple algebra, the Laplace transform of the first
passage time probability density function (PDF) then becomes

F(s) = C1kλL−1
1

(
1 − λ1

λ2

)
, (12)

from which all moments of the first passage time can be
extracted. In particular, the mean escape time and the
coefficient of variation can be written as

μTM = 1

k

L − (L + 1)θ + θL+1

(1 − θ)2
, (13)

CV2
TM = L − 4θ − (L + 1)θ2 + 4(L − Lθ + 1)θL+1 + θ2L+2

(L − Lθ + θ [θL − 1])2
,

(14)

where we have used the definition: θ = r/k. For a
deterministic process, CV = 0, and for an exponentially
distributed one, CV = 1. This makes the coefficient of
variation a useful property characterizing a distribution.

Figure 2(A)–(C) shows the effects that changes in the
parameters θ and L have on the distribution of the escape
time. In order to show the distribution for diverse parameters
simultaneously, time has been rescaled by the mean μ for
each curve, τ = t/μ. This leads to the probability density
f (τ) = μf (t). Figure 2(A) shows that, for a fixed L, as θ

increases, the distribution becomes broader and approaches an
exponential distribution, while as θ decreases, the distribution
approaches a �-distribution, �(L, 1/k). In order to quantify
these behaviors, we provide the trends of the mean and the
coefficient of variation for the corresponding regimes.

μTM(L, θ) ≈
{
θL−1/k for θ � 2,

L/k for θ � L
L−1 ,

(15)

CV2
TM(L, θ) ≈

{
1 − 2(L − 1)/θL for θ � L+2

L−1 ,

1/L for θ � L
2(L−1)

.
(16)
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Figure 2. Effect of changing θ = r/k and L on the first passage time distribution for the TM process. The time has been rescaled for each
curve as τ = t/μ. (A) First passage time distribution for different values of the backward rate, r, and a fixed length L = 8. Here r ranges
from k/4 to 4k, as denoted in the boxes for the solid lines. The two dashed lines correspond to the limiting cases, θ = 0, ∞ (�-distribution
and an exponential, respectively). (B, C) Effect of changing the length L on the escape time distribution (B) for θ = 0.5 and (C) for θ = 1.1.
For θ < 1, the limiting behavior as L → ∞ is a delta function; for θ > 1, the limiting distribution is the exponential.
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Figure 3. Effect of changing the length and the backward rate, r, on
the mean (A) and the squared coefficient of variation (B) of the TM
process first passage times. The curves have been computed using
equations (13) and (14) and are plotted for increasing values of
L = {1, 2, 4, 8, 16, 32}.

It is worth mentioning that θ = 1 means an unbiased random
walk, while θ < 1(>1) means a walk biased toward the exit
(entry) point.

Figures 2(B) and (C) show that changes in L have
different effects on the escape time distribution depending
upon the value of θ . When θ < 1, the limiting distribution as
L becomes large is a δ-function at t = L/[k(1 − θ)], whereas
for θ > 1, the limiting distribution is an exponential with
μTM = θL+1/[k(1 − θ)2].

Figure 3 illustrates the effect that changes in L and θ have
on μTM and CV2

TM, as given by equations (13), (14). It is
of particular interest to examine these as the chain becomes
long. From equation (14), we see that, as L increases, CV2

TM
converges point-wise to the step function

lim
L→∞

CV2
TM(L, θ) = u(θ − 1) =

{
0 for θ < 1,

1 for θ > 1.
(17)

Numerical analysis of equation (14) around θ = 1 shows that
the maximum slope of CV2

TM (to leading order in L) occurs at
a point that approaches θ = 1 at a rate:

1 − arg max
θ

dCV2
TM

dθ
= 21

2L2
+ O(L−3). (18)

The slope at θ = 1 − 21/(2L2) is

max
θ

dCV2
TM

dθ
= 4

45
L + O(1). (19)

Thus for a given large L, the range of θ over which the first
passage time changes from a narrow �-distribution to a broad
exponential distribution is centered just left of θ = 1, and it
becomes increasingly narrow as L increases.

2.3. Directed kinetic proofreading (dKPR)

The second case we consider is that of directed kinetic
proofreading, in which the backward transition rate is
neglected, r = 0, but the return rate is non-zero, γ > 0.
In this case, the solution is much simpler and can be written as

p̃i(s) = C1λ
i, (20)

where λ is the single root of equation (5) given by

λ = k

s + k + γ
, (21)

and the coefficient C1 is reduced to

C1 = 1

s + k − γ
(

1−λL

1−λ
− 1

) . (22)

In this case, the Laplace transform of the first passage time is
given by

f (s) = kpL−1(s) = k

s + k − γ
(

1−λL

1−λ
− 1

)λL−1. (23)

Defining ψ = γ /k, the mean and the coefficient of
variation of the first passage times can be determined from
equation (23):

μdKPR = 1

kψ
[(1 + ψ)L − 1], (24)

CV2
dKPR = (1 + ψ)2L − 2ψL(1 + ψ)L−1 − 1

(1 + ψ)2L − 2(1 + ψ)L + 1
. (25)

Figures 4(A) and (B) show the effects that changes in ψ

and L have on the distribution of the waiting times for the dKPR
process. As in the previous section, time has been rescaled by
μ for each curve. For a fixed L, as ψ changes, the distribution
again approaches either an exponential distribution or �-
distribution for ψ → ∞, 0, respectively. Unlike for the TM
process, the limiting distribution as L → ∞ is exponential for
any value of ψ > 0.

In figure 5, we illustrate the dependence of μdKPR and
CV2

dKPR on L and ψ . From equations (24) and (25), their
limiting behaviors are

μdKPR(L,ψ) ≈
{
ψL−1/k for ψ � L,

L/k for ψ � L/2,
(26)

4
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Figure 4. Effect of changing ψ = γ /k and L on the first passage
time distribution (normalized by its mean) for the dKPR process.
(A) The first passage time distribution for different values of the
return rate, γ and a fixed length L = 8. The parameter ψ ranges
from 1/64 to 1 as denoted in the figure. The two dashed lines
correspond to the limiting cases, where ψ = 0, ∞. The former
results in a �-distribution, and the latter in an exponential
distribution. (B) Effect of changing the length L on the first passage
time distribution for ψ = 1/8. For any value of ψ > 0, the limiting
behavior as L → ∞ is an exponential distribution.
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CV2
dKPR(L,ψ) ≈

{
1 − 2(L − 1)/ψL for ψ � 2L,

1/L for ψ � 3/L2.

(27)

Furthermore, as L grows, the coefficient of variation tends to
converge point-wise to a step function at ψ = 0:

lim
L→∞

CV2
dKPR =

{
0 for ψ = 0,

1 for ψ > 0.
(28)

As in the TM process, this convergence can be studied by
examining the maximum slope of the coefficient of variation.
Since the second derivative of CV2

dKPR is always negative for
ψ � 0, this maximum slope occurs at ψ = 0. Taking the
derivative of equation (25) at the point ψ = 0 yields an exact
expression for the maximal slope,

max
ψ

dCV2
dKPR

dψ
= dCV2

dKPR

dψ

∣∣∣∣
ψ=0

= L2 − 1

3L
. (29)

These trends are readily apparent in figure 5(B), where as L or
ψ increases, CV2 approaches unity.

2.4. Comparison between the TM and the dKPR models

The TM and the dKPR processes exhibit very similar behaviors
in their first passage time distributions: for a fixed large

L, increases in θ or ψ result in sharp transitions from
deterministic to exponential completion times. Moreover,
the two processes have quantitatively the same limiting
behaviors on either side of the transition: the means and
the CVs are asymptotically the same functions of θ and ψ

[cf equations (15), (16), (26), (27)].
However, the similarity between the limits of both

processes is not exact. For the TM, the deterministic-to-
exponential transition (defined by the point of the maximum
slope of CV2) is near θ = 1, approaching it as L grows [cf
equation (18)], while the same transition for the dKPR is
always at ψ = 0. Moreover, although for both models the
width of the transition region, as defined by the maximum
slope of CV2, is inversely proportional to the system size
(for L � 1), the width is 15/4 times larger for the TM
process. Finally, while the small/large θ and ψ limits are
the same in both models, the terms small and large themselves
have different meanings. In particular, for the TM model
the meanings are effectively independent of the system size
(equation (16)), while for the dKPR model the meanings
strongly depend on L (equation (27)).

2.5. General kinetic proofreading (gKPR)

In this case, all the rates k, γ and r are non-zero, and
equation (5) has two solutions

λ1,2 = s + k + r + γ ±
√

(s + k + r + γ )2 − 4kr

2r
. (30)

By applying the boundary conditions in equation (7), we obtain
the expressions for C1 and C2:

C1 = 1

r(λ2 − 1) − γ
1−λL

1
1−λ1

+
(

λ1
λ2

)L(
r(1 − λ1) + γ

1−λL
2

1−λ2

) (31)

C2 = −C1

(
λ1

λ2

)L

, (32)

with which one can define the Laplace transform of the first
passage time PDF:

F(s) = C1kλL−1
1

(
1 − λ1

λ2

)
. (33)

Once again, it is possible to derive the mean and variance of
the escape time in this scheme

μgKPR = 1

2kψ

[
1 − θ + ψ√

(1 + θ + ψ)2 − 4θ

(
lL+ − lL−

)
θL

+
(
lL+ + lL−

)
θL − 2

]
, (34)

where l± are defined as

l±θ = 1 + θ + ψ ±
√

(1 + θ + ψ)2 − 4θ

2
. (35)

The first passage time variance in this case is given by

k2ψ2σ 2
gKPR = 1

2
θ2L

(
l2L
− + l2L

+

) − 1

+
θ2L−1(θ − 1 − ψ)

(
l2L
− − l2L

+

)
+ 2LψθL−1

(
lL− − lL+

)
2(l+ − l−)

5
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Figure 6. The escape time probability density function for the gKPR scheme. (A) ψ = γ /k = 1/8, L = 8, and variable of θ = r/k. (B)
θ = 1/2, L = 8 and variable ψ . (C) θ = 1/2, ψ = 1/8, and variable L. In all cases, the limiting behavior is an exponential as L, θ or ψ grow.

+ ψ
2θ − L

(
lL− + lL+

)
(−θ + 1 + ψ)θL−2 − θ2L−1

(
l2L
− + l2L

+

)
(l+ − l−)2

− 2ψ(1 − θL−1)

(l+ − l−)2
+

2θL−2ψ(θ − 1 + ψ)
(
lL− − lL+

)
(l+ − l−)3

. (36)

Figure 6 illustrates the probability distribution for the exit
times of the gKPR process for different θ , ψ and L. Based upon
the previous results, it is not surprising that the escape time
distributions converge to an exponential distribution as ψ or θ

is large (cf figures 6(A) and (B)), or to a �-distribution when
ψ = θ = 0. It is also not surprising that the gKPR first passage
time distribution converges to an exponential distribution when
γ > 0 and L is large (cf figure 6(C)). What is surprising is how
neatly the two constituent processes, TM and dKPR, combine
to define the trends of the gKPR process.

Figures 7(A)–(D) show the mean and the coefficient of
variation of the first passage time distributions for this process
under various conditions. In panel A, we plot μgKPR as a
function of θ and ψ for a fixed system size of L = 8, and
panel B shows the corresponding CV2

gKPR. Panels C and D
show the same information, but for L = 16. We see that the
general trend for the increase in the mean passage time and the
convergence of the CV2 are determined in the same manner
as those for the TM and dKPR processes. In particular, we
find that the contour lines for both μgKPR and CV2

gKPR are
almost linear. However, this linearity is not exact—the actual
contour lines for μgKPR(ψ, θ) are slightly concave and the
contour lines for CV2

gKPR(ψ, θ) are slightly convex. From
figures 3 and 5 above, we see that changes in L have a large
effect on the first passage time of the TM and dKPR processes
particularly around θ = 1 and ψ = 0, respectively. In the
gKPR process, these effects correspond to changes in the
endpoints, and therefore the slopes of the contour lines in
figures 7(A)–(D).

With explicit expressions for the mean and coefficient of
variation, one can again examine their limiting behaviors for
growing ψ and θ . In particular, we find that these are equal
to those of the TM and the dKPR models when θ → ∞ or
ψ → ∞, respectively. Further, if L is large and ψ > 0, the
mean first passage is

lim
L→∞

μgKPR ≈ (l+θ)L

2kψ

(
1 +

1 − θ + ψ√
(1 + θ + ψ)2 − 4θ

)
. (37)

Finally, the coefficient of variation, CV2
gKPR, approaches unity

for all values except when ψ = 0 and θ < 1, and
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Figure 7. Effects of parameter variation on the escape time
distribution for the gKPR process. (A) Mean completion time
versus θ and ψ for L = 8. (B) Coefficient of variation, CV2

gKPR
versus θ and ψ for L = 8. (C, D) the same for L = 16.

CV2
gKPR(L, θ)

≈
{

1 − 2(L−1)

(ψ+θ)L
for ψ � 2L and θ � 4,

1/L for ψ � L2

3 and θ � 1
2 .

(38)

This shows that, for large proofreading and backward rates,
the two effects have equal influences on the distribution of
the completion time. However, one should bear in mind that,
again, the meaning of small/large θ, ψ is different.

2.6. Kinetic proofreading with site-dependent rates

The previous subsections have shown that the TM, dKPR
and gKPR processes all exhibit a similar simplification of
behavior when all rates are the same at every intermediate
state in the process. In reality, these rates may vary from
one site to the next since each transition may correspond to a
different physical reaction. In the case of the dKPR, one can
still derive expressions for the first passage time distributions
(the expression is omitted here), and in the case of more
complicated processes, one can explore these distributions
numerically. To illustrate the effects of such variation, we
have numerically explored a gKPR process where every rate
is different, but chosen from some relatively broad lognormal
distribution. Figure 8 shows how such site-dependent rates
affect the coefficient of variation for the gKPR process. Here
all forward and backward rates, {ri, ki, γi} have been generated
from the same distribution, and then the backward rates {γi, ri}
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have been scaled uniformly by a parameter, α that has been
used to adjust the bias from completely forward α = 0 to
backward α � 1/L. From figure 8, we see once again that
there is a sharp transition from when the coefficient of variation
is small at α = 0 to when the coefficient of variation is near one
when the bias is backward. As in the previous systems, this
transition depends upon on the length of the system—longer
lengths correspond to sharper transitions. Furthermore, as the
lengths increase, variation in the parameters appears to be less
important as can be seen by comparing the variation in the
curves corresponding to L = 100 (blue curves) to those for a
smaller length of L = 40 (black curves).

2.7. Multiple leap completion processes

In addition to the gKPR scheme illustrated by figure 1, we
also explore a much more general set of multistep completion
processes where reactions can take the system not just one,
but many steps toward the completion state or toward the
initial state. In terms of chemical processes, these multiple
step jumps could correspond to additions or removals of
different multi-molecular complexes rather than just individual
molecules. In this case, there are now many different
interconnected pathways by which the process can travel from
state i = 0 to i = L. In such systems, the master equation,
dp/dt = Ap(t), has an infinitesimal generator, A given by
A = αB + F, where the ‘backward’ matrix, B, is upper-
triangular and represents reactions that allow the system to
return an arbitrary number of states backward with certain
site-dependent rates, and the ‘forward’ matrix F is a lower-
triangular banded matrix, which allows for different forward

jumps of lengths m < L, again with site-dependent rates.
Since m is constrained to be less than L, there is always
a minimum of about L/m jumps necessary to complete the
process.

In the expression of the infinitesimal generator, α controls
the bias, and we show once again that there is a sharp threshold
between an almost deterministic and an exponential behavior
as α grows. For this general process, we have randomly
generated hundreds of realizations each with different site-
dependent rates taken from a broad lognormal distribution,
and we find that for every such parameter set, there is a
sharp transition from a narrow ‘deterministic’ to a broad
exponential waiting time distribution as can be seen in figure 9.
Furthermore, despite drastic differences in the randomly
chosen parameters, we find that the dynamical behaviors of
the systems are so close that it is difficult to distinguish one
parameter set from the next based solely on the waiting time.
Finally, we find the same dependence of this transition on the
size of the system as has been observed for dKPR and gKPR
processes (compare the process with 40 steps (black lines) to
the process with 100 steps (blue lines) in figure 9).

3. Discussion

The results for the coefficient of variation of the escape
time distribution, as well as the shapes of the distributions
themselves, clearly show that the kinetic proofreading process
and other multistep completion processes have two simple
limiting behaviors as the system size increases. First, when the
overall bias is forward, the completion time becomes narrowly
distributed. Second, when the overall bias is backward, the
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escape time distribution approaches an exponential. Both of
these behaviors are substantially simpler than one could have
expected from the original complex kinetic diagram, implying
that the observable behavior of this complex system can be
approximated accurately by a single-parameter equivalent,
corresponding either to a deterministic reaction or a simple
two-state Markov chain. Interestingly, the approach to
the deterministic regime as the system size grows is well
understood (see, for example, [22] on the discussion of this
effect in the context of reproducibility of responses of rod cells
to single photon capture events). However, the exponential
regime has not been explored extensively before, even though
it is the more robust of the two, emerging for any ψ > 0.

Both limiting behaviors of these systems are explainable
by simple intuitive arguments. First, a system with a
forward bias completes the entire process in a certain
characteristic time, and the relative standard deviation of this
time scales as 1/

√
number of steps, as is always the case for

the addition of independent identically distributed random
variables. In the opposite case, the backward bias ensures
that the process repeatedly returns to the initial state, from
which many independent escape attempts are made. Due
to the independence, the number of such attempts before a
success has a geometric distribution (the discrete analog of an
exponential distribution), and its form effectively defines the
first passage time distribution. In other words, the system tries
to climb out of a free energy well (with the ground state near
the entry point), and escape times in such cases are usually
exponentially distributed.

Although the KPR models most rigorously analyzed
here are relatively simple linear chain processes with site-
independent transition rates, our numerical studies strongly
suggest that the conclusions we make generalize to more
complicated systems. We have shown numerically that our
conclusions do not change when the kinetic rates k, r, γ are
site-specific and/or when the reactions allow for certain states
to be skipped and for there to be many different interconnected
pathways by which the process may be completed. Similarly,
if biochemical processes involve multiple independent
pathways, each with exponential/deterministic waiting times,
then the first of these pathways to complete will also be
exponential/deterministic. Furthermore, first passage times
for higher dimensional random walks also frequently exhibit
simplified dynamics, as has been shown via reductions to a
stochastic model of the genetic toggle switch [23]. Finally,
the ‘free energy well’ argument says that the overall bias
of a system’s motion will control the choice between the
exponential (Markovian) and the deterministic behaviors even
for more complex systems. In particular, it is clear that any
KPR-like system, where a strong backward bias is required
to undo potential mistakes, is likely to fall in the exponential
escape time distribution regime.

Given that so much structural complexity is used to
achieve a very simple dynamics in these processes, it is
natural to ask why the complexity is used at all. One
hypothesis is that such agglomeration of multiple independent
kinetic parameters into a few coarse-grained variables means
that multiple chemotypes can result in the same phenotype.

Thus, the system possesses many situationally sensitive knobs
with which it can compensate for environmental changes and
maintain a few simple behaviors. Such adaptive flexibility has
been observed in a variety of contexts [24–26]. An alternative
hypothesis may be that these extra elements are vestigial
network components to which the cell is insensitive in its
current evolutionary or developmental situation. The current
work provides a starting point to evaluate these possibilities
via parametric sensitivity analysis.

Finally, the fact that the KPR process, as well as many
others, has such simple limiting behaviors has important
consequences for the modeling of biochemical systems. The
bad news is that it is unreasonable to hope to characterize
individual molecular reactions with observations of the input-
to-output responses—many different internal organizations
will result in equivalent observable behaviors. The good news
is that, when attempting to understand such processes in a
wider cellular context, it is often unnecessary to explicitly treat
every individual step—a coarse-grained model with only a
handful of aggregate parameters may be sufficient. This result
suggests an explanation for why simple phenomenological
Markovian reaction rate models of complicated processes,
such as transcription, translation, enzyme activation and
others, have had such a great success in explaining biological
data.

Acknowledgments

We thank N Sinitsyn and N Hengartner for discussions during
early stages of this work. We also thank B Goldstein,
R Gutenkunst and M Monine. We also thank the Center
for Nonlinear Studies for providing an excellent collaborative
environment within Los Alamos National Lab. This work was
partially funded by LANL LDRD program.

References

[1] Faeder J, Hlavacek W, Reischl I, Blinov M, Metzger H,
Redondo A, Wofsy C and Goldstein B 2003 Investigation of
early events in FceRI-mediated signaling using a detailed
mathematical model J. Immunol. 170 3769–81

[2] Hopfield J 1974 Kinetic proofreading: a new mechanism for
reducing errors in biosynthetic processes requiring high
specificity Proc. Natl Acad. Sci. USA 71 4135–9

[3] Yan J, Magnasco M and Marko J 1999 A kinetic proofreading
mechanism for disentanglement of DNA by topoisomerases
Nature 401 932–5

[4] Sancar A, Unsal-Kacmaz L L-B amd K and Linn S 2004
Molecular mechanisms of mammalian DNA repair and the
DNA damage checkpoints Annu. Rev. Biochem. 73 39–85

[5] Blanchard S, Gonzalez J R, Kim H, Chu S and Puglist J 2004
tRNA selection and kinetic proofreading in translation Nat.
Struct. Mol. Biol. 11 1008–14

[6] Jovanovic-Talisman T, Tetenbaum-Novatt J, McKenney A,
Zilman A, Peters R, Rout M and Chait B 2008 Artificial
nanopores that mimic the transport selectivity of the nuclear
pore complex Nature 457 1023

[7] McKeithan T 1995 Kinetic proofreading in T-cell receptor
signal transduction Proc. Natl Acad. Sci. USA 92 5042–6

[8] Rabinowitz J, Beeson C, Lyons D, Davis M and McConnell H
1996 Kinetic discrimination in T-cell activation Proc. Natl
Acad. Sci. USA 93 1401–5

8

http://dx.doi.org/10.1073/pnas.71.10.4135
http://dx.doi.org/10.1038/44872
http://dx.doi.org/10.1146/annurev.biochem.73.011303.073723
http://dx.doi.org/10.1038/nsmb831
http://dx.doi.org/10.1038/nature07600
http://dx.doi.org/10.1073/pnas.92.11.5042
http://dx.doi.org/10.1073/pnas.93.4.1401


Phys. Biol. 7 (2010) 016003 G Bel et al

[9] Rosette C et al 2001 The impact of duration versus extent of
TCR occupancy of T cell activation: a revision of the
kinetic proofreading model Immunity 15 59–70

[10] Liu Z, Haleem-Smith H, Chen H and Metzger H 2001
Unexpected signals in a system subject to kinetic
proofreading Proc. Natl Acad. Sci. USA 98 7289–94

[11] Goldstein B, Faeder J and Hlavacek W 2004 Mathematical and
computational models of immune-receptor signalling
Nat. Rev. Immunol. 4 445–56

[12] Hlavacek W, Redondo A, Wofsy C and Goldstein B 2002
Kinetic proofreading in receptor-mediated transduction of
cellular signals: receptor aggregation partially activated
receptors, and cytosolic messengers Bull. Math. Biol.
64 887–911

[13] Redner S 2001 A Guide To First-Passage Processes
(Cambridge: Cambridge University Press)

[14] D’Orsogna M and Chou T 2005 First passage and
cooperativity of queuing kinetics Phys. Rev. Lett. 95 170603

[15] Shaevitz J, Block S and Schnitzer M 2005 Statistical kinetics
of macromolecular dynamics Biophys. J. 89 2277–85

[16] Lee C L, Stell G and Wang J 2003 First passage time
distribution and non-makovian dynamics of protein folding
J. Chem. Phys. 118 959

[17] Leite V B P, Alonso L C P, Newton M and Wang J 2005
Single molecule electron transfer dynamics in complex
environments Phys. Rev. Lett. 95 118301

[18] Lu T, Shen T, Zong C, Hasty J and Wolynes P 2006 Statistic
of cellular signal transduction as a race to the nucleus by

multiple random walkers in compartment/phosphorylation
space Proc. Natl Acad. Sci. USA 103 16752–7

[19] Xu W L, Xue K and Wang E K 2008 Exploring the origin of
power law distribution in single-molecule conformation
dynamics: energy landscape perspectives Chem. Phys. Lett.
463 405–9

[20] Ninio J 1987 Alternative to the steady-state method:
derivation of reaction rates from first-passage times and
pathway probabilities Proc. Natl Acad. Sci. USA
84 663–7

[21] Bel G and Barkai E 2006 Random walk to a nonergodic
equilibrium concept Phys. Rev. E 73 016125

[22] Doan T, Mendez A, Detwiler P, Chen J and Rieke F 2006
Multiple phosphorylation sites confer reproducibility of the
rod’s single-photon responses Science 313 530

[23] Munsky B and Khammash M 2008 Transient analysis of
stochastic switches and trajectories with applications to
gene regulatory networks IET Syst. Biol. 2 323–33

[24] Stern S, Dror T, Stolovicki E, Brenner N and Braun E 2007
Genome-wide transcriptional plasticity underlies cellular
adaptation to novel challenge Mol. Syst. Biol. 3 106

[25] Ziv E, Nemenman I and Wiggins C 2007 Optimal information
processing in small stochastic biochemical networks PLoS
ONE 2 e1077

[26] Gutenkunst R, Waterfall J, Casey F, Brown K, Myers C
and Sethna J 2007 Universally sloppy parameter
sensitivities in systems biology PLoS Comput. Biol.
3 e189

9

http://dx.doi.org/10.1016/S1074-7613(01)00173-X
http://dx.doi.org/10.1073/pnas.121171998
http://dx.doi.org/10.1038/nri1374
http://dx.doi.org/10.1006/bulm.2002.0306
http://dx.doi.org/10.1103/PhysRevLett.95.170603
http://dx.doi.org/10.1529/biophysj.105.064295
http://dx.doi.org/10.1063/1.1527672
http://dx.doi.org/10.1103/PhysRevLett.95.118301
http://dx.doi.org/10.1073/pnas.0607698103
http://dx.doi.org/10.1016/j.cplett.2008.08.081
http://dx.doi.org/10.1073/pnas.84.3.663
http://dx.doi.org/10.1103/PhysRevE.73.016125
http://dx.doi.org/10.1126/science.1126612
http://dx.doi.org/10.1049/iet-syb:20070082
http://dx.doi.org/10.1038/msb4100147
http://dx.doi.org/10.1371/journal.pone.0001077
http://dx.doi.org/10.1371/journal.pcbi.0030189

	1. Introduction
	1.1. The model
	1.2. The relevant features

	2. Results
	2.1. Analytical solution of the general model
	2.2. Transmission mode (TM)
	2.3. Directed kinetic proofreading (dKPR)
	2.4. Comparison between the TM and the dKPR models
	2.5. General kinetic proofreading (gKPR)
	2.6. Kinetic proofreading with site-dependent rates
	2.7. Multiple leap completion processes

	3. Discussion
	Acknowledgments
	References

