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Regular environmental conditions allow for the evolution of spe-
cifically adapted responses, whereas complex environments usual-
ly lead to conflicting requirements upon the organism’s response. A
relevant instance of these issues is bacterial chemotaxis, where
the evolutionary and functional reasons for the experimentally ob-
served response to chemoattractants remain a riddle. Sensing and
motility requirements are in fact optimized by different responses,
which strongly depend on the chemoattractant environmental
profiles. It is not clear then how those conflicting requirements
quantitatively combine and compromise in shaping the chemotaxis
response. Here we show that the experimental bacterial response
corresponds to themaximin strategy that ensures the highest mini-
mum uptake of chemoattractants for any profile of concentration.
We show that the maximin response is the unique one that always
outcompetes motile but nonchemotactic bacteria. The maximin
strategy is adapted to the variable environments experienced by
bacteria, and we explicitly show its emergence in simulations of
bacterial populations in a chemostat. Finally, we recast the contrast
of evolution in regular vs. complex environments in terms of mini-
max vs. maximin game-theoretical strategies. Our results are gen-
erally relevant to biological optimization principles and provide a
systematic possibility to get around the need to know precisely the
statistics of environmental fluctuations.
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Response networks of living organisms are selected for fast and
reliable adaptation to environmental conditions. If the envi-

ronment is regular, evolution of the response will be driven by the
conditions typically experienced by the organism. Examples for
microorganisms are long-term memory and the anticipation of
environmental changes presented in refs. 1 and 2. For irregular
environmental fluctuations, organisms will try to sense the envi-
ronment and respond by adapting their state. However, if fluctu-
ations are rapid compared to the response time of the organism, it
might be more fit to give up on sensing and behave stochastically
(3, 4). An alternative source of problems stems from the diversity
of the fluctuations. If only two states of the environment are pres-
ent, two specifically adapted responses are easily evolved and
molecularly encoded. This encoding is not possible, though, if
the environment is too complex: Conflicts arise then because re-
sponses well-adapted to some environmental conditions typically
turn out to perform poorly in others. Which response is then
evolved by the organism? How sensitive is the evolved response
to the precise statistics of environmental fluctuations?

Our scope here is to address the previous questions for bacte-
rial chemotaxis, one of the best characterized systems of
response (5). In the absence of chemoattractants, the bacterium
Escherichia coli is propelled by counterclockwise rotation of its
curled flagella at velocities u≃ 20 μm∕s for runs whose duration
is Poisson distributed with mean value τr ≃ 1 s in standard
conditions (6). Clockwise rotation of flagella induces tumbling
of the bacteria for periods of about 0.1 s (7). Tumblings lead
to reorientations of the running direction that make the bacterial
motion indistinguishable from a random walk on time scales of a
few run/tumble events. In the presence of chemoattractants, the
duration of the runs is modulated by the chemotactic pathway (8).
The signaling pathway involves processes of (de)phosphorylation

that transduce the signal from chemoreceptors down to the fla-
gellar motors. The adaptation pathway involves (de)methylation
processes that control the sensitivity of chemoreceptors, which is
regulated to match the level of chemoattractant experienced in
the recent past (9, 10). Detailed models of the chemotactic path-
way are discussed in refs. 11–16, and swimming of synthetic bac-
teria is simulated in ref. 17. The net response of E. coli upon the
binding of chemoattractants to the chemoreceptors is to shift the
rate of transition between clockwise and counterclockwise rota-
tion of the flagellar motors. When adapted, the bacterium will
respond linearly to chemoattractant concentrations eliciting
receptor occupancies below their saturation level. Namely, the
chemotactic response KðtÞ is defined as the bias in the fraction
of time spent by a flagellum rotating counterclockwise (CCW)
vs. clockwise (CW) at time t after a pulse of chemoattractant.
The rate of switching from the running mode (CCW) to the tum-
bling mode (CW) reads

ωCCW→CWðtÞ ¼ 1

τr

�
1 −

Z
t
Kðt − sÞcðsÞds

�
; [1]

where τr is the running time in the absence of chemoattractants
and the integral term controls the bacterial response to the time
history cðsÞ of chemoattractant detections. The chemotactic re-
sponse KðtÞ of E. coli to aspartate (18) is shown in Fig. 1, as ob-
tained by the classical tethering assay (19). The experimental
curve is averaged over several cells, yet its shape is typical of
the bacterial populations. In particular, a generic property of
the curve in Fig. 1 is the fact that the two lobes have equal areas,
that is, the integral of the function KðtÞ is very close to zero. Note
that the response to any signal of moderate intensity is obtained
via Eq. 1 from the chemotactic response KðtÞ, which explains its
fundamental importance.

Questions previously raised for the general case find a specific
formulation for chemotaxis: What are the functional and evolu-
tionary forces shaping the response in Fig. 1? Is the shape reflect-
ing a typical property of chemoattractant profiles experienced by
the bacterium? If not, are there conflicting evolutionary pressures
on the chemotactic response? Why is the integral of the response
function in Fig. 1 so close to zero? Information and previous
works (20–23) relevant to those issues are briefly summarized
hereafter.

As for the environmental conditions where chemotaxis is
selected, bacterial motility peaks at specific space-time phases
of biofilm development (24) and colony growth, namely, at the
entry into the stationary phase (25–27). Nutrients (and cues to
locate them) are then running short and the surrounding colony
is dense; e.g., the interbacterial distance in figure 1 of ref. 27 is
comparable to the bacterial running length. Conditions are harsh
and chemoattractant profiles are far from static, with bacteria in
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the colony vying for scarce nutrients (and orienting cues) that are
available. It is expected that surrounding bacteria will strongly
affect the environmental conditions, i.e., the chemoattractant
profiles. For E. coli in the wild, outside the human gut, it is likely
that nutrients and chemical cues will be scarce and come in inter-
mittent patches subject to strong space-time fluctuations. In
short, it is unlikely that conditions of strong selection for chemo-
taxis be characterized by regular profiles of chemoattractants.

The standard explanation for the zero integral of the response
function in Fig. 1 is that filtering out the low-frequency (namely,
the constant) part of c permits an efficient sensing of its gradients,
irrespective of the background level. This feature is positive, yet
advantages and disadvantages should be gauged considering both
the sensing and the motility aspects of chemotaxis: “Green pas-
tures” (5) should be sensed, but, most importantly for the bacteri-
um, their location should also be reached rapidly and effectively.
Because E. coli must run to measure variations in the concentra-
tions (28), sensing and motility are entangled, as illustrated quan-
titatively by the relation [1]. Compatibility/conflicts between the
requirements of the two functions should then be analyzed
jointly. In fact, as first remarked by de Gennes (21), the current
of bacteria in the direction of a gradient of chemoattractant is
maximized by a positive, single-lobe response KðtÞ: A negative
lobe reduces the bacterial drift upgradient. In other words, the
sensing of gradients of chemoattractant and their climbing
impose conflicting requirements upon the bacterial chemotactic
response. A concrete example of a single-lobe response is pro-
vided by thermotaxis at 40°: High temperature is a strong repel-
lent and the E. coli response is entirely negative so as to descend
the gradients of temperature as fast as possible (29). Additional
conflicting requirements were remarked in ref. 22: At the station-
ary state, ∫KðtÞ ¼ 0 is far from optimal for the localization of
bacteria at high concentrations of chemoattractant, which is
optimized by a single-lobe response KðtÞ.

In summary, sensing and motility requirements upon the che-
motaxis response are generally incompatible: The widest sensing
range has a cost in terms of motility performances. A satisfactory
understanding of the response must then consider both advan-
tages and disadvantages, weighting them in terms of bacterial
fitness and their quantitative dependency on the environment.

This goal is met here, developing the theoretical approach that
yields the prediction shown in Fig. 1, in excellent agreement with
the experiments. Our approach reverses the scheme in refs. 21
and 22: Rather than the best choices of KðtÞ and τr in particular
profiles, we consider all possible chemoattractant profiles for a
given KðtÞ and τr . The latter appears more appropriate to the
variable conditions experienced by chemotactic bacteria, and ad-
ditional motivation, as well as a strong connection with game the-
ory, will be established later. Specifically, for a given bacterial
KðtÞ and τr , we compute the bacterial uptake of chemoattractant
in a generic space-time profile cðx; tÞ. We demonstrate in the next
section that the uptake of chemoattractant is a quadratic form,
defined by the coefficients a½c� and b½c� in Eqs. 8 and 9. The ei-
genvectors corresponding to the lowest eigenvalue of the uptake
quadratic form define the profiles of chemoattractant where the
given KðtÞ and τr perform the worst (least uptake). Each KðtÞ and
τr is thus associated to a certain minimum eigenvalue of the cor-
responding uptake quadratic form; looking for those KðtÞ and τr
such that their minimum eigenvalue is the largest (maximin strat-
egy) yields the prediction in Fig. 1. Finally, in the section preced-
ing Conclusions, we analyze the evolution of the chemotactic
response for a bacterial population in a chemostat at low-dilution
rates, when harsh realistic conditions are obtained. We demon-
strate by numerical simulations and analytical arguments that
the bacterial response maximizing the minimum uptake indeed
emerges from the evolutionary dynamics, providing further
support for the relevance of the maximin strategy to bacterial
chemotaxis.

Theory for the Bacterial Uptake of Chemoattractant
The analytical calculation for the bacterial chemoattractant
uptake as a function of the response function KðtÞ and running
time τr involves the following four steps.

First, the response function KðtÞ is written in the form

KðtÞ ¼ λe−λt∑
k

βkðλtÞk: [2]

The parameter λ−1 controls the rescaling of the time variable,
whereas the βks specify the amplitude and the shape of KðtÞ.
Eq. 2 is quite general because it is just a reorganization of the
expansion in Laguerre orthogonal polynomials: It follows that
any parameterization of the function KðtÞ (including those with
multiple time scales as in ref. 30) can be recast in the form [2].
The advantage of Eq. 2 is that the truncation at a finite order in k
leaves us with a Markovian dynamics in a space enlarged to in-
clude a set of “internal variables.” Internal variables store the
memory of past detections, and their role is qualitatively analo-
gous to that of the concentration of molecules transducing the
signal in detailed models of the chemotactic network. Specif-
ically, let us define internal variables as

mkðtÞ ¼
Z

t

−∞
e−λðt−t0Þðt − t0ÞkcðXt0 ; t0Þdt0; [3]

where Xt is the position of the bacterium at time t. The internal
variables obey a chain of ordinary differential equations
_mk ¼ −λmk þ kmk−1 for k ≥ 1, and the equation for k ¼ 0 pro-
vides the coupling with the chemoattractant signal _m0 ¼ −λm0þ
cðX t; tÞ. If we now truncate at a finite order, the equation for mk
involves only mk itself and lower orders so that we have a closed
set of equations for the mks. The lowest-order truncation of the
expansion [2] that turns out to accurately describe the experimen-
tal kernel KðtÞ features two terms (k ¼ 1; 2). We are thus left with
three parameters: β1, β2, and λ. This reduced setup is the one that
we shall consider for simplicity in what follows. Higher-order
terms can be treated by the same methods, as we demonstrate
in Higher-Order Parameterization of the Response Function of SI
Text showing how the maximin prediction for KðtÞ is (slightly)
modified when higher-order terms are taken into account. Final-

Fig. 1. The experimental chemotactic response KðtÞ to aspartate (circles) as
obtained by measuring the bias (with vs. without chemoattractants) of the
fraction of time that a flagellum rotates counterclockwise (18). Bacteria are
tethered to a glass slide and subject to a pulse of chemoattractant at t ¼ 0.
The average of the signal prior to the stimulus defines the zero level on the y
axis. The positive and the negative lobes of the response have approximately
equal area, which is the property of major interest here. The solid line is our
prediction [10] of the maximin strategy that allows bacteria to maximize
their minimum uptake of chemoattractant in any concentration profile
thereof. The curve shown here corresponds to a value of the bacterium rota-
tional diffusivityD ¼ 0.26 rad2∕s, which is that of a rotation ellipsoid of axes 1
and 0.25 μm, in water at room temperature and is also compatible (see final
section of SI Text) with measurements of the angular deviations in the
tracking of bacterial trajectories (6).
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ly, the parameterization [2] of the response and the methods
described shortly are of general interest for the input-output re-
lations of response networks, their advantage being that the
memory of the system is modeled by preserving the Markov
property of the dynamics enlarged to the internal variables.

Second, the previous Markov property enables us to derive a
Fokker–Planck equation for the probability density Pðx; t; û;mÞ to
have the bacterium at position x at time t, running in the direction
û and with the internal variables having the values m:

∂tP þ u∇ · ðûPÞ þMP

¼ D∇2
ûP −

1 −Q
τr

�
P −

Z
W ðû · û0ÞPðû0Þdû0

�
: [4]

Here, MP ≡∑k¼0∂mk
½ðδk;0cðx; tÞ þ kmk−1 − λmkÞP� accounts for

the dynamics of the internal variables, D is the rotational
diffusivity that perturbs the course of the bacterium, and ∇2

û is
the angular Laplacian. The last term of the second line in
Eq. 4 accounts for the effects of tumblings. The average run time
in the absence of chemoattractant is denoted τr . The variable
Q ¼ ∑k¼1λ

kþ1βkmk denotes the integral term in Eq. 1 for the ex-
pression of KðtÞ in Eq. 2. We recall that Q ¼ ∫Kðt − sÞcðsÞds is
supposed to be small with respect to unity, i.e., the amplitude
of the response matches that of the input signal, e.g., by any
mechanism of desensitization. Remark that rescaling the ampli-
tude of the response does not necessarily imply ∫KðtÞ ¼ 0. If the
latter condition holds, the amplitude of KðtÞ can ideally be
adapted to the rapid part of a signal c ¼ c0 þ c0 featuring a slow
and a rapid (comparable to τr) component. Conversely, if
∫KðtÞ ≠ 0, the condition Q ≪ 1 forces the amplitude of KðtÞ
to scale with the slowly varying background component c0 (usual-
ly larger than the fluctuations) with the consequence that only
fluctuations of sufficient amplitude could be effectively detected.
As it was already mentioned, this feature is less convenient for
sensing, yet it can be advantageous for motility, and responding
only to gradients of sufficient amplitude is not a priori senseless.
In practice, the amplitude of K is left as a free parameter in the
linear theory hereafter (see Response Saturation and Adaptation
of SI Text for nonlinear effects). In Eq. 4, we have assumed for
simplicity that the bacterium responds to the concentration, not
to noisy measurements thereof (see Noisy Response in SI Text for
the general case). We have also neglected the duration of tum-
bling events, but formulas for a finite tumbling time can be found
in Finite Tumbling Time of SI Text. The transition probability for
the changes of direction û0 → û during the tumbling phase is
denoted W ðû · û0Þ. A priori, the function W could be subject
to optimization, and we show in SI Text that using different W s
correlated with the tumbling’s duration can indeed be an advan-
tageous strategy. This modulation is plausible mechanistically be-
cause the longer the bacterium tumbles, the more decorrelated
the input and output directions can be. These effects will be
interesting to analyze in more detail but are expected to be weak-
er than those considered here. We take thenW ¼ ð1þ û · û0Þ∕4π,
i.e., the experimental distribution of turning angles (6), featuring
a preference for the forward direction.

Third, on time scales of a few run/tumble events, the dynamics
is described by the effective equation

∂tnþ ∇ · ðχn∇cÞ ¼ ∇2½D0ð1þ γcÞn� [5]

for the probability density nðx; tÞ≡ ∫ Pðx; t; û;mÞdûdm of the bac-
terium space-time position. Eq. 5 is derived from the Fokker–
Planck Eq. 4 by homogenization methods akin to those of
multiscale models in refs. 31 and 32. In deriving Eq. 5, we use
that the chemotactic modulation is weak, which was already
the assumption in Eq. 1. Because diffusion without any chemoat-
tractant is isotropic, weak modulation implies small departures

from isotropy. Eq. 5 is local, despite the correlations generated
by bacterial runs, because it describes the dynamics only at scales
larger than those correlations, in analogy with hydrodynamic
equations in statistical physics.

Two terms in Eq. 5 are quite familiar: The Laplacian D0∇2n
describes the bacterial diffusion in space, and the term propor-
tional to χ accounts for the drift in response to spatial gradients
∇c of chemoattractant. The bacterial diffusivity reads
D0 ¼ u2∕3σ, and the chemotactic drift coefficient χ ¼
2D0ð3στrÞ−1∫ ∞

0 e
−σtKðtÞdt (these expressions are the special case

d ¼ 3 of the general d-dimensional formulas derived in SI Text),
where σ ¼ ð6Dτr þ 2Þ∕3τr and we recall that D is the rotational
diffusivity. The term proportional to γ in Eq. 5 is physically inter-
preted as a concentration-dependent modification of the bacte-
rial diffusivity. This effect plays a fundamental role in what
follows because γ ¼ 2ð3στrÞ−1∫ ∞

0 KðtÞdt is proportional to the
integral of the response.

The fourth and final step is to consider small concentrations of
chemoattractant and treat perturbatively chemotactic terms in
Eq. 5. The quantity of interest is the uptake of chemoattractant
defined as

S≡
Z

dxdtcðx; tÞnðx; tÞ: [6]

The fields cðx; tÞ of interest for the maximin strategy in the next
section will turn out to decay rapidly in time so that the integral in
Eq. 6 converges. The uptake is a quantitative measure of the
amount of chemical intercepted by the bacterium along its trajec-
tory. The notion of uptake should not be understood as implying
that the chemical is necessarily metabolized by the bacterium: It
is known indeed that a few chemoattractants are just a proxy that
bacteria track but do not directly consume (5). By expanding
Eq. 5 at the lowest order, all the terms involving c are neglected
and only diffusion with coefficient D0 is left. In the next-leading
contribution, modulation due to chemotaxis appears; the corre-
sponding solution is expressed in terms of the Gaussian diffusion
propagator Gðx; tÞ ¼ ð4πD0tÞ−d∕2 exp½−x2∕ð4D0tÞ�. The resulting
expression S ¼ S0 þ S0 for the uptake in Eq. 6 yields

S0 ¼
Z

dsdxGðx; sÞcðx; sÞ; S0 ¼ χa½c� þD0γb½c�: [7]

The component S0 is the chemoattractant intercepted in the
absence of chemotaxis, whereas S0 is the additional (or depleted)
amount due to the chemotactic modulation. The uptake S0
depends on the bacterial diffusivity D0, which depends itself
on the running time τr . The profile cðx; tÞ affects the uptake S0
via the two coefficients

a½c� ¼ 1

2

��Z
∞

0

ds∇cðX s; sÞ
�
2
�

Wt

; [8]

b½c� ¼
�Z

∞

0

ds
Z

s

0

ds0cðX s0 ; s0Þ∇2cðX s; sÞ
�

Wt

: [9]

The angle brackets denote the average over the paths X t that obey
dX t ¼

ffiffiffiffiffiffiffiffi
2D0

p
W t, whereW t is the d-dimensional Wiener process. In

other words, X t is the diffusive trajectory followed by the bacte-
rium in the absence of chemoattractant. The coefficient a½c� is
nonnegative and vanishes for spatially uniform profiles. More-
over, by standard inequalities, if jcj and j∇2cj are bounded, so
are a and jbj. Finally, the bacterium diffusivity D0 enters Eqs. 8
and 9 via the statistics of the diffusing trajectories involved in the
averaging over Wt.

Maximizing the Minimum Bacterial Uptake (Maximin)
Equations 7–9 express the chemotactic contribution to the bac-
terial uptake as a quadratic form of the chemoattractant profile

Celani and Vergassola PNAS ∣ January 26, 2010 ∣ vol. 107 ∣ no. 4 ∣ 1393

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

http://www.pnas.org/cgi/data/0909673107/DCSupplemental/Supplemental_PDF#nameddest=STXT
http://www.pnas.org/cgi/data/0909673107/DCSupplemental/Supplemental_PDF#nameddest=STXT
http://www.pnas.org/cgi/data/0909673107/DCSupplemental/Supplemental_PDF#nameddest=STXT
http://www.pnas.org/cgi/data/0909673107/DCSupplemental/Supplemental_PDF#nameddest=STXT
http://www.pnas.org/cgi/data/0909673107/DCSupplemental/Supplemental_PDF#nameddest=STXT


cðx; tÞ. The kernel of the quadratic form carries the information
on the bacterial parameters, i.e., response function KðtÞ and
running time τr . For each choice of these parameters, the kernel
of the form has a minimal eigenvalue and eigenvector, i.e., a
chemoattractant profile that gives the minimum uptake for those
bacterial parameters KðtÞ and τr . As we detail in SI Text, the
calculation of the minimal eigenvalues is feasible analytically. In-
deed, by taking the Mellin transform in time and expanding over
associated Laguerre polynomials in the space variable, the kernel
of the uptake quadratic form is reduced to a form diagonal in the
Mellin variable s and tridiagonal in the indices of the Laguerre
polynomials. Furthermore, the tridiagonal reduces to diagonal
for γ ¼ 0, with the first diagonal element (and lowest eigenvalue)
equal to zero and all the other elements increasing along the
diagonal and positive. For small γs, the tridiagonal form of the
matrix yields the analytical expression of the lowest eigenvalue
∝ −D0γ

2∕χ. We conclude that the lowest eigenvalue has a local
maximum at γ ¼ 0, and it is checked numerically that the max-
imum is global. The conclusion is valid for all Mellin variables
s; i.e., no particular restriction applies to the field cðx; tÞ. A che-
motactic response KðtÞ with zero integral γ ¼ 0 thus emerges
naturally as the optimality condition of largest minimum uptake
(maximin strategy).

Whereas detailed calculations are reserved to SI Text, the rea-
sons why the maximin strategy naturally yields responses KðtÞ
with zero integral can be understood from Fig. 2. Chemoattrac-
tant profiles that give the minimum bacterial uptake turn out to
be rapidly decaying in time, as intuitively expected. A local anal-
ysis of the profiles is then sufficient to capture the main qualita-
tive features. Responses KðtÞ with a negative integral perform
poorly in escaping from a minimum of concentration because
the effect of negative γ is to reduce the effective diffusivity
(see Eq. 5). Conversely, the increase of the bacterial diffusivity
for positive γ is penalized while trying to keep advantageous
positions around local maxima of c. The minimal uptake for both
previous choices is therefore low. As shown in Fig. 2, the option
guaranteeing the largest minimal uptake for the bacterium is
γ ¼ 0. Note that there is nothing intrinsically wrong with γ ≠ 0:

Such choices ensure, in fact, maximal uptakes larger than for γ ¼
0 yet in specific ranges of natural conditions. In other words, we
are before the chemotactic version of the classical specialist vs.
generalist trade-off, with the former favored in particular condi-
tions and the latter emerging as variability and fluctuations
increase.

Fig. 2 also shows that the lowest eigenmodes of the uptake
quadratic form are largely determined by local properties of
cðx; tÞ (level, slopes, and curvatures) around the initial location
of the bacterium and that they have rather simple space-time
structures (see SI Text). Minimal configurations are thus easy
to generate in natural conditions, e.g., by the combined effect
of environmental inhomogeneities of nutrient patches, the ab-
sorption of chemoattractants by other bacteria in a colony,
and the smoothing effect of diffusion. In other words, the lowest
eigenmodes of the uptake quadratic forms are expected to be
generated with nonvanishing likelihood in natural conditions.

The maximin response is the only one that outperforms motile
nonchemotactic bacteria (same running time τr but K ≡ 0 in
Eq. 1) in all chemoattractant profiles. Indeed, the eigenmode
giving the minimum uptake at γ ¼ 0 is almost uniform, with small
fluctuations that decay rapidly in time. Because in Eq. 8 the
coefficient a½c� ≥ 0, the corresponding uptake is nonnegative
and chemotactic responses with γ ¼ 0 (and chemotactic drift
χ > 0) are the only ones that enjoy this property (see SI Text).

For γ ¼ 0, the uptake is maximized by the largest chemotactic
coefficient χ. Maximizing the expression of χ (see SI Text) at fixed
γ ¼ 0, i.e., β2 ¼ −β1∕2 in Eq. 2, finally yields the maximin predic-
tion

KðtÞ ¼ β1λe−λt½λt − ðλtÞ2∕2�; λ ¼ 4ð1þ 3DτrÞ
3τr

; τr ¼
1

3D
;

[10]

where we recall that D is the rotational diffusivity and the overall
amplitude β1 is a free parameter (see SI Text for nonlinear
effects). The comparison between Eq. 10 and the experimental
data (18) is excellent, as shown in Fig. 1. Eq. 10 agrees with
the intuition that relevant time scales are set by rotational diffu-
sion (28). Indeed, larger D induce shorter run durations τr and a
faster decay of the response KðtÞ, i.e., shorter memory. The mem-
ory time λτr ¼ 8∕3 is a fraction of the running time, as expected.
Including higher-order terms in the expansion [2] yields curves
very similar to Eq. 10, γ ¼ 0 is unchanged, and only numerical
factors relating λ and τr to D are slightly modified (see Higher-
Order Parameterization of the Response Function of SI Text). Small
corrections to Eq. 10 due to the finite duration of tumblings are
computed in Finite Tumbling Time of SI Text. In Rotational
Diffusivity: Comparison with Experiments of SI Text, we also show
that values of the rotational diffusivity D obtained from the maxi-
min relation are compatible with data on the angular deviations
observed in the direct tracking of bacteria (6).

Relations to Game Theory
Maximin strategies are known in game theory (and its diverse ap-
plications to economy, finance, behavioral psychology, etc.) as the
extreme risk-aversion choice of actions (see, e.g., refs. 33 and 34).
Considering zero-sum games with two players (where the amount
won by player I corresponds to the loss of its opponent, player II),
the maximin strategy ensures a gain known as the floor (lower)
value of the game. This value is the gain of player I guaranteed
even when its strategy is disclosed to its opponent, i.e., in the most
hostile and favorable conditions for player I and II, respectively.
The inverted situation and the corresponding strategy is known in
game theory as the minimax strategy, which gives the so-called
ceiling (upper) value of the game (33, 34). In other words, it
is now the opponents’ strategy that gets disclosed and player I
can capitalize on this privilege.

Fig. 2. A pictorial view of the phase space for the chemoattractant bacterial
uptake. The bacterial strategies are compactly represented by a single vari-
able, the integral γ of the chemotactic response, at fixed drift coefficient χ
and running time τr . Three response functions KðtÞ with positive, zero, and
negative γ are shown on the bacterium axis. Chemoattractant profiles are
also summarized by a single variable that condenses the information on
the local chemoattractant profile around the bacterial location (a relevant
proxy is the ratio b∕a of the two coefficients appearing in Eqs. 8 and 9).
Responses KðtÞ with a negative integral perform poorly in escaping from
a minimum of chemoattractant concentration, yet they are advantageous
in keeping the bacterium localized around a maximum. The opposite holds
true for positive γs. Extreme values of γ are thus ensuring high uptakes in
some particular conditions, yet they perform poorly in others. The orange
line shows the minimum uptake of chemoattractant for each choice of
the bacterial response; the maximum among these minima is shown by a cir-
cle. The latter gives the response KðtÞ that guarantees the highest minimal
uptake irrespectively of the chemoattractant profile that the bacterium will
experience. This maximin strategy yields a chemotactic response KðtÞ having
zero integral γ ¼ 0, as the experimental one in Fig. 1.
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Our problem can be formulated as a game by introducing an
opponent player (dubbed “nature”) to the individual bacterium.
The opponent represents all the actors shaping the statistics of
the chemoattractant fields cðx; tÞ experienced by the individual
bacterium. These actors include both the environment and the
rest of the colony that surrounds the bacterium. As explained
in the Introduction, environmental conditions where chemotaxis
is selected are hostile and bacteria in the colony vie for a limited
amount of resources. Chemoattractants are therefore expected to
be scarce and actively deformed by the colony. This competitive
action of the colony on the chemoattractant field cðx; tÞ is what
should be understood as the “strategy of nature.” The individual
bacterium opposes to the strategy of nature its own strategy,
which consists of the choice of the chemotactic response KðtÞ
and running time τr . The conflicting goal of the strategies of na-
ture and the individual bacterium is maximizing their respective
uptake of chemoattractant. The zero-sum condition on the game
is natural to interpret when the chemoattractant is consumed by
bacteria, because the amount taken up by one bacterium will not
be available for the rest of the colony (and vice versa).

Minimax strategies can now be formulated for the chemotactic
game against nature. The upper value of the game is obtained
in the following situation: “Nature” can shape an arbitrary
chemoattractant profile, yet the profile is “known” to the individ-
ual bacterium, which adapts its response to that particular field.
These conditions are analogous to those considered in refs. 21
and 22 (where the bacterial uptake was maximized for a given
chemotactic profile), and Best Bacterial Response to Given
Chemoattractant Profiles (Minimax) of SI Text shows indeed that
minimax responses are single-lobe, as in refs. 21 and 22. The
distinction mentioned in the Introduction between regular vs.
irregular environments appears then to relate to the game-theo-
retical differences between minimax vs. maximin. In the former
case, the strategy of nature is known to the bacterium in the sense
that environmental conditions are stable enough to be “learned”
in the evolution of the response. Conversely, for complex fluctu-
ations of the environment, the bacterium should expect to face
with its strategy of response any possible natural condition.
Experiments (25–27) and the agreement in Fig. 1 indicate that
the maximin strategy is the one relevant to bacterial chemotaxis.
The asymmetry between the two players in the maximin strategy
is intuitive, because if an individual bacterium’s strategy out-
performs the others, it will invade the colony and will then be
known by its clones that populate the colony.

MaxiMin Strategy from Evolution in a Chemostat
This section will demonstrate the emergence of the maximin
strategy from Darwinian selection, under mild conditions on
the relation between fitness (increase in biomass) and chemoat-
tractant uptake.

The E. coli life cycle alternates between nutrient-rich phases in
the human body and periods spent in the environment. Flagella
are not lost in humans probably because motility is useful for rea-
sons other than chemotaxis. One notable possibility is aerotaxis,
because E. coli comprise about 0.3% of the bacteria in the gut and
the vast majority of other microorganisms are strictly anaerobic,
so that the E. coli niche should be at the periphery, where oxygen
is available. The sense from experiments (25–27) is that chemo-
taxis is under selection in the phase outside of the human body,
where nutrients (and cues to locate them) are scarce. The result-
ing qualitative picture is that nutrient-rich phases alternate with
bottlenecks where chemotaxis is crucial for chasing patches of
nutrients needed for survival.

The population dynamics during bottlenecks is conveniently
analyzed by considering a chemostat in the regime of low nutrient
influx. In Fig. 3 we show the results of numerical simulations of
bacteria endowed with different chemotactic responses to a
chemoattractant, which we suppose for simplicity to be also a lim-

iting nutrient consumed by the bacteria. The average density of
each bacterial species evolves according to Monod’s equation,
whereas the average nutrient concentration results from the bal-
ance between inflow and consumption. At variance with classical
models of the chemostat (see ref. 35), we consider explicitly the
presence of random space-time fluctuations due to the localized
absorption by individual bacteria. These fluctuations are charac-
terized by a typical time scale of a few seconds, which is set by the
bacterial uptake. The correlation length scale results from the
balance between nutrient diffusion and uptake and is of the order
of a few tens of microns. In the harsh low-dilution regime, the
active absorption by bacteria makes concentration fields that
are characterized by a large number of local minima and maxima
that vary rapidly in time. The major source of variability in the
uptake is the local “curvature” term b½c� in Eq. 9. The dependency
between growth and uptake rates is assumed to have a Michaelis–
Menten form [derived systematically in Droop’s model (35)]. The
actual form is not determinant, as long as the growth rate is an
increasing, concave function of the uptake rate. The latter prop-
erty is key in penalizing wide fluctuations in the uptake typical of
chemotactic responses with nonzero γs (see Fig. 3).

Let us indeed consider two situations characterized by the
same average uptake but different widths of its fluctuations.
By Jensen’s inequality, the concavity of the relation between
growth rate and uptake makes the average growth rate higher
for the situation where fluctuations are more reduced. Fig. 3
and the arguments presented in SI Text show that different
response functions lead indeed to a competition as that just
described. Because responses with γ ¼ 0 have the smallest fluc-
tuations, they finally invade the bacterial population (see Fig. 3).

Fig. 3. Competitive exclusion in the chemostat. The nutrient concentration
has a mean value hci≃ 1 μM. Fluctuations have an intensity of 10% with re-
spect to the mean, correlation length 40 μm, and correlation time 5 s. The
color coding is red for γhci ¼ −0.04, orange for γhci ¼ −0.02, yellow for
γ ¼ 0, and light and bright green for γhci ¼ 0.02 and γhci ¼ 0.04, respectively.
Other parameters are D0 ¼ 400 μm2∕s and χhci ¼ 40 μm2∕s. (A) The probabil-
ity density function of the uptake rate _S (h_Si ¼ 2 · 105 molecules∕cell s). Note
that the excursions increase with γ and that the probability density functions
are nearly identical for γ and −γ. (B) The functional dependence of bacterial
growth rate on the uptake rate is μ ¼ μmax

_S∕ð_Sþ _S⋆Þ, with μmax ¼ 1.8 h−1 and
_S⋆ ¼ 106 molecules∕cell s. The full circle marks the point where the growth
rate equilibrates the chemostat dilution rate 0.3 h−1. (C) Average growth rate
hμð_SÞi. The curve has a global maximum at γ ¼ 0. The empty circle (below the
yellow one) denotes the growth rate for nonchemotactic bacteria. (D) Popu-
lation dynamics showing that bacteria with γ ¼ 0 exclude all competitors and
reach a final density that equals the total bacterial density (full black line).
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Additionally, the effect of concavity increases as the average
uptake rate diminishes, so that the harsher the environmental
conditions, the more effective is the selection process that makes
the maximin strategy emerge.

Conclusions
A consequence of our results is that bacterial chemotaxis appears
to be selected in chemoattractant profiles where local gradients
vary appreciably in space and time. Strong fluctuations in the
gradients justify the need for their effective detection, which goes
well with the qualitative standard argument that zero-integral
responses are good for sensing. Quantitative points brought here
are as follows. First, we considered the effects of the response
function’s choice upon the amount of chemoattractant inter-
cepted by the bacterium and not separately on sensing and mo-
tility performances, which is crucial because the two functions are
strongly coupled in E. coli. Second, because E. coli natural con-
ditions are highly variable, we explicitly considered the depen-
dency on the environment and showed that the experimentally
observed response ensures the largest minimum uptake in any
environmental condition (maximin). Third, the maximin was
shown to be the only response that always outperforms motile
but nonchemotactic bacteria, justifying chemotaxis as compared
to shutting off the signaling pathway and letting the bacterium
diffuse randomly. Finally, in the example of the chemostat we
showed how the maximin conditions can emerge from Darwinian
selection under mild conditions on the relation between uptake
and fitness (increase in biomass). Note that the need of strong
environmental fluctuations for a zero-integral response also
agrees with the remark in ref. 36 that no double-lobe responses
emerge from in silico evolution in regular and static profiles of
chemoattractants.

The generality of our methods makes them applicable to other
biological systems. The unique aspect is that optimization is not
sought on average but in the most severe environmental condi-

tions. The advantage of the maximin formulation is that it avoids
the usual obstacle that the statistics of the environmental fluctua-
tions ought to be known and that the optimal solution will depend
on that statistics. The example of the chemostat discussed here
illustrates one possibility for the maximin conditions to emerge
from Darwinian selection; it will be of interest to analyze the
same issue in other situations.

We conclude with a few remarks on the classical observation
that clonal colonies feature diversity in their motility (37), which
stems from the small number of molecules in the chemotactic
pathway (38). As shown in the section on game theory, the
dynamics of a whole colony was condensed here into a single ad-
versarial player, similarly to mean-field models in physics, which
usually provide only approximate predictions for fluctuations. Yet
our results suggest that the diversity in a population should be
extremely weak in the integral of the response γ and stronger
in the memory λ and the running time τr . Indeed, variations in
the rotational diffusivity D of individual bacteria are
expected at the level of both thermal (6) and mechanical (39)
contributions. It is known that the diversity of τr is appreciable;
it will be of interest to gather experimental data on the correla-
tions among variations in τr and those inD and λ. More generally,
experiments aimed at quantifying the diversity of the chemotactic
response itself and its evolution in well-controlled environments
would be highly valuable. One could, in particular, analyze
changes and evolution of the bacterial response in random envi-
ronments with prescribed statistics. Data will bring additional
information and permit us to refine our understanding of the
optimization principles at work in shaping biological responses
to complex environmental fluctuations.
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