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Abstract We propose predictive information, that is, information between a long past of
duration T and the entire infinitely long future of a time series, as a general order parameter
to study phase transitions in physical systems independently of the underlying dynamics. It
can be used, in particular, to study nonequilibrium transitions and other exotic transitions,
where a simpler order parameter cannot be identified using traditional symmetry arguments.
As an example, we calculate predictive information for a stochastic nonequilibrium dynam-
ics problem that forms an absorbing state under a continuous change of a parameter. The
information at the transition point diverges as ∝ logT , and we calculate the expression for
a smooth crossover to ∝ T 0 away from the transition.

Keywords Phase transitions · Information theory · Subextensive scaling

1 Introduction

The theory of critical phenomena and the emergent notion of universality was one of the
singular developments of physics in the twentieth century. With a known order parameter
and symmetries of the problem, calculation of long-range, measurable behaviors of equilib-
rium physical quantities becomes a rather straightforward task. The success has turned out
to be hard to replicate for nonequilibrium systems and systems where symmetry properties
are similar in the phases on both sides of the transition [1]. Here it is often unclear which
quantity can serve as a good order parameter, and the developed theoretical machinery does
not apply. Where progress has been made, order parameters have been very specific, mak-
ing it difficult to identify universal properties. For example, in reaction-diffusion problems
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with absorption, one commonly uses linear superposition of particle concentrations as or-
der parameters [2, 3], while particle current is a better choice for jamming problems [4].
Further, the order parameters often have nontrivial relations to easily observable quantities.
For example, phase transitions in some systems with dynamic heterogeneities often must
be described with four-point correlation functions of particle densities [5], or a multitude of
correlation functions [6, 7]. Similarly, dynamical phase transition require one to study the
space of trajectories instead of the state space [8]. The latter approach, known as the method
of large deviations, can be modified to describe glassy systems [9–11].

Whatever the choice, the order parameter is a statistics averaged over a distribution of
microscopic states. A continuous or discontinuous change in its value at a transition indicates
a similar change in the underlying probability distribution. Therefore, it is natural to shift
attention to the distribution itself. For example, one can analyze the spectrum of the operator
that controls the evolution of the probability distribution [12], or work directly with the
stationary state [13]. In this paper, we focus on the distribution of a nonequilibrium system
as it converges to the steady state.

Intuitively, different phases (often with different symmetries) manifest themselves by
changes in our ability to use local experimental measurements for long-range predictions.
For example, nonzero magnetization in an Ising magnet allows us to predict with some cer-
tainty orientation of far away spins based on the value of the spin at the origin. Similarly,
different crystalline phases of solids have different density autocorrelation functions, and
hence existence of an atom at the origin translates into different predictions about the pres-
ence of an atom a certain distance away. Then instead of a specific statistics characterizing
the predictability, namely the order parameter, it might be useful to study one’s ability to use
local measurements to predict states of the rest of the system directly.

This prediction ability is naturally quantified using the language of Shannon’s informa-
tion theory [14]. In previous work, we have termed it the predictive information [15, 16].
Briefly, in information theory, the total uncertainty in a system specified by a state x ∈ X,
dim x = N , is measured by the (differential) entropy,

S[X] = −
∫

dNxP (x) log2 P (x). (1)

Then observing a state of another variable y ∈ Y , dimy = M , may reduce the uncertainty
about x, and hence provide the information about it

I [X;Y ] = S[X] − 〈
S[X|Y ]〉

Y
=

∫
dNx dMy P (x,y) log2

P (x,y)

P (x)P (y)

=
〈
log2

P (x,y)

P (x)P (y)

〉
X,Y

= I [Y ;X]. (2)

Importantly, I [X;Y ] depends on the entire probability distribution P (x,y), but not just on
its specific statistics, and it is zero iff X and Y are statistically independent.

One can consider X and Y to be states of a physical process, such that X are the measured
quantities, and Y are the quantities that one wants to predict [15]. For example, X can be
the state of spins on one segment of an Ising chain, and Y be the state of spins far away.
Similarly, for time series and for non-equilibrium processes, X can be the past of the process
of duration N , and Y part of its future of duration M . Then the information becomes the
predictive information:

Ipred(N,M) = I [X;Y ]. (3)
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Since the quantification of the intrinsic state of the system should not depend on which spe-
cific set of variables Y one wants to predict, it makes sense to define predictive information
as

Ipred[X] ≡ Ipred(N) = lim
M→∞

I (N,M). (4)

That is, one quantifies how much information the local observations X provide about an
entire, infinitely large physical system. The predictive information is an averaged quantity.
Thus it can depend only on the length N and the initial distribution at the beginning of time
series. In our notation, the latter dependence is assumed but not stated. This is because unless
there is explicit symmetry breaking, the infrared behavior of the system is not affected by
the initial conditions. Therefore, we expect the asymptotic behavior of Ipred to be, up to a
constant, only a function of N . Indeed, we will demonstrate this in the subsequent Sections.

Predictive information is subextensive, limN→∞ Ipred(N)/N = 0, for stationary processes
[15], and it is function only of subextensive components of the involved multivariate en-
tropies. It tends to a handful of universal behaviors for large systems, N → ∞, intu-
itively correlating with the complexity of the underlying physical process. In particular,
limN→∞ Ipred(N) = const indicates an easily predictable deterministic, or a short correlation
length probabilistic dynamics (“simple” long range prediction can be perfect, or it is impos-
sible, respectively). For example, below Tc in an Ising ferromagnet, the entire prediction is
limited to knowing which of the two states (up or down) the entire system is in, and hence
the predictive information is, at most, a bit. Further, limN→∞ Ipred(N) ∝ logN is indica-
tive of a second order equilibrium phase transition (power-law decaying correlations allow
for complex, multiscale, partially predictable patterns over very long distances). Finally,
limN→∞ Ipred(N) ∼ Nα , α < 1, N → ∞, may correspond to more exotic phase transitions
with infinite-dimensional order parameters, but this case is not well understood.

The dependence of Ipred on the full underlying probability distribution and the relation to
phase transitions make it natural to explore Ipred as a general order parameter, also useable in
the nonequilibrium context. In fact, related properties of predictive information and similar
quantities has been explored repeatedly in different contexts, such as defining complexity of
a time series [15, 17–20], finding meaningful information in data [16, 21–23], or studying
quantum entanglement [24], or thermodynamics of prediction [25]. However, we are not
aware of calculations of predictive information for nonstationary processes, where P (x) is
explicitly or implicitly time dependent. Further, even for equilibrium systems, the transition
between Ipred = const and Ipred ∝ logN in the vicinity of a phase transition has not been
studied explicitly.

In this paper, we study predictive information in a context of a simple nonequilibrium,
continuous-time Markov process, which ages and develops an absorbing state at a certain
critical value of a parameter. This process can be viewed as a toy model, which is likely to
possess some features of more complex systems. We calculate the expression for predictive
information at the critical point and, for the first time for any system, near the critical point.
The calculation reveals the need to modify the definition, Eq. (4), to remove an ultraviolet
divergence emerging due to the continuous-time nature of the process. Similar modifications
will likely allow extension of predictive information methodology to multidimensional sys-
tems. We demonstrate explicitly the logarithmic divergence of Ipred at the transition, and we
show that the divergent term in the information is insensitive to temporally local, invertible
transformations of the state space. This makes predictive information, and specifically its
divergent term, a great candidate to characterize nonequilibrium phase transitions.
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2 The Model

We consider a Markovian system governed by the following Langevin equation:

∂tx(t) = −x
(
x2 + τ

) + √
2σ |x|α/2η, (5)

x(t = 0) = x0, sampled from P (x0) ≡ P0, (6)

where 〈η(t)η(t ′)〉 = δ(t − t ′). We will treat this equation in the Ito sense. Without the noise
term, x relaxes from the initial value x0 to either 0 or ±√

τ , depending on if τ > 0. The tran-
sition happens at τ = 0. For large noise near x = 0 (that is, small α), x gets kicked out from
x ≈ 0 region, and the system equilibrates. For small noise (large α), a near-deterministic
relaxation to the absorbing state at x = 0 persists. This is probably the simplest example of
nonequilibrium, stochastic relaxation dynamics, and it is a natural point for the first anal-
ysis. The model resembles the Simple Exclusion processes and related models describing
Kipnis-Marchioro-Presutti transport of energy [26, 27]. However, the similarity is superfi-
cial since Simple Exclusion models are conservative and 1 + 1 dimensional. Hence they do
not develop an absorbing state and exhibit a very different critical point. Instead, we em-
phasize that, even though our model is one-dimensional, and the noise and the force terms
are not explicitly time-dependent, this is a true nonequilibrium phase transition that emerges
because the variance of the noise is time-dependent and is allowed to go to zero with x. This
reduction of variance is an indication of aging in the model. In turn, this implies that the
system is capable of remembering its past, which could be interpreted as the result of long-
range effective interactions. This aging, and hence absence of stationarity, means that the
predictive information is not necessarily subextensive in this system, making the problem
richer.

The model in Eq. (5) is manifestly a toy model, without a direct relation to realistic
systems. Nonetheless, some intuition can be obtained since individual terms in Eq. (5) are
easy to understand. Specifically, the force is the lowest order expansion of any smooth force
around the absorbing point x = 0, and hence is quite general. The noise term is also of a
general form that would allow for a phase transition to an absorbing state, and similar noises
have been discussed in the literature [28]. Intuitively, we can view the model as describing
dynamics of magnetization, x, along a line normal to a boundary of an Ising ferromagnet in
some number of spatial dimensions. The coordinate is t = 0 at the boundary, and increases
into the bulk. The deterministic cubic dynamics in Eq. (5) is the usual coarse-grained model
of such ferromagnet. In such a model, the variance of the noise increases with x, and α

would depend on the overall dimensionality of the problem.
Before we commit ourselves to calculating the predictive information for the dynamics

in Eq. (5), it is worthwhile to discuss utility of this exercise for the case when a perfectly
good, simple order parameter exists (x itself). To identify and characterize phase transitions
in more complicated systems, where choice of the order parameter is nontrivial, one needs to
know how such transitions manifest themselves in Ipred. This signature is currently unknown.
Thus to establish predictive information as a general order parameter, it makes sense first
to focus on a system where the transition is identifiable by other means, and then to study
Ipred near the transition, identifying the sought after behavior. Therefore, straightforward
analytical tractability is another argument for the choice of Eq. (5) for the first investigation.

3 Preliminaries

To calculate predictive information, Eq. (3), we discretize the time t , tn = n�t , and xn =
x(tn). We choose �t → 0, and yet N�t = Tp → ∞, and M�t = Tf → ∞, where p and f
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stand for past and future, respectively. Then Eq. (5) is equivalent to the following Markovian
dynamics:

P (xn+1|x0, x1, . . . , xn) = P (xn+1|xn)

= 1√
4π�tσxα/2

exp

{
−[xn+1 − (xn − xn(x

2
n + τ)�t)]2

4σ 2|xn|α�t

}
. (7)

To simplify the notation, we define

Pn|n−1 ≡ P (xn|xn−1), (8)

Pn ≡ P (xn) =
∫

dxn−1P (xn−1)P (xn|xn−1), (9)

Ipred(N,M) ≡ I
[
X = {xi}N−1

i=0 ;Y = {xi}N+M−1
i=N

]
. (10)

Then:

Ipred(N,M) =
〈
log2

P0
∏N+M−1

n=1 Pn|n−1

P0
∏N−1

n=1 Pn|n−1PN

∏N+M−1
m=N+1 Pm|m−1

〉

=
〈
log2

PN |N−1

PN

〉
= I [xN ;xN−1]. (11)

Not surprisingly for a Markovian process, predictive information is the mutual informa-
tion between two successive measurements and does not depend on the length of the future
sequence, M , so that the limit, Eq. (4), is trivial. However, the information can depend on
N since the system is not stationary, and not time-translation invariant. Specifically, for
small noise, each subsequent x is more narrowly distributed. This allows the information to
increase unboundedly with N , unlike in typical finite-dimensional Markov processes with
constant transition probabilities, where Ipred is always finite [15]. These considerations also
point out that one must take the sequence on N observations starting from exactly the same
time when calculating the averages.

Since x(t) is continuous, xN → xN−1 as �t → 0. The state of the process at the next
time step becomes exactly known, and predictive information diverges. This issue always
arises in the continuous limit of information quantities, and it is well-known in the large
deviation literature in the context of the Kolmogorov-Sinai entropy [29, 30]. However, this
is a superficial ultraviolet divergence, due to the infinitesimally small time delay between
the past and future sequences, whose mutual information we are calculating. Therefore, it is
a boundary effect. Instead, we are interested in studying the infrared behavior. Interestingly,
this interfacial effect has been the primary reason behind the inability to apply predictive
information ideas to systems in more than one dimension, where the size of the interface
diverges with the system size. This makes it difficult to disambiguate divergences in pre-
dictive information coming from long-range prediction from those produced by short range
interfacial effects.

We thus need to introduce the cutoff scale into the system, at which predictive informa-
tion is computed, similarly to how one does this in the renormalization group theory. For
this, we redefine predictive information as mutual information between the past of duration
Tp = N�t and the future of duration Tf = M�T , separated by a “scale” gap of duration
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Ts = L�T , which remains finite as �T → 0. That is

Ipred(N,M|L) =
〈
log2

P0
∏N−1

n=1 Pn|n−1PN+L|N−1
∏N+L+M−1

m=N+L+1 Pm|m−1

P0
∏N−1

n=1 Pn|n−1PN+L

∏N+L+M−1
m=N+L+1 Pm|m−1

〉

=
〈
log2

PN+L|N−1

PN+L

〉
= I [xN+L;xN−1]. (12)

Here

PN+L|N−1 =
∫ N+L−1∏

n=N

dxn

N+L∏
m=N

Pm|m−1. (13)

4 Invariance of Predictive Information

From Eq. (12), it is clear that predictive information is invariant under reparameterization
of x. This is a desired property for any potential general order parameter, so that one does
not need to make a specific choice of parameterization of x to study asymptotic properties
of predictive information. However, the states x are pure in the sense that they represent the
system at single moments in time. On the other hand, any experimental device measuring
x(t) will act as a temporal filter F , so that the measured values will be convolutions of
true x’s at nearby time points. While in general the filtered data might not have the same
predictive properties, it is desirable for the nonequilibrium order parameter to be invariant
to a certain class of transformations, namely temporally local invertible filters [15]. In the
following, we propose a precise definition of such transformations.

The filter, represented by F , maps the sequences of true states of the system {x} into
measured data {χ}. A filter describing an experimental device has internal degrees of free-
dom, which influence the measurements. Our notion of a general order parameter refers only
to the underlying dynamics and not the details of the experimental procedure. Therefore, we
propose an idealized scenario in which we require that the filter does not inject additional
information into the dynamics. This means that the extraneous parameters of the mapping
F must be known and the mapping itself must be translationally invariant. In a real-life ex-
periment, this means that we would like to be able to separate the behavior of the observed
system from any artifacts associated with the experimental setup. In general terms, such a
filter can be represented by a convolution kernel L(t − t ′), where all parameters of the func-
tion L are known. Since a convolution mixes the past and the future, the measured data {χ}
is no longer Markovian. We would like to preserve the asymptotic behavior of the predictive
information, therefore we require that the so-introduced statistical dependences are short
lived, i.e. the kernel L(t − t ′) is of compact support or decreases with time exponentially or
faster. This is our definition of temporal locality. We would like to verify to which extent
Ipred calculated for the sequence {x} is the same as Ipred calculated for the sequence {χ}, if
the two sequences are related by such (invertible) local filters.

Since convolutions are reductions in rank, defining invertibility is not trivial and is pos-
sible only for infinitely long data sequences. Therefore, we can define invertibility only in
the t → ∞ limit. To this end, let V = ⊗

n R
n be the space of all temporally discretized,

finite length trajectories, that is the space of all n-tuples of x, n < ∞. Let F : V → V be
a function such that F(RN+ν) ⊂ R

N . That is, a sequence of N data points is defined from
N + ν points through some filtering procedure. We consider this mapping to be invertible if
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the Radon-Nikodym derivative over the set F−1(x ∈ R
N) converges to a delta function for

N → ∞. More specifically, the probability of observing a trajectory {χi}N
i=1 is given by

P
({χj }N

i=j

) =
∫

dN+νxP
({xj }N

j=−ν

) N∏
j=1

δ

(
χj −

∑
k

L(j − k)xk

)

=
∫

dN+νx dNλ × exp

[
−i

N∑
j=1

λj

(
χj −

∑
k

L(j − k)xk

)
+ lnP

({xj }N
j=−ν

)]
.

(14)

Thus invertibility requires that the Hessian matrix of the exponent in this equation diverges,
defining a dominant stationary solution of the corresponding “action”. With this require-
ment, {χi} are simply reparameterizations of {xi}, and predictive information is invariant
under the change (up to O(1) corrections due to the end points of the sequences). While
this requirement is very general, we suspect that, in practice, it will be equivalent to the
asymptotic properties of trajectory-averaged quantities, for which there are already well
established results [31], and hence the divergent component of Ipred is invariant under in-
vertible, temporally local filters. We leave exploration of these conditions to future work,
instead, we provide here the following simple example.

Let F be defined through taking the average between adjacent points, i.e. F({xn}N
n=0) =

{(xn + xn−1)/2}N
n=1. If the underlying dynamics is purely diffusive, for the probability of

observing a sequence of data {χi}N
i=1 we can write

P
({χ}) =

∫
dkP (x0 + k)(2π�t)−N/2

× exp

(
− 1

2�t

N∑
n=1

[
xn − xn−1 + 2(−1)nk

]2

)
(15)

Here, �t is the time separation between adjacent trajectory points, and {x}N
n=0 is the unique

solution to χ = F(x) with the initial condition x0 = x1, i.e., x0 = x1 = χ1, xn = (−1)n−1χ1 +
2
∑n

i=2(−1)n−iχi . Let k = kc + δk and notice that the expression in the above exponent is
quadratic in k. Therefore, we can choose kc to minimize the sum in Eq. (15):

kc =
∑N−1

n=0 (−1)n(xn+1 − xn)

2N
(16)

Thus Eq. (15) becomes

P
({χ}) =

∫
dδkP (x0 + kc + δk)(2π�t)−N/2

× exp

(
− 1

2�t

N∑
n=1

[
(xn − xn−1) + 2(−1)nkc

]2

)
exp

(
−2N

�t
δk2

)
(17)

As N → ∞, by the central limit theorem, kc converges in probability to 0. On the other
hand, the integrand over δk reduces to a delta function, just as we suggested. Thus the
sequence of {x} is uniquely defined, and the predictive information for {χ} is given by the
same equations as for {x}, up to a constant, Eq. (12).
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5 Solving the Model

To calculate predictive information in the model, we first calculate the Green’s functions (the
marginal and the conditional distributions) of Eq. (5). For this, we write the Fokker-Planck
equation corresponding to the Langevin dynamics

∂tp(x, t) = ∂x

[
x
(
x2 + τ

)
p(x, t) + σ 2∂x

(|x|αp(x, t)
)]

. (18)

This equation immediately confirms our earlier statement that p(x, t) = δ(x) is a stationary
state, stability of which depends on the strength of the noise, which in turn is controlled by
α. As a result, the equation can develop a singularity near x = 0. For any positive α, it is
easy to see that the probability current at x = 0 is zero. Physically, this corresponds to the
fact that x = 0 is an absorbing state. That is, once the system is at x = 0, it is trapped there
forever. Thus for x0 > 0, we can consider x(t) > 0 for any t . Further, we seek the solution
for τ > 0, hoping further to analytically continue to the entire real axis of τ . With these
caveats, we make the following simplifying transformations:

τ̄ ≡ β2

σ 2
τ̂ = βτ/σ 2, (19)

t̂ = tτ/β, (20)

ŷ ≡ yτ̂ 1/2 = x−1/β τ̂ 1/2, (21)

f = y−βαp
(
x(y), t

)
, (22)

β = 2/(α − 2), (23)

n = 2(α − 1)/(α − 2). (24)

Then Eq. (18) becomes

ŷn−1∂t̂f = −∂ŷ

[(
ŷn + βτ̄ (n−3)

σ 2
ŷ4−n

)
f

]
+ ∂ŷ

(
ŷn−1∂ŷf

)
. (25)

The initial condition should obey p(ŷ = 0, t) = p(ŷ → ∞, t) = 0. The former condition is
a result of the inverse relationship between x and ŷ, while the latter is due to x = 0 being
the absorbing state.

It is important to discuss the allowed values of α at this point. From Eq. (24), n becomes
divergent at α = 2. This corresponds to a large noise, which hides the phase transition.
On the other hand, for large α, the noise is negligible, and the system is in an effectively
deterministic regime. This happens at n ≤ 3, where the second term in Eq. (25) is suppressed
as τ̄ → 0. Thus we are interested in 3 < n < ∞, which corresponds to 2 < α < 4. In this
regime, the τ̄ term in Eq. (25) is negligibly small, and can be dropped.

With this, we notice that Eq. (25) is the radial part of the diffusion equation in n dimen-
sions. Thus our strategy is to solve it first for n integer, hoping to analytically continue to all
n later on. Assuming an integer n, we rewrite Eq. (25):

∂t̂f = −nf − ŷ∂ŷf + 1

ŷn−1
∂ŷ

(
ŷn−1∂ŷf

)
. (26)

Therefore, f (ŷ) is the radially symmetric part of the solution of the following equation

∂t̂f = −nf − ŷ · ∇f + ∇2f. (27)
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We solve this equation in Appendix A, resulting in:

G(t, y, z) = C(n)zn−1

(
τ̂

2π(e2τ̂ t − 1)

)n/2

×
∫ 1

−1
dλ exp

(
− τ̂

2(e2τ̂ t − 1)

(
y2 − 2yzeτ̂ tλ + z2e2τ̂ t

))
K(λ), (28)

where K(x) is a kernel, which, for integer n, is the Jacobian of the n-dimensional change
of variables from Cartesian to spherical coordinates. We still need to determine it for non-
integer dimensions. For this, we substitute the expression of Eq. (28) in Eq. (26) (for gen-
eral n) and find that it satisfies iff given by

∂2
λ

[(
1 − λ2

)
K(λ)

] + (n − 1)∂λ

(
λK(λ)

) = 0. (29)

To guarantee regularity at λ = ±1 (and in analogy with the integer dimensional cases), we
additionally impose the condition that K(±1) = 0, leading to the solution

K(λ) = (
1 − λ2

) n−3
2 . (30)

The normalization constant C(n) can be determined from the requirement that the inte-
gral over y for a fixed z is unity when t → 0. In the case of an integer n, C(n) is the area of
the unit sphere in n − 1 dimensions. To verify this for any value n, we need to perform the
integration explicitly. To this end, it is convenient to introduce � = [(e2τ̂ t − 1)/τ̂ ]1/2, and
z′ = zeτ̂ t . Then integrating Eq. (28), we get

∫ ∞

0
G(t, y, z) dy = C(n)zn−1

(
1√

2π�

)∫ ∞

0
dy exp

(
− (y − z′)2

2�2

)

×
∫ 1

−1
(
√

2π)1−n�1−n exp

(
−yz′(1 − λ)

�2

)
K(λ)dλ. (31)

We concentrate on the inner integral first. We perform the substitution ξ = yz′(1 − λ)/�2

which leads to

∫ 2yz′/�2

0

(
yz′)− n−1

2 (
√

2π)1−ne−ξ

[
ξ

(
2 − �2ξ

yz′

)] n−3
2

dξ

−−−→
�→∞

(yz)− n−1
2

2π(n−1)/2

∫ ∞

0
e−ξ ξ

n−3
2 dξ = 1

2π(n−1)/2
(yz)− n−1

2 Γ

(
n − 1

2

)
. (32)

By dominated convergence, the limit is valid for any y and all n > 1. (The cases 3 ≥ n > 1
follow from the fact that ξ(2 − �2ξ/yz′) ≥ ξ for 0 < ξ ≤ yz′/�2, while the portion of the
integral in Eq. 32 between yz′/�2 < ξ ≤ 2yz′/�2 converges to 0 as � → 0). Furthermore,
since yz′/�2 controls the convergence in a monotonic fashion, the limit is uniform on any
semi-infinite interval not containing 0. Since the convergence is dominated by a multiple of
(yz)−(n−1)/2, particularly for the values of y close to zero, we recognize the outer integral in
Eq. (31) as a delta function. Therefore, in order to bring the value of Eq. (31) to unity, we
need that

C(n) = 2π(n−1)/2

Γ ((n − 1)/2)
, (33)
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which is the area of the n − 1 dimensional unit sphere when n is integer.
By reverting back to the original coordinate x, we can rewrite Eq. (28) and obtain the

solution in these coordinates. However, for the purposes of the next section, it is more con-
venient to stay in the y space instead. Notice that if we make the substitutions p̃ = y−αβ/2p

in Eq. (18), we obtain

∂t p̃ = − 1

β
∂y

((
τ̂ y + ασ 2

2
y−1 + y5−2n

)
p̃

)
+ σ 2

β2
∂2

y p̃. (34)

The advantage of p̃ over f calculated earlier is that p̃ is a probability distribution. We can
immediately write its Green’s function from Eq. (28) since p̃(t, y) = yn−1f (t, y):

G̃(t, y, z) = C(n)(y)n−1

(
τ̂

2π(e2τ̂ t − 1)

)n/2

×
∫ 1

−1
dλ exp

(
− τ̂

2(e2τ̂ t − 1)

(
y2 − 2yzeτ̂ tλ + z2e2τ̂ t

))
K(λ). (35)

This is the main result of this section, which we will use in order calculate predictive infor-
mation for our model. One can verify by explicit substitution that the expression in Eq. (35)
satisfies the Fokker-Planck equation, Eq. (25), and it reduces to a delta function as t → 0.
Thus it represents the conditional distribution of y given z.

6 Predictive Information for the Model

Predictive information is reparameterization invariant. Thus we can calculate it for y instead
of x and use the expression, Eq. (35), when applying the Eq. (12) to our model. Without loss
of generality, we assume that the initial condition is a delta function. Then the continuous
form of Eq. (12) is

Ipred(t) =
〈
log2

G̃(t̃, y, z)

G̃(t + t̃ , y,w)

〉
, (36)

where w, z, and y are the values of the observable at times 0, t = (N −1)�t , and T ≡ t + t̃ =
(N + L)�t respectively, i. e., w = x

−1/β

0 , z = x
−1/β

N−1 , and y = x
−1/β

N+L . Equation (36) involves
an integral with complex time and τ̂ - dependences. In the following, we would like to find
the leading orders of these dependences. Defining �(t) = [(e2τ̂ t − 1)/τ̂ ]1/2 (cf. Eq. (28)), it
is also convenient to introduce Ξ(t;λ,y,w) = exp[(y2 − 2yweτ̂ tλ + w2e2τ̂ t )/(2�(t)2)], so
that Eq. (35) takes on the form

G̃(t, y, z) = C(n)
(2π)−n/2

�(t)n

∫ 1

−1
dλK(x)Ξ(t;λ,y, z). (37)

Then Eq. (36) becomes

Ipred(t) = n log2
�(T )

�(t̃)
+

〈
log2

∫ 1

−1
dλK(λ)Ξ(t̃;λ,y, z)

〉

−
〈
log2

∫ 1

−1
dλK(λ)Ξ(T ;λ, z,w)

〉
. (38)
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Fig. 1 A plot of Ipred/n for
different values of τ < 0 at
different times T for a fixed t̃ = 1

In Appendix C, we show that the last two terms in Eq. (38) are asymptotically constant when
T → ∞ if t is large and τ̂ is small. Therefore, to the leading order, predictive information is

Ipred(t) ≈ n log2
�(T )

�(t̃)
= n log2

exp[2τ̂ (t + t̃ )] − 1

exp(2τ̂ t̃ ) − 1
. (39)

At the critical point, when the absorbing state is just starting to emerge, τ̂ → 0, this expres-
sion reduces to

Ipred(t) ≈ n log2
t + t̃

t̃
. (40)

This logarithmic growth with the system size t has been anticipated for a critical point in
Ref. [15], but has not been calculated before for any nonequilibrium stochastic dynamical
system. A plot of Eq. (39) is given for different parameter values in Fig. 1.

Notice that the prefactor n = 2(α − 1)/(α − 2) increases with the effect of the noise,
which corresponds to more of partially predictable variability in the dynamics, and hence to
an intuitively higher complexity. Further, as α → 2, or n → ∞, the critical point is smeared
and a non-absorbing steady state emerges for all values of τ . In this limit, the subleading
term in the entropy diverges (or, more precisely, becomes extensive), and hence it would
cancel out in the difference of entropies in Eq. (2), leading to Ipred(t) = const. We can see this
from Eq. (39), since, for large n and negative τ , we have τ̂ ∼ −n and Ipred(t) ≈ n log2[1 +
exp(−nt̃)] → 0 as n → ∞ (notice the importance of the order of the two limits, n → ∞
and τ̂ → 0). Equation (39) also allows calculation of the asymptotic away from the phase
transition. For large negative τ̂ , Ipred(t) = const. For large positive τ , Ipred(t) ∝ t , since
perfect prediction is possible in the absorbing state. This leads to limt→∞ Ipred(t)/t �= 0. This
is in contrast to the equilibrium analysis of [15, 16], where Ipred is always sublinear. This
is also a direct result of the continuous nature of our problem: consecutive measurements
allow higher accuracy description of a known real-valued state of the system (specifically,
x = 0), instead of predicting its (unknown) state. This divergence is not related to the UV
divergence, ∼ log(�t), discussed earlier. We expect it to be present in many model with
absorbing states, aging, or other nonequilibrium phenomena.
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Taken together, these results illustrate that the logarithmic divergence of predictive infor-
mation correctly captures the existence of the phase transition (emergence of the absorbing
state) at τ → 0.

7 Discussion

Predictive information was introduced in Ref. [15] as information between the past and the
future of a time series, or between left and right parts of a physical system. It was argued,
in particular, that the behavior of predictive information as the system size grows can sig-
nal existence of a phase transition. As an example, Ref. [15] calculated the information
numerically for an equilibrium long-range one-dimensional Ising magnet. In the current
work, we argue that predictive information can be used as a general order parameter in
more complicated scenarios, such as in nonequilibrium contexts, where traditional symme-
try arguments fail to identify low-order correlation functions that can serve this role. For the
first time, we calculate predictive information for a nonequilibrium Markov process, which
exhibits a phase transition at certain values of parameters, where a logarithmic divergence
of Ipred develops. Intuitively, this logarithmic divergence is a byproduct of a transition from
Ipred = const to Ipred ∼ t , just like critical phenomena in general are byproducts of transitions
between phases. In equilibrium systems, the constant and the linearly diverging phases are
equivalent, since linear contributions cancel out in the definition of Ipred, Eq. (4). This is not
true anymore in our nonequilibrium problem with aging, and yet the logarithmic divergence
of predictive information still correctly captures this phase transition.

While the logarithmic behavior of Ipred at criticality has been observed previously in
Ref. [16], and stronger divergences were speculated to exist for certain transitions in glassy
systems, it has been unclear how the predictive information transitions from the divergence
at a critical point to a constant far away from it. Our calculations reveal the exact form
of this smooth crossover. To our knowledge, this has not been calculated before, either for
equilibrium or for nonequilibrium systems.

Mathematically, the logarithmic divergence can be explained since the propagator,
Eq. (35), can be written as G̃(t, y, z) ≈ G̃(y/t, z/t) when τ̂ = 0. In fact, we conjecture that
predictive information will exhibit an asymptotically logarithmic behavior for any model
possessing power-law time dependencies, with exponents drawn from a bounded set, even
if such dependencies are not limited to the two-point correlators. This parallels the relation
between the power-law scaling and the collapse of the spectrum of the dynamical operator.
Detection of the latter is not always possible from the measurements of a few correlations
functions, particularly when there is still a gap. However, we believe that it would still lead
to a logarithmic behavior of the predictive information. Therefore, divergence of Ipred may
answer another question. Namely, one typically associates critical phenomena with power-
law scaling of the two-point correlation. As we mentioned in the Introduction, this is not
applicable to a wide range of problems. Thus there is no universally accepted definition
of criticality. Our results suggest that logarithmic (and, more generally, non-analytic) di-
vergence of Ipred may be used as a basis for such definition. As we calculate Ipred in more
systems, we can verify the extensivity of the latter across the spectrum of definitions of
criticality.

One important technical difference between this work and the previous ones is the in-
troduction of an additional “renormalization” scale, L or t̃ , in the definition of predictive
information, so that the information is calculated between the past and the future that are
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separated by a finite distance. This removed the ultraviolet divergences associated with in-
formation at the interface between the past and the future of a trajectory. While this modi-
fication was precipitated by the continuous time/space nature of the stochastic process, we
believe that it will solve additionally difficulties with application of predictive information
ideas to systems with more than one dimension. Indeed, there the main problem is that the
interface between two parts of a system diverges with the system size, and hence the inter-
facial contribution to predictive information diverges even away from a critical point. This
will not happen if direct interfaces are eliminated.

In summary, in this paper, we provide the first example of a direct analytical calcula-
tion of predictive information for a nonequilibrium stochastic process. This example argues
further for using predictive information as a general order parameter for studying phase
transitions.

Acknowledgements This work has been supported in part by a James S. McDonnell Foundation Complex
Systems Grant No. 220020321. We would like to thank HGE Hentschel for stimulating discussions.

Appendix A: Calculating the Green’s Function

Green’s function of Eq. (27) is found easier in the Cartesian coordinates, and the radial
component can be extracted afterwards. Thus we look for the Green’s function of the form

G(t̂; ŷ, ẑ) =
n∏
i

G1(t; ŷi , ẑi ) (41)

where G1(t̂; ŷi , ẑi ) is the one dimensional Green’s function, satisfying

∂t̂G1 = −G1 − ŷ∂ŷG1 + ∂2
ŷG1 + δ(t̂ , ŷ − ẑ). (42)

To solve Eq. (42), it is convenient to consider G̃1 = et̂G1, where G̃1 satisfies

∂t̂ G̃1(t̂; ŷ, ẑ) − ∂2
ŷ G̃1(t̂; ŷ, ẑ) + ŷ∂ŷG̃1(t̂; ŷ, ẑ) = δ(t̂ , ŷ − ẑ). (43)

As usual, we transform into Fourier space:

iωG̃1 + k2G̃1 − ∂k(kG̃1) = e−ikẑ. (44)

If we use the integral multiplier

μ = exp
(−(

iω lnk + k2/2
))

, (45)

we obtain the following simplified form of Eq. (44)

−∂k(kμG̃1) = μe−ikẑ. (46)

Since we are looking for a smooth solution, we expect G̃ = 0 as k → ∞. Therefore, the
correct solution of the above equation is in the form

G̃1(ω, k, ẑ) = k−1μ−1
∫ ∞

k

e−ik′ ẑe−(iw ln k′+k′2/2) dk′. (47)
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Inverting back to the time coordinate, we obtain

G̃1(t̂ , k, ẑ) = ek2/2k−1
∫ ∞

k

e−ik′ ẑe−k′2/2δ
(
t̂ − lnk′ + ln k

)
dk′. (48)

Now performing the delta function integration, we are left with

G̃1(t̂ , k, ẑ) = ek2/2et̂ e−iket̂ ẑ−k2e2t̂ /2. (49)

This is simply a Gaussian function, and the transformation back to the ŷ coordinate leaves
us with

G1(t̂ , ŷ, ẑ) = e−t̂ G̃1(t̂ , ŷ, ẑ) = [
2π

(
e2t̂ − 1

)]−1/2
exp

(
−1

2

(ŷ − et̂ ẑ)2

e2t̂ − 1

)
. (50)

We would like to extract the full dependence of the above solution on τ̂ . For normaliza-
tion purposes, it is also convenient to multiply by τ̂ 1/2. Thus rescaling back to the t and y

coordinates results in

G1(t, y, z) =
(

τ̂

2π(e2τ̂ t − 1)

)1/2

exp

(
− τ̂

2

(y − eτ̂ t z)2

e2τ̂ t − 1

)
. (51)

This finally results in an expression for the Green’s function of Eq. (42), which in turn
gives the Green’s function of Eq. (27) in Cartesian coordinates. Now, to obtain the solution
of Eq. (26), we need to revert back to spherical coordinates. The resulting expression when
n is integer suggests that we look for G(t, y, z) in the following form

G(t, y, z) = C(n)zn−1

(
τ̂

2π(e2τ̂ t − 1)

)n/2

×
∫ 1

−1
dλ exp

(
− τ̂

2(e2τ̂ t − 1)

(
y2 − 2yzeτ̂ tλ + z2e2τ̂ t

))
K(λ). (52)

Here K(x) is a kernel, which, for integer n, is the Jacobian of the n-dimensional change
of variables from Cartesian to spherical coordinates. It is still undetermined for non-integer
dimensions.

Appendix B: Identification of Terms Dominating Convergence

In the main text, we argued that it is justifiable to drop the y4−n term in Eq. (25), or equiva-
lently, the y5−2n term in Eq. (34). In essence, the bulk of the solution is supported away from
y = 0, while this term is quickly suppressed for n > 3. Without this (generally) non-integer
power, we were able to calculate exactly predictive information for our model. Whatever the
contributions the full solution might add, they are of lower order than the leading term in
Eq. (39). Nonetheless, this term is crucial since it keeps the full solution physical by guar-
anteeing its convergence faster than any power as y → 0 (x → ∞ in the x space). In this
appendix, we will make the arguments a bit more precise.

Our approach is of the maximum principle type, which is employed abundantly in the
theory of partial differential equations. We present the arguments in a general setting, not
limited to the confines of our model. Our focus is on equations of the type

∂tF (t, y) = −g(y)∂yF (t, y) + ∂2
yF (t, y), y > 0. (53)
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F is the cumulative probability
∫ y

0 f (t, y ′) dy ′ of a distribution f satisfying a Fokker-Planck
equation with constant noise and a force g(y). We will assume that around y ∼ 0, g is
positive and behaves as 1/yα with α > 1. We start by providing a sort of a zero value
“eigenvector”, i.e. a solution of the equation

0 = −g(y)∂yF0(y) + ∂2
yF0(y). (54)

It is straightforward to see that Eq. (54) is solved by

F0(y) =
∫ y

0
dy ′ exp

(∫ y′

y0

dy ′′g
(
y ′′)), (55)

where y0 is any positive value. It follows that F0(y) ∼ exp(−1/yα−1), thus it converges to
zero, together with all of its derivatives.

The solution, Eq. (54), is non-normalizable, and it is, therefore, not a true eigenvector.
However, we can use it to bound normalizable solutions of Eq. (53). That is, we will show
that if initial conditions are bounded everywhere by a multiple of F0 (e. g., if their support
does not include 0), then the solution F(t, y) remains bounded for all times, and it will,
therefore, have all derivatives zero at y = 0. This implies that the exact solution of Eq. (18)
indeed has a finite tail, and this is all due to the third term in Eq. (34). By imposing the
requirement that this term diverges faster than 1/y, we obtain n > 3, or equivalently α < 4.

In order to demonstrate that F(t, y) ≤ F0(y) if F(0, y) ≤ F0(y), we will first show the
following.

If F̃ (t, y) satisfies the boundary conditions F̃ (t,0) = 0 and F̃ (t,L) ≥ 1/2, for some
L > 0, together with the initial condition F̃ (0, y) ≥ 0, then F̃ remains non-negative for all
times if it also satisfies the following equation:

∂t F̃ (t, y) = −γ F̃ (t, y) − g(y)∂yF̃ (t, y) + ∂2
y F̃ (t, y), γ > 0. (56)

Proof Assume a negative minimum of F̃ (t0, y0) < −ε at some time t0 and point y0. Clearly,
0 < y0 < L. Then, at y0:

∂t F̃ (t0, x0) = ∂2
y F̃ (t0, x0) − g(y0)∂yF̃ (t0, y0)

− γ F̃ (t0, y0) ≥ ∂2
y F̃ (t0, x0) + γ ε > 0. (57)

This implies that there is a δ > 0 such that F̃ < −ε at some points y, for all t0 − δ < t < t0.
Let t̃ be the infimum of the set of all times for which F̃ < −ε at some point. Take a sequence
{tn} which converges to t̃ and a sequence {yn} such that F̃ (tn, yn) < −ε. Since 0 < {yn} < L,
we can assume that it converges to some ỹ �= 0. Thus, F̃ (t̃ , ỹ) < −ε. By applying Eq. (57)
again, we obtain that this is possible only if t̃ = 0, which, in turn, is impossible because of
the initial conditions. �

Notice that the positivity of F̃ immediately implies the positivity of F since there is a
one-to-one mapping between the solutions of Eqs. (53) and (56) given by F̃ exp(γ t) = F .
If we apply this to �F(t, y) ≡ F0(t, y) − F(t, y), then F0(t, y) ≥ F(t, y) for all times t , as
long as this is true for t = 0, just as we claimed earlier. We end with a comment regarding
the boundary condition requirement at y = L. If F0 is non-normalizable, then this condition
is trivially satisfied. Otherwise, this condition is a byproduct of the uniqueness requirements
of the solution. Therefore, the approximate solution, Eq. (28), is an upper bound on the exact
solution of Eq. (18).
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Appendix C: Bounding Subleading Terms in Predictive Information

While we have not been able to obtain a closed form expression for all terms in Eq. (38),
we can nonetheless provide asymptotically finite bounds on them. We will rely on the basic
structure of the solution, Eq. (37), and repeated applications of the Jensen’s inequality.

Starting with the full expression in Eq. (38), we would like to start by providing the
following bounds for z > 0 and θ > 1, ϑ > 0:

A(θ,ϑ) + B(θ,ϑ)zθ ≥
∫ ∞

0
yθ (y − z)ϑe−(y−z)2/2 ≥ a(θ,ϑ)zθ−1 + b(θ,ϑ)zθ . (58)

Here A, B, a, b are positive functions of θ and ϑ only. It is useful to normalize the kernel
K(λ). Thus we define

κ =
∫ 1

−1
K(λ)dλ = 2n−2 Γ (n−1

2 )2

Γ (n − 1)
, (59)

where the last equality contains the usual Gamma function. We now can provide an upper
bound on the integral terms in Eq. 38. By using the fact that x log(x) is a convex function,
we obtain

C−1(2π)n/2

〈
log2

∫ 1

−1
dλK(λ)Ξ(T ;λ,y,w)

〉
− C−1(2π)n/2 log2 κ

= κ

∫ ∞

0
dy

yn−1

�n(T )

∫ 1

−1
dλ

K(λ)

κ
Ξ(T ;λ,y,w) log2

∫ 1

−1
dλ′ K(λ′)

κ
Ξ

(
T ;λ′, y,w

)

≤ κ

∫ ∞

0
dy

yn−1

�n(T )
dλ

K(λ)

κ
Ξ(T ;λ,y,w) log2 Ξ(T ;λ,y,w)

≤ −(1/2) log2(e)

∫ 1

−1
dλK(λ)

[
a(n − 1,2)λn−2

(
weτ̂T

�(T )

)n−2

+ b(n − 1,2)λn−1

(
weτ̂T

�(T )

)n−1

+ a(n − 1,0)
(
1 − λ2

)
λn−2

(
weτ̂T

�(T )

)n

+ b(n − 1,0)
(
1 − λ2

)
λn−1

(
weτ̂T

�(T )

)n+1]
e

− 1−λ2

2�(T )2
w2e2τ̂ T

. (60)

Similarly, utilizing the concavity of log(x), we can write a lower bound on the expectation
value

C−1(2π)n/2

〈
log2

∫ 1

−1
dλK(λ)Ξ(T ;λ,y,w)

〉
− C−1(2π)n/2 log2 κ

≥ −(1/2) log2(e)

∫ 1

−1
dλK(λ)

[
A(n + 1,0) + B(n + 1,0)λn+1

(
weτ̂T

�(T )

)n+1

× A(n − 1,0)

(
weτ̂T

�(T )

)2

+ B(n − 1,0)λn−1

(
weτ̂T

�(T )

)n+1]
e

− 1−λ2

2�2(T )
w2e2τ̂ T

. (61)

Therefore, we have obtained bounds on the third term in Eq. (38) that are polynomial in
eτ̂T /�(T ). The latter is, in turn, a bounded function of T = t + t̃ . Indeed, it is straightfor-
ward to show that eτ̂T /�(T ) ≤ √|τ̂ | + √

1/T . Therefore, these bounds are asymptotically
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constant (as T → ∞) and either O(1) or O(
√|τ̂ |). We can use these bounds on the second

term of Eq. (38) by simply replacing w by z and T by t̃ in Eqs. (60) and (61). The resulting
expressions need to be averaged over z, which requires estimating quantities of the form

L ≤
∫ ∞

0
dz

zn−1

�n(t)
zm

(
eτ̂ t̃

�(t̃)

)m

e
− 1−λ2

2�2(t̃)
e2τ̂ t̃ z2

×
∫ 1

−1
dλ̃K(λ̃) exp

(
− 1

2�(t)2

(
z2 − 2zwλ̃eτ̂ t + w2e2τ̂ t

)) ≤ U, (62)

where m is a positive number. By using Eq. (58) again, we can obtain an upper and a lower
bound on this expression. It is convenient to introduce η2 = (1 −λ2)e2τ̂ t̃�2(t)/�2(t̃). Then,
after some algebra, we obtain the following two bounds: an upper bound

U =
∫ 1

−1
dλ̃K(λ̃)

[
η2

1 − λ2

]m/2(
1 + η2

)−(n+m)/2
[
A(n + m − 1,0)

+ B(n + m − 1,0)

(
λ̃weτ̂ t

�(t)(1 + η2)1/2

)n+m−1]
exp

(
−1

2

(
1 − λ̃2

1 + η2

)
w2e2τ̂ t

�2(t)

)
,

(63)

and a lower bound

L =
∫ 1

−1
dλ̃K(λ̃)

[
η2

1 − λ2

]m/2(
1 + η2

)−(n+m)/2
(

λ̃weτ̂ t

�(t)(1 + η2)1/2

)n+m−2

×
[
a(n + m − 1,0) + b(n + m − 1,0)

(
λ̃weτ̂ t

�(t)(1 + η2)1/2

)]

× exp

(
−1

2

(
1 − λ̃2

1 + η2

)
w2e2τ̂ t

�2(t)

)
. (64)

Notice that, for τ̂ ≥ 0, η → ∞ as t → ∞, while both bounds in Eqs. (63) and (64) are of
order O(η−m/2), therefore they are asymptotically constant. For τ̂ < 0, Eqs. (63) and (64)
are controlled by O(|τ̂ |m/2). This implies that the second term in Eq. (38) is also bounded
around the critical point, independently of τ̂ . This completes the proof that the terms we
dropped in Eq. (38) do not contribute to the leading order of predictive information.
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