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Vector Field Formalism and Analysis for a Class of Thermal Ratchets
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To understand the physics of muscle contraction and molecular motor movement, we develop
a model for nonequilibrium free energy transduction based on a diffusion in a periodic force
field. It is shown that a nonconservative force is sufficient and necessary for a steady state with
circular flux, but is not sufficient for a global unidirectional transport synonymous to motor protein
movement. A vector potential for the flux is introduced for characterizing the circular flux and
global transport. The model provides a natural distinction between the two types of muscle protein
movement, namely the mechanical dominant “power-stroke” and the Brownian-motion dominant ratchet.
[S0031-9007(98)07336-0]

PACS numbers: 05.60.+w, 05.40.+j, 05.70.Ln, 87.10.+e

As a device for free energy transduction, the thermafilament) has probabilitie®(x, —) being free and’(x, +)
ratchet originally proposed by Feynman [1] has attractedbeing bound to a thin actin filament at distanciom the
wide attention in biophysics, especially in connectionoptimal binding site. The bounding-detaching transition
with membrane protein transport [2,3], and motor protein(— = +) at each x is characterized by a two-state
translocation [4—6]. While there is already a largeMarkov process with transition ratg¢§x) andg(x):
body of literature on this subject, the field still lacks aP(x, +)

a coherent mathematical framework for analyzing such =
a nonequilibrium phenomenon. The objective of this
paper is to provide a mathematical framework for a class . IP(x, +) (1)
of thermal ratchet models in 2-dimensional continuous ax

space. An insightful mathematical treatment of discretavherev is the speed by which the two filaments are slid-
models can be found in [7]. ing against each other. In the steady state, Eq. (1) is the

Thermal ratchet derived from muscle contractien. Huxley equation. We note that this model does not con-
In recent years the study of thermal ratchet and noisesider the random fluctuation of the myosin headjnn
driven transport has become an active research aresther the bound or the detached states. However, our cur-
in biophysics. One of the initial motivations of this rent understanding on motor protein movement is that the
research is to reveal the molecular mechanism for muscleonformational fluctuation of the myosin is an essential
contraction and related motor protein movement [8].element in generating a contraction [4,11]. Incorporating
Thus we first turn to the classic work of Huxley on such fluctuation into Eq. (1) can be accomplished by in-
muscle contraction [9]. Paraphrasing the Huxley modetroducing a diffusive term [12], representing the random
in stochastic terms following Hill [10], a single myosin fluctuation (Brownian motion) of the myosin head in real
molecule (the protein which constitutes the thick musTIespacex:

2 = (P, ) + fWPG, )

% — —g()P(x,+) + fWP(,—) — v % N %[mm%]
% = ¢(WP(x,+) — fF(X)P(x, ) + %[ D_(x) % } o

Under thermodynamic equilibrium, there is a set of c&m’n the y direction to replace the simple two discrete states.
straints onD.., D_, f, andg (see the details below). This x represents the real space for the position of the myosin,
does not apply, however, to the contracting muscle undesay, center of mass, along an actin filament. We general-
nonequilibrium steady state powered by the hydrolysis ofze Eq. (2) to a 2D diffusion-convection equation:
adenosine triphosphate (ATP), which is implicitly dealt
with in our present model [10]. We call Eq. (2) the aug- 9P(x,y,t)
mented Huxley equation. It shares many features with ot
other ratchet models [5,6,13]. We now propose a general
mathematical formalism for these types of models. where (x,y) € [0,a] X [0,b] called a unit cell, with
The model—Let’'s assume that the myosin has a con-reflecting boundary conditions at= 0 andy = b, pe-
tinuous conformational change, i.e., an energy landscap#odic boundary conditions akt =0 and x = a. «a

=V2P(x,y,t) = V- (F(x,y)P(x,y,1)), (3)
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represents the repeating unit in an actin filament. For simas well asA(x, b)) = const, and their difference character-
plicity, we have assumed a constant diffusion coefficienizes the global transport across the unit cell. Similarly, the
D, and then absorbed it into the variable The case periodic boundary condition leads #40,y) — A(a,y) =
with variable D is conceptually similar but computation- [ J,(x,y)dx = 0 for all y, corresponding to no net
ally complicated. Note that the conservationfofeads to  transport along the direction across the unit cell. For our
the convection terms rather than a reaction term. This dis2D problem,A automatically satisfies an auxiliary condi-
tinguishes our model from many diffusion-reaction typetion for gauge symmetry - A = 0 [16].
models. In this paper, we shall focus only on the steady The vector potentiaA also has an important physical,
state of (3). stochastic meaning. As shown in FigAlx, y) is also the
For every giveny, i.e., in a fixed myosin conforma- continuous counterpart of Hill'set cycle fluxwhile J is
tion, F,(x,y) = —aU(x,y)/dx represents the interaction the counterpart of higansition flux[19]. Finally, Eq. (5)
between actin and myosin, wheltKx, y) is a periodic po- can be rewritten in terms of
tential energy function ok. Therefore, the diffusion in PF = VP(x,y) + V X A. @)

the x direction has no bias across the unit cell: . N
This corresponds to the decomposition theorem for a

a
f F.(x,y)dx = U(0,y) — U(a,y) = 0. (4)  Markov chain [14], which states that a stationary Markov
0 chain can always be decomposed into a detail balanced
Obviously Fy(x,y) is itself periodic inx. Thus, this part and a circulation part. In our continuous case,
model is a generalization of the discrete model withthe detail balanced part has zero c[f X (VP) = 0]
fluctuating barrier [6]. In the case of fluctuating force, and the circulation part has zero divergeri§e- (V X
U(x,y) for beachy has a net bias across the unit cell. A) = 0]. The gauge symmetry iA corresponds to the
However, fO U(x,y)dy has zero bias, corresponding to nonuniqueness of the circulation decomposition.
zero mean force. As suggested in [6], as well as becoming Singularity of the flux field—For nonequilibrium
clear below, the fluctuation barrier scenario is moresteady state, vector field has nonzero curl. Hence
fundamental to the ratchet model. according to index theory [15] the vector field has singu-
While F, represents the intermolecular force, the forcelarities. SinceV - J = 0, the singularities can neither be
in y direction, F,(x, y) for each givenx represents an in- sink nor source but centersor saddles The presence of
tramolecule force. Implicitly, this force is a function of a center in theJ field corresponds to the circulation in
ATP, ADP (adenosine diphosphate), and Pi (orthophosan irreversible Markov process [20]. However, since our
phate) concentrations. If this force satisfiEs(x,y) =  problem has a periodic boundary conditionxat 0 and
—aU(x,y)/dy, then the steady state solution is simply x = 4, there have to be at least two centers in a unit cell.
P(x,y) = e~ U>), which in fact is an equilibrium solu- Dividing the centers are separatrices connecting saddle
tion with detailed balance [14]. In other words, if we points (Fig. 2). At the ends of the two separatrices in

define the steady-state flux field as each unit cell are four (half) saddle points, two along
J(x,y) = =VP(x,y) + F(x,y)P(x,y), (5) they =0and two along thgs = b. These singularities

then equilibrium entail§ = 0. The sufficient and neces-

sary condition for flux fieldl = 0 is that the force field is l

conservativeF = —VU. This will be the situation when Jy(n,m)

the ATP, ADP, and Pi are at their equilibria. Equation (5)
indicates that if there is a flux within or across the unit
cell, then the extrema d® and the locations of zerB no

longer coincide as in a thermodynamic equilibrium.

Vector potentiald as probabilistic circulation—Since (.m) Fxtn,m)
V - J = 0, according to Bendixson criterion [1J]meets

the necessary condition for being a circular field. In 2D, O

J in fact is the conjugate of a gradient system. Therefore,
the J field is circular. We can further introduce a vector
potential A = A(x,y)2: J =V X A. Then the circular

J has field lines as the contour of the vector potential,
A(x,y) = C. ltis easy to show that

b
® = global transportzf J(x,y)dy
0

Jx(n,m) = Anm - An,m-1
Jy(n,m) = -Anm + An-1,m

FIG. 1. A schematic showing the relation between fluand
= A(x,b) — A(x,0) (6) its vector potentiaA. This relation is analogous to T. L. Hill's
) iy operational flux and cycle flux for a discrete network (1989).
for any x. The reflecting boundary conditions lead to This provides the vector potential with a clear probabilistic
9A(x,0)/90x = dA(x,b)/dx = 0. HenceA(x,0) = const meaning.
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Force F, flux J, and linear irreversibility—It is the

a d
nonconservative part of forcE which drives]J. Let's
denotef;,, = F + V¢ which is the irreversible motive
A force. A continuous diffusion model has the following
correspondence to a random walk on a lattice, with
b c

nonuniform forward rate constanfs.; and reverse rate
constants_;:

kyi + k-

a d
_ F-d€— (ky; — k—;), D —
B F - df - In(ﬁ> . 2ks; — k—;)
D k_; k+i + k—; ’
b “ c =

wherelky; — k—;| < ky;,k—;, D is the diffusion coeffi-
cient, and
a d

- F - d¢ k+i
fo =2l
r D T k—i
where I' is a closed path. Hence, according to Hill
[19], the thermodynamiccycle force along the I' is
- b P $(F - d€)/D. If |fi;| < [Vel, then the system is in
FIG. 2. Three schematic plots for vector figJd It is shown the regime of Ilner?r irreversibility [.21]'_ Uing the linear
that the vector fieldl has circular flux lines with singularities. Perturbation method and assuming= e ?/Z + Py,
There arecentersin the interior of the loops, ansaddie points  EQ. (5) becomes
on the edges of unit cell$a,b,c,d). (A) global transport _
toward left; (B) no global transport; (C) global transport toward J=-VP; = (V)P + fire ¢/Z’
right. whereZ is a normalization constant. Solving the equation

o _ o _ by variation of parameterB; (x,y) = C(x,y)e ¢
divide the unit cell as shown in Fig. 2. At singular saddle

pointsa, b, ¢, andd, we can expand thé, as VC = —e?J + tin/Z,
Tiey) = sty + | SR g,
dx
1 [ o2 (x*y9T, 5
+ 5 Py }dx , (8)
where the first term on the right is zero sinte’, y*)
is a singular (stagnation) point gf. The second term
contributes equally to the left and right, hence it does nofhis is the force-flux relationship in the linear irreversible
contribute to the net transport. Thus the net transportegime. Finally, we have the Onsager’s entropy produc-
is associated with the second derivative at stagnatiotion:
points, saya. Furthermore, part of this net flux atis )
balanced by the net flux at poirt where the second- fire - J = ZIVP — FP’e? =0, (11)
order derivative has an opposite signdifb is associated which is in agreement with the general formula of entropy
with the minimum of U(x,y), then c,d is associated production for diffusion processes [14,18]. The entropy
with its maximum andvice versy. Therefore, the overall production gives the heat generated in muscle contraction.
global transport is the difference of the two second-order Some further analysis-The global transport can be

V X (Ze?J — £iy) = 0.

Therefore,Ze?J andf;,, differ by a gradient field, which
has to be zero sinck = 0 whenf;, = 0. Hence

J=Ze fi . (10)

derivatives atz andc: written in terms of the integration of the solution of
2 2
D o <6:3J2x> n <6an)5> . ) Eq. (3). From Eq. (6) we have
X a X ¢ a
This is an insightful result, which is verified in our o = lf [A(x,b) — A(x,0)]dx
detailed calculation (to be published) in which the global a Jo
transport is a third-order effect. If the functidii(x) is _ b d “A dx g 12
not smooth, then the second term in Eq. (8) will have “Jo ayl)o (v, y)dx | dy, (12)

different values forx**? and x*~?. Then the global
: . . . here
transport is determined by the discontinuous slope at’

) = 4 ra .
these singularities [6,13], and the global transport can be  d f Alx,y)dx = f Fy(x,y)P(x,y)dx.  (13)
greater. dy Jo o
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Note thatF, satisfies Eq. (4). Therefore for evepythe  mathematical definition for these models by identifying
right-hand side of (13) is the net flux along that horizontalthe ratchet mechanism with the diffusion term, and the
strip, betweery andy + dy, across the unit cell. On the power stroke with the force term.

other hand, for every,

a
[ Je(x,y)eV" ) dx = 0. (14) _
0 [1] R. Feynman, R.B. Leighton, and M. Sand$ie Feynman

This is because (14) equals Lectures on Physic{Addison-Wesley, Reading, MA,

4 aP oU a 1963), Vol. 1, Chap. 46.
j <__ - P—)eU(”) dx = _f d.[P(x,y)eV™)] [2] H.V. Westerhoff and Y.D. Chen, Proc. Natl. Acad. Sci.

0 dx 0x 0 U.S.A. 82, 3222—-3226 (1985).
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