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Vector Field Formalism and Analysis for a Class of Thermal Ratchets
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To understand the physics of muscle contraction and molecular motor movement, we deve
a model for nonequilibrium free energy transduction based on a diffusion in a periodic for
field. It is shown that a nonconservative force is sufficient and necessary for a steady state w
circular flux, but is not sufficient for a global unidirectional transport synonymous to motor prote
movement. A vector potential for the flux is introduced for characterizing the circular flux an
global transport. The model provides a natural distinction between the two types of muscle prot
movement, namely the mechanical dominant “power-stroke” and the Brownian-motion dominant ratch
[S0031-9007(98)07336-0]
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As a device for free energy transduction, the therm
ratchet originally proposed by Feynman [1] has attracte
wide attention in biophysics, especially in connectio
with membrane protein transport [2,3], and motor prote
translocation [4–6]. While there is already a larg
body of literature on this subject, the field still lacks
a coherent mathematical framework for analyzing suc
a nonequilibrium phenomenon. The objective of th
paper is to provide a mathematical framework for a cla
of thermal ratchet models in 2-dimensional continuou
space. An insightful mathematical treatment of discre
models can be found in [7].

Thermal ratchet derived from muscle contraction.—
In recent years the study of thermal ratchet and nois
driven transport has become an active research a
in biophysics. One of the initial motivations of this
research is to reveal the molecular mechanism for mus
contraction and related motor protein movement [8
Thus we first turn to the classic work of Huxley on
muscle contraction [9]. Paraphrasing the Huxley mod
in stochastic terms following Hill [10], a single myosin
molecule (the protein which constitutes the thick musc
0031-9007y98y81(15)y3063(4)$15.00
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filament) has probabilitiesPsx, 2d being free andPsx, 1d
being bound to a thin actin filament at distancex from the
optimal binding site. The bounding-detaching transitio
(2 : 1) at each x is characterized by a two-state
Markov process with transition ratesfsxd andgsxd:

≠Psx, 1d
≠t

­ 2gsxdPsx, 1d 1 fsxdPsx, 2d

2 y
≠Psx, 1d

≠x
, (1)

wherey is the speed by which the two filaments are slid
ing against each other. In the steady state, Eq. (1) is
Huxley equation. We note that this model does not co
sider the random fluctuation of the myosin head inx, in
either the bound or the detached states. However, our c
rent understanding on motor protein movement is that t
conformational fluctuation of the myosin is an essenti
element in generating a contraction [4,11]. Incorporatin
such fluctuation into Eq. (1) can be accomplished by i
troducing a diffusive term [12], representing the rando
fluctuation (Brownian motion) of the myosin head in rea
spacex:
≠Psx, 1d
≠t

­ 2gsxdPsx, 1d 1 fsxdPsx, 2d 2 y
≠Psx, 1d

≠x
1

≠

≠x

∑
D1sxd

≠Psx, 1d
≠x

∏
,

≠Psx, 2d
≠t

­ gsxdPsx, 1d 2 fsxdPsx, 2d 1
≠

≠x

∑
D2sxd

≠Psx, 2d
≠x

∏
. (2)
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Under thermodynamic equilibrium, there is a set of con
straints onD1, D2, f, andg (see the details below). This
does not apply, however, to the contracting muscle und
nonequilibrium steady state powered by the hydrolysis
adenosine triphosphate (ATP), which is implicitly deal
with in our present model [10]. We call Eq. (2) the aug
mented Huxley equation. It shares many features wi
other ratchet models [5,6,13]. We now propose a gene
mathematical formalism for these types of models.

The model.—Let’s assume that the myosin has a con
tinuous conformational change, i.e., an energy landsca
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in they direction to replace the simple two discrete state
x represents the real space for the position of the myos
say, center of mass, along an actin filament. We gene
ize Eq. (2) to a 2D diffusion-convection equation:

≠Psx, y, td
≠t

­ =2Psx, y, td 2 = ? sssFsx, ydPsx, y, tdddd , (3)

where sx, yd [ f0, ag 3 f0, bg called a unit cell, with
reflecting boundary conditions aty ­ 0 and y ­ b, pe-
riodic boundary conditions atx ­ 0 and x ­ a. a
© 1998 The American Physical Society 3063
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represents the repeating unit in an actin filament. For si
plicity, we have assumed a constant diffusion coefficie
D, and then absorbed it into the variablet. The case
with variableD is conceptually similar but computation-
ally complicated. Note that the conservation ofP leads to
the convection terms rather than a reaction term. This d
tinguishes our model from many diffusion-reaction typ
models. In this paper, we shall focus only on the stea
state of (3).

For every giveny, i.e., in a fixed myosin conforma-
tion, Fxsx, yd ­ 2≠Usx, ydy≠x represents the interaction
between actin and myosin, whereUsx, yd is a periodic po-
tential energy function ofx. Therefore, the diffusion in
thex direction has no bias across the unit cell:Z a

0
Fxsx, yd dx ­ Us0, yd 2 Usa, yd ­ 0 . (4)

Obviously Fxsx, yd is itself periodic in x. Thus, this
model is a generalization of the discrete model wit
fluctuating barrier [6]. In the case of fluctuating force
Usx, yd for each y has a net bias across the unit cel
However,

Rb
0 Usx, yd dy has zero bias, corresponding to

zero mean force. As suggested in [6], as well as becomi
clear below, the fluctuation barrier scenario is mor
fundamental to the ratchet model.

While Fx represents the intermolecular force, the forc
in y direction,Fysx, yd for each givenx represents an in-
tramolecule force. Implicitly, this force is a function of
ATP, ADP (adenosine diphosphate), and Pi (orthopho
phate) concentrations. If this force satisfiesFysx, yd ­
2≠Usx, ydy≠y, then the steady state solution is simpl
Psx, yd ~ e2Usx,yd, which in fact is an equilibrium solu-
tion with detailed balance [14]. In other words, if we
define the steady-state flux field as

Jsx, yd ­ 2=Psx, yd 1 Fsx, ydPsx, yd , (5)

then equilibrium entailsJ ­ 0. The sufficient and neces-
sary condition for flux fieldJ ­ 0 is that the force field is
conservative,F ­ 2=U. This will be the situation when
the ATP, ADP, and Pi are at their equilibria. Equation (5
indicates that if there is a flux within or across the un
cell, then the extrema ofP and the locations of zeroF no
longer coincide as in a thermodynamic equilibrium.

Vector potentialA as probabilistic circulation.—Since
= ? J ­ 0, according to Bendixson criterion [15]J meets
the necessary condition for being a circular field. In 2D
J in fact is the conjugate of a gradient system. Therefor
the J field is circular. We can further introduce a vecto
potential A ­ Asx, ydẑ: J ­ = 3 A. Then the circular
J has field lines as the contour of the vector potentia
Asx, yd ­ C. It is easy to show that

F ; global transport­
Z b

0
Jxsx, yd dy

­ Asx, bd 2 Asx, 0d (6)

for any x. The reflecting boundary conditions lead to
≠Asx, 0dy≠x ­ ≠Asx, bdy≠x ­ 0. HenceAsx, 0d ; const
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as well asAsx, bd ; const, and their difference character
izes the global transport across the unit cell. Similarly, th
periodic boundary condition leads toAs0, yd 2 Asa, yd ­Ra

0 Jysx, yd dx ­ 0 for all y, corresponding to no net
transport along they direction across the unit cell. For ou
2D problem,A automatically satisfies an auxiliary condi
tion for gauge symmetry= ? A ­ 0 [16].

The vector potentialA also has an important physical
stochastic meaning. As shown in Fig, 1Asx, yd is also the
continuous counterpart of Hill’snet cycle flux,while J is
the counterpart of histransition flux[19]. Finally, Eq. (5)
can be rewritten in terms ofA

PF ­ =Psx, yd 1 = 3 A . (7)

This corresponds to the decomposition theorem for
Markov chain [14], which states that a stationary Marko
chain can always be decomposed into a detail balanc
part and a circulation part. In our continuous cas
the detail balanced part has zero curlf= 3 s=Pd ­ 0g
and the circulation part has zero divergencef= ? s= 3

Ad ­ 0g. The gauge symmetry inA corresponds to the
nonuniqueness of the circulation decomposition.

Singularity of the f lux f ield.—For nonequilibrium
steady state, vector fieldJ has nonzero curl. Hence
according to index theory [15] the vector field has sing
larities. Since= ? J ­ 0, the singularities can neither be
sink nor source, but centersor saddles. The presence of
a center in theJ field corresponds to the circulation in
an irreversible Markov process [20]. However, since o
problem has a periodic boundary condition atx ­ 0 and
x ­ a, there have to be at least two centers in a unit ce
Dividing the centers are separatrices connecting sad
points (Fig. 2). At the ends of the two separatrices
each unit cell are four (half) saddle points, two alon
the y ­ 0 and two along they ­ b. These singularities

FIG. 1. A schematic showing the relation between fluxJ and
its vector potentialA. This relation is analogous to T. L. Hill’s
operational flux and cycle flux for a discrete network (1989
This provides the vector potentialA with a clear probabilistic
meaning.
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FIG. 2. Three schematic plots for vector fieldJ. It is shown
that the vector fieldJ has circular flux lines with singularities.
There arecentersin the interior of the loops, andsaddle points
on the edges of unit cellssa, b, c, dd. (A) global transport
toward left; (B) no global transport; (C) global transport towar
right.

divide the unit cell as shown in Fig. 2. At singular sadd
pointsa, b, c, andd, we can expand theJx as

Jxsx, yd ­ Jxsxp, ypd 1

∑
≠Jxsxp, ypd

≠x

∏
dx

1
1
2

∑
≠2Jxsxp, ypd

≠x2

∏
dx2 , (8)

where the first term on the right is zero sincesxp, ypd
is a singular (stagnation) point ofJ. The second term
contributes equally to the left and right, hence it does n
contribute to the net transport. Thus the net transp
is associated with the second derivative at stagnat
points, saya. Furthermore, part of this net flux ata is
balanced by the net flux at pointc, where the second-
order derivative has an opposite sign (ifa, b is associated
with the minimum of Usx, yd, then c, d is associated
with its maximum andvice versa). Therefore, the overall
global transport is the difference of the two second-ord
derivatives ata andc:

F ~

µ
≠2Jx

≠x2

∂
a

1

µ
≠2Jx

≠x2

∂
c

. (9)

This is an insightful result, which is verified in ou
detailed calculation (to be published) in which the glob
transport is a third-order effect. If the functionUsxd is
not smooth, then the second term in Eq. (8) will hav
different values forxp1d and xp2d. Then the global
transport is determined by the discontinuous slope
these singularities [6,13], and the global transport can
greater.
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Force F, flux J, and linear irreversibility.—It is the
nonconservative part of forceF which drivesJ. Let’s
denotefirr ­ F 1 =f which is the irreversible motive
force. A continuous diffusion model has the following
correspondence to a random walk on a lattice, with
nonuniform forward rate constantsk1i and reverse rate
constantsk2i:

F ? d,,, $ sk1i 2 k2id, D $
k1i 1 k2i

2
,

F ? d,,,

D
$ ln

µ
k1i

k2i

∂
ø

2sk1i 2 k2id
k1i 1 k2i

,

wherejk1i 2 k2ij ø k1i , k2i, D is the diffusion coeffi-
cient, and I

G

F ? d,,,

D
$

X
G

ln

µ
k1i

k2i

∂
,

where G is a closed path. Hence, according to Hill
[19], the thermodynamiccycle force along the G isH

GsF ? d,,,dyD. If jfirr j ø j=fj, then the system is in
the regime of linear irreversibility [21]. Using the linear
perturbation method and assumingP ­ e2fyZ 1 P1,
Eq. (5) becomes

J ­ 2=P1 2 s=fdP1 1 firre
2fyZ ,

whereZ is a normalization constant. Solving the equation
by variation of parametersP1sx, yd ­ Csx, yde2f

=C ­ 2efJ 1 firryZ ,

= 3 sZefJ 2 firr d ­ 0 .

Therefore,ZefJ andfirr differ by a gradient field, which
has to be zero sinceJ ­ 0 whenfirr ­ 0. Hence

J ­ Ze2ffirr . (10)

This is the force-flux relationship in the linear irreversible
regime. Finally, we have the Onsager’s entropy produc
tion:

firr ? J ­ Zj=P 2 FPj2ef $ 0 , (11)

which is in agreement with the general formula of entropy
production for diffusion processes [14,18]. The entropy
production gives the heat generated in muscle contractio

Some further analysis.—The global transport can be
written in terms of the integration of the solution of
Eq. (3). From Eq. (6) we have

F ­
1
a

Z a

0
fAsx, bd 2 Asx, 0dg dx

­
Z b

0

d
dy

∑Z a

0
Asx, yddx

∏
dy , (12)

where

d
dy

Z a

0
Asx, yd dx ­

Z a

0
Fxsx, ydPsx, yd dx . (13)
3065
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Note thatFx satisfies Eq. (4). Therefore for everyy, the
right-hand side of (13) is the net flux along that horizonta
strip, betweeny andy 1 dy, across the unit cell. On the
other hand, for everyy,Z a

0
Jxsx, ydeUsx,yd dx ­ 0 . (14)

This is because (14) equalsZ a

0

µ
2

≠P
≠x

2 P
≠U
≠x

∂
eUsx,yd dx ­ 2

Z a

0
dxfPsx, ydeUsx,ydg

­ 0

due to the periodic boundary condition. Equation (14
indicates that at everyy, the Jx changes sign within the
unit cell (cf. Fig. 2). There is no laminar flux; the globa
transportF in x direction is due to the free energy from
the intramolecular force (Fy).

The central idea of the thermal ratchet is the couplin
of a set of stochastic processes. While each process
itself has no bias for global transport, the nonconservati
coupling leads to nonequilibrium circulation. Mathe
matically speaking, the conflict between the vector forc
fields leads to singularities which drive the circulatio
and global transport. In the 2D case we studied, th
circulation is associated with a center in the flux field
while the transport is associated with several stagnati
(saddle) points.

It is appropriate here to comment on the large bod
of biophysical theories for enzymatic kinetics with fluc
tuating proteins [12]. The mathematics and physics b
hind those models and our thermal ratchet model sha
common features, but with one crucial difference: the fo
mer are for equilibrium systems which require the exis
tence of a potential function forFsx, yd ­ 2=U, while
all the interesting nonequilibrium phenomena arise b
cause of= 3 F fi 0. This fundamental difference leads
to the reversibility for the former (which is equivalent to
the Kolmogorov’s condition in mathematics, fluctuation
dissipation theorem in physics, and the “thermodynam
box” in chemistry) but positive entropy production in the
latter [Eq. (11)].

Another important aspect of the diffusion-convectio
model is that it is not just limited for the thermal ratche
If the process is dominated by the convection (force
term, then the model is consistent with the tradition
idea for motor movement which consists of well-define
steps (“power stroke”). It has been recognized th
the difference between the ratchet model and powe
stroke model for muscle contraction and motor prote
is a quantitative one [11]; our model provides a natur
3066
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mathematical definition for these models by identifying
the ratchet mechanism with the diffusion term, and the
power stroke with the force term.

[1] R. Feynman, R. B. Leighton, and M. Sands,The Feynman
Lectures on Physics(Addison-Wesley, Reading, MA,
1963), Vol. 1, Chap. 46.

[2] H. V. Westerhoff and Y. D. Chen, Proc. Natl. Acad. Sci.
U.S.A. 82, 3222–3226 (1985).

[3] T. Y. Tsong and R. D. Astumian, Annu. Rev. Physiol.50,
273–290 (1988).

[4] T. Yanagida, Y. Harada, and A. Ishijima, Trends
Biochem. Sci.18, 319–324 (1993).

[5] C. S. Peskin, G. B. Ermentrout, and G. F. Oster, inCell
Mechanics and Cellular Engineering,edited by V. C.
Mow et al. (Springer-Verlag, New York, 1994), pp. 479–
489.

[6] R. D. Astumian and M. Bier, Phys. Rev. Lett.72, 1766–
1769 (1994).

[7] Y. D. Chen, Proc. Natl. Acad. Sci. U.S.A.84, 729–733
(1987).

[8] H. Qian, Biophys. Chem.67, 263–267 (1997).
[9] A. F. Huxley, Prog. Biophys. Biophys. Chem.7, 257–318

(1957).
[10] T. L. Hill, Prog. Biophys. Mol. Biol.28, 267–340 (1974).
[11] J. Howard, Annu. Rev. Physiol.58, 703–729 (1996).
[12] N. Agmon and J. J. Hopfield, J. Chem. Phys.78, 6947–

6959 (1983).
[13] R. D. Astumian and M. Bier, Biophys. J.70, 637–653

(1996).
[14] M-P. Qian, M. Qian, and G. L. Gong, Contemp. Math.

118, 255–261 (1991).
[15] S. Wiggins,Introduction to Applied Nonlinear Dynamical

Systems and Chaos(Springer-Verlag, New York, 1990).
[16] With the condition = ? A ­ 0, the vector potential is

determined up to a=c where the harmonic function
c s=2c ­ 0d should be determined by the boundary
conditions. Also,A is intimately related to the vorticity
field of an “incompressible fluid”sJd: j ­ = 3 J ­
2=2A [17]. The vorticity is, of course, the differential
form of the rotation number for a random dynamical
system [18].

[17] A. J. Chorin and J. E. Marsden,A Mathematical Intro-
duction to Fluid Mechanics(Springer-Verlag, New York,
1990).

[18] M. Z. Guo, M. Qian, and Z. D. Wang, Chin. Sci. Bull.42,
982–985 (1998).

[19] T. L. Hill, Free Energy Transduction and Biochemical
Cycle Kinetics(Springer-Verlag, New York, 1989).

[20] S. L. Kalpazidou,Cycle Representations of Markov Pro-
cesses(Springer-Verlag, New York, 1995).

[21] L. Onsager, Phys. Rev.37, 405–426 (1931).


