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Information Transduction Capacity of
Noisy Biochemical Signaling Networks
Raymond Cheong,1 Alex Rhee,1 Chiaochun Joanne Wang,1 Ilya Nemenman,2 Andre Levchenko1*

Molecular noise restricts the ability of an individual cell to resolve input signals of different
strengths and gather information about the external environment. Transmitting information
through complex signaling networks with redundancies can overcome this limitation. We developed
an integrative theoretical and experimental framework, based on the formalism of information
theory, to quantitatively predict and measure the amount of information transduced by
molecular and cellular networks. Analyzing tumor necrosis factor (TNF) signaling revealed that
individual TNF signaling pathways transduce information sufficient for accurate binary decisions,
and an upstream bottleneck limits the information gained via multiple integrated pathways.
Negative feedback to this bottleneck could both alleviate and enhance its limiting effect,
despite decreasing noise. Bottlenecks likewise constrain information attained by networks
signaling through multiple genes or cells.

Signaling networks are biochemical systems
dedicated to processing information about
the environment provided by extracellular

stimuli. Large populations of cells can accurately
sense signaling inputs, such as the concentration
of growth factors or other receptor ligands, but
this task can be challenging for an individual cell
affected by biochemical noise (1–3). Noise maps

an input signal to a distribution of possible output
responses, which can cause loss of information
about the input. For example, a cell cannot re-
liably distinguish different inputs that, because of
noise, can generate the same output (Fig. 1A).

Conventional metrics related to the standard
deviation or variance of the response distribution
measure noise magnitude (4–8), but fail to elu-
cidate how noise quantitatively affects the ac-
curacy of information processing in single cells.
By contrast, an information theoretic approach
(Fig. 1B), and themetric ofmutual information in
particular, can quantify signaling fidelity in terms
of the maximum number of input values that a
cell can resolve in the presence of noise. Such

methods have been commonly used to evaluate
man-made telecommunication systems (9) and
more recently in computational neuroscience and
in analyses of transcriptional regulatory systems
(10–14), but have not been applied to biochem-
ical signaling networks. We developed a general
integrative theoretical and experimental frame-
work to predict and measure the mutual infor-
mation transduced by one or more signaling
pathways. Applying this framework to analyze a
four-dimensional compendium of single-cell re-
sponses to tumor necrosis factor (TNF) (Fig. 1C,
see also SOM section 1), an inflammatory cyto-
kine that initiates stochastic signaling at physio-
logic concentrations spanning about four orders
of magnitude (15–21), shows that signaling via a
network rather than a single pathway can abate
the information lost to noise. Furthermore, an in-
formation bottleneck can restrict the maximum
information a network can capture, and negative
feedback potentially but not always relieves this
limitation.

The mutual information, I(R;S), measured in
bits, is the binary logarithm of the maximum num-
ber of input signal values (S), such as ligand con-
centrations, that a signaling system can perfectly
resolve on the basis of its noisy output responses
(R) (9). One bit of information can resolve two
different signal values, 2 bits resolves four val-
ues, etc. More generally,

I(R;S) = ∫S ∫RP(R,S)log2
P(R,S)

P(R)P(S)

� �
dRdS

ð1Þ

1Department of Biomedical Engineering, Johns Hopkins Uni-
versity, 3400 North Charles Street, Baltimore, MD 21218, USA.
2Departments of Physics and Biology, Emory University, 400
Dowman Drive, Atlanta, GA 30322, USA.

*To whom correspondence should be addressed. E-mail:
alev@jhu.edu

A

B

C D

Fig. 1. Information theoretic analysis of cell signaling fidelity. (A) Schematic
showing information loss due to overlapping noisy response distributions. (B)
Diagram of the TNF–NF-kB signaling pathway represented in biochemical
form (left) and as a noisy communication channel (right). (C) Experimental
flowchart for using immunocytochemistry to sample the conditional response
distribution at single-cell resolution and resulting four-dimensional compen-

dium of multiple responses in cells of multiple genetic backgrounds to
multiple TNF concentrations, at multiple time points. The data were collected
in a single experiment, allowing controlled, quantitative comparisons along
each dimension. (D) Distributions of noisy NF-kB nuclear translocation re-
sponses to 30-min TNF exposure (examples shown at top) used to compute the
channel capacity of the TNF–NF-kB pathway. Scale bars, 20 mm.
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The joint distribution P(R,S) determines the
marginal distributions P(R) and P(S), and hence
also the mutual information, and can be decom-
posed as P(R,S) = P(S) P(R|S). The response dis-
tribution, P(R|S), is experimentally accessible by
sampling responses of individual isogenic cells to
various signal levels (Fig. 1C), and its spread re-
flects the noise magnitude given any specific
input. The signal distribution, P(S), reflects po-
tentially context-specific frequencies at which a
cell experiences different signal values. Although
the amount of information might thus vary from
case to case, one can also determine the maximal
amount of transducible information, given the ob-
served noise (see SOM section 2). This quantity,
known as the channel capacity (9), is a general
characteristic of the signaling system and the
signal-response pair of interest and can thereby be
experimentally measured without making as-
sumptions about the (possibly nonlinear) relation
between R and S, signal power, or noise properties.

Using immunocytochemistry, we assayed nu-
clear concentrations of the transcription factor
nuclear factor kB (NF-kB) in thousands of in-
dividual mouse fibroblasts 30 min after exposure
to various TNF concentrations (Fig. 1D).We chose
this time point because NF-kB translocation peaks
at 30 min regardless of the concentration used,
initiating expression of early-response inflamma-
tory genes (19–22). The NF-kB response value
in a single cell could yield at most 0.92 T 0.01 bits
of information, which is equivalent to resolving
20.92 = 1.9, or about 2, concentrations of the TNF
signal, thus essentially only reliably indicating
whether TNF is present or not. (See SOM sec-
tions 2.2 and 3 regarding the low experimental
uncertainty.) A bimodal input signal distribution,
P(S), with peaks at low and high TNF concentra-
tions, maximizes the information (fig. S1), support-
ing the notion of essentially binary (digital) sensing

capabilities of this pathway (18), although we did
not observe bimodal output responses, P(R|S).

Noise also limits other canonical pathways,
including signaling by platelet-derived growth
factor (PDGF), epidermal growth factor (23), and
G protein–coupled receptors (24), to ~1 bit (fig.
S2, A to C, and table S1). Even the most reliable
system we examined, morphogen gradient sig-
naling through the receptor Torso in Drosophila
embryos (25), was limited to 1.61 bits (fig. S2D
and table S1), corresponding to about three dis-
tinguishable signal levels.

The pathways examined above are examples
of individual biochemical communication chan-
nels (Fig. 1B) that capture relatively low amounts
of information about signal intensity, which would
allow only limited reliable decision making by a
cell. However, information in biological systems
is typically processed by networks comprising
multiple communication channels, each transduc-
ing information about the signal. For instance, a
transcription factor often regulates many genes,
a receptor many transcription factors, and a dif-
fusible ligand many cells. The integrated outputs
of such multiple channels can provide more in-
formation about the signal than the output of any
one channel (see SOM section 4). Subsequently,
downstream signaling processes that converge
to co-regulate common effectors, biological pro-
cesses, or physiologic functions can provide the
point needed to integrate the multiple outputs to
realize the benefit of increased aggregate infor-
mation (fig. S3). To provide a unified framework
for analyzing such various networks, we first the-
oretically investigated the information gained by
network signaling in general, then experimentally
tested the predictions made by the theory when
applied to a specific system.

We considered two information theoretic mod-
els, similar to models of population coding in

neural systems (26–28), for transmitting a signal
S through multiple channels to the responses R1,
R2, …, Rn, under the assumption of Gaussian
variables (see SOM section 5). The bush model
uses independent channels (topologically resem-
bling an upside-down shrub) (Fig. 2A), whereas
the tree model signals through a common chan-
nel (“trunk”) to the intermediate, C, before di-
verging into independent branches (Fig. 2B). The
information resulting from the bush model is

Ibush(R1, :::, Rn; S) =
1

2
log2 1þ n

s2S
s2S→R

� �

ð2Þ
wheres2S is the variance of the signal distribution,
and s2S→R is the noise (variance) introduced in
each branch. Thus, the information can grow
logarithmically with the number of branches
without an upper bound. In contrast, the informa-
tion resulting from the tree model is

Itree(R1, :::, Rn; S) =

1

2
log2 1þ ns2S=s

2
C→R

1þ ns2S→C=s
2
C→R

� �
ð3Þ

where s2S→C and s2C→R are the trunk and branch
noises, respectively (see SOM section 3.3). As the
number of branches increases, the information
asymptotically approaches an upper limit equal
to the mutual information between the input
signal and the common intermediate. Thus, the
information lost to noise in the trunk determines
the maximum throughput of a tree network.

The key difference between bush and tree
networks is the absence or presence of this trunk-
based information bottleneck. The biochemical
structure of a network can resemble a tree, but if
there is little loss of information upstream, the

A

B

C D

Fig. 2. Information gained by signaling through a network comprising mul-
tiple communication channels. (A) Schematic of a bush network with inde-
pendent channels lacking an information bottleneck. (B) Schematic of a tree
network with channels sharing a common trunk that forms an information
bottleneck. Circles represent noise introduced in the indicated portions of the
signaling network; see text for definition of symbols. (C) Comparison of bush
and treemodel predictions for the capacity of the TNF network to experimental

values. At 30 min, the NF-kB and ATF-2 pathways together capture more
information about TNF concentration than either pathway alone (bars 1 to 3),
and the tree rather than bushmodel accurately predicts this increase (bars 3 to
5). The tree model further predicts a receptor-level bottleneck of 1.26 T 0.13
bits (bar 6). (D) Joint distribution of NF-kB and ATF-2 responses to 30-min
stimulation of TNF. Each data point represents a single cell, and each
concentration of TNF examined is shown with a distinct color.
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bush model lacking a bottleneck might best es-
timate the capacity of the network. Additionally,
the bush and tree models make various semi-
quantitative predictions (see SOM section 6),
such as the information captured by a network
based on the capacities of its component path-
ways. For example, for a bush network compris-
ing two pathways each with 1-bit responses,
Eq. 2 implies s2S=s

2
S→R ¼ 3 and that together

they should yield 1

2
log2ð1þ 2ð3ÞÞ ¼ 1:4 bits.

TNF activates the NF-kB and c-Jun N-
terminal kinase (JNK) pathways, stimulating nu-
clear localization of NF-kB and phosphorylated
activating transcription factor–2 (ATF-2) (fig. S4),
respectively (29). To determine if the TNF sig-
naling network contains an appreciable upstream

information bottleneck limiting the information
captured by these pathways, we examined wheth-
er the bush (bottleneck absent) or tree (bottleneck
present) network model better approximates the
network (fig. S5). The models are applicable be-
cause the NF-kB (Fig. 1D) and ATF-2 (fig. S6)
response distributions are approximately Gaussian
at all TNF concentrations. We found that NF-kB
alone yielded at most 0.92 bits of information
about TNF concentration, and ATF-2 alone
yielded at most 0.85 T 0.02 bits (fig. S1B and
table S1). Together, the bush model predicts that
these pathways jointly yield 1.27 T 0.01 bits (Fig.
2C), and a similar model assuming indepen-
dent pathway responses that are not necessarily
Gaussian likewise predicts an increase to 1.13 T

0.01 bits. The actual information determined by
dual-staining immunocytochemistry (Fig. 2D)was
1.05 T 0.02 bits, much lower than both predic-
tions (Fig. 2C), demonstrating that the bush mod-
el does not approximate the TNF network well.
In contrast, the tree model predicts 1.03 T 0.01
bits, matching the experimental value within er-
ror (Fig. 2C), and also correctly predicts the sta-
tistical dependency between the responses given
the signal (fig. S7).

The correspondence between the tree mod-
el predictions and experimental measurements
strongly indicates that the network contains an
information bottleneck. The tree model predicts
that the maximum information that can pass
through the bottleneck is 1.26 T 0.13 bits (Fig. 2C),

A B C D

E
Fig. 3. Effect of negative feedback to the bottleneck on information transfer. (A) TNF signaling network
diagram showing A20-mediated negative feedback to the information bottleneck. (B) Comparison of infor-
mation about TNF concentration captured with and without A20 negative feedback. The information is larger at
30 min but smaller at 4 hours in wild-type cells as compared to A20−/− cells. (C and D) Schematic of NF-kB
dynamics in wild-type and A20−/− mouse fibroblasts exposed to saturating concentrations of TNF. Average
dynamics (black) and the expected magnitudes of the dynamic range (double arrow) and noise (single arrow)
are shown. See fig. S9 for experimental support. (E) Comparison of NF-kB responses to zero (basal) or sat-
urating concentrations of TNF. Differences in the means with and without TNF indicate the dynamic range, and
error bars (SD) indicate the noise.

A B C

Fig. 4. Information gained by signaling through networks of multiple genes. (A)
Plot shows the unique curve (solid black) determined by the tree model (inset),
passing through the experimentally determined values (circles), for information as
a function of the number of copies of a NF-kB reporter gene. The upper limit,
corresponding to the maximum information captured by integrating NF-kB ac-
tivity over time, is 1.64 T 0.36 bits (blue dashed line). (B) Expression-level dis-

tributions of clonal cell lines containing different numbers of copies of an NF-kB
reporter gene in response to ~10 hours of TNF exposure. (C) Time courses cor-
responding to individual cells showing cell-to-cell differences in the onset and rate
of NF-kB reporter gene expression (left). In each cell, expression is nearly linear
and deterministic in time, as quantified by the correlation coefficient (right) of the
time course after onset of expression (shown schematically in inset on left).
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corresponding to just 21.26 = 2.3 distinguishable
TNF concentrations. The known biochemistry of
TNF signaling implies that the bottleneck (trunk)
comprises the steps of TNF receptor complex ac-
tivation common to both pathways, including lig-
and binding, receptor trimerization, and complex
formation and activation. Because all TNF sig-
naling passes through the receptor complex, mul-
tiple pathways in the TNF signaling network,
activated at the 30-min time point, only modestly
increase the information about TNF concentra-
tion regardless of the number of pathways or their
fidelity.

We next explored whether negative feedback,
which can reduce noise (12, 30, 31), might alle-
viate the receptor-level signaling bottleneck. The
information captured by a single channel (Eq. 2,
n = 1) can be written as 1

2
log2ðs2R=s2S→RÞ. Thus,

negative feedback can have equivocal effects on
information, depending on the balance of the tend-
encies for negative feedback to reduce both the
dynamic range of the signaling response (32), rep-
resented by the response variance s2R, and noise,
represented bys2S→R. Indeed, comparison of wild-
type cells and cells lacking A20 (fig. S8), an
inhibitor of TNF receptor complexes whose ex-
pression is up-regulated byNF-kB (33) (Fig. 3A),
showed that A20-mediated negative feedback in-
creases information at the 30-min time point, but
decreases it at 4 hours (Fig. 3B).

To understand these different outcomes, we
examined how A20 affects the dynamic range
and noise at either time point. At the early time
point, constitutively expressed A20 inhibits basal
NF-kB activity, but TNF does not induce A20
expression rapidly enough to affect saturating
levels of NF-kB at 30 min (Fig. 3, C and D, and
fig. S9) (17, 34). Hence, A20 negative feedback
decreases noise, primarily at low TNF concen-
trations, and also increases the dynamic range by
lowering basal NF-kB levels (Fig. 3E and fig.
S10A), explaining why information at 30 min is
higher forwild-type than forA20−/− cells (Fig. 3B).
In contrast, at the late time point, A20 is in-
creased in wild-type cells (17, 34). The negative

feedback decreases noise at all TNF concentra-
tions but also decreases the dynamic range by
strongly suppressing the maximum inducible
NF-kB activity (Fig. 3E and fig. S10A). The net
effect is lower information for wild-type versus
A20−/− cells at 4 hours (Fig. 3B).

We observed that A20 negative feedback sim-
ilarly both improves and limits information at the
early and late time points, respectively, for ATF-2
alone, or together with NF-kB (Fig. 3B and fig.
S10B), consistent with A20 affecting the portion
of the network common to both pathways. Nev-
ertheless, the maximal information about TNF con-
centration acquired with or without A20-mediated
negative feedback was still ~1 bit, suggesting
limited advantages for mitigating the information
bottleneck in this pathway by using negative
feedback.

We next considered whether networks com-
prising multiple target genes can capture sub-
stantial amounts of information through time
integration. If the target gene product lifetime is
long compared to its transcription and translation
time scales, the accumulated protein concentra-
tion is approximately proportional to the time in-
tegral of signaling activity, thereby averaging out
temporal fluctuations (35, 36). However, the bio-
chemical readout of protein synthesis can intro-
duce extra noise, confounding determination of
the information contained in the time integral.
Fortunately, the maximum information captured
by a tree network, in which the time integral of
transcription factor activity is the intermediate sig-
nal activating multiple independent target genes
(Fig. 4A, inset), is determined by the trunk (time
integration) rather than branch noise (readoutmech-
anism). We measured the information captured
by such tree networks in cells stably transfected
with different copy numbers (1.8-fold difference,
as determined by polymerase chain reaction) of
the gene coding for a stable green fluorescent
protein (GFP) (37) reporting on NF-kB activity
(Fig. 4B). Using the tree model to extrapolate the
extent of the bottleneck, under the assumption
that ~10 hours of TNF exposure induces similar

expression level and noise for each gene, in-
dicates that 1.64 T 0.36 bits is the maximum in-
formation that integrating NF-kB activity over
the experimental time period can yield about
TNF concentration (Fig. 4A), regardless of the
readout mechanism.

To understandwhy information was onlymod-
erately higher compared to a single time point
(1.64 versus 0.92 bits), we monitored GFP re-
porter gene expression in individual cells, finding
that, for any given cell, GFP accumulated linearly
in time in a nearly deterministic fashion, although
its onset and accumulation rate varied from cell to
cell (Fig. 4C). This is consistent with observa-
tions made with live cell probes (18–20) showing
NF-kB dynamics to be essentially deterministic
over the experimental time scale within each cell,
but distinct across cells. We thus conclude that
the ability of time integration to increase the in-
formation about TNF concentration is limited by
the lack of rapid temporal fluctuations that would
otherwise be suppressed by integration over the
10-hour response.

Finally, we considered signaling via multiple
cells, each considered as separate information
channels within a network (Fig. 5A, inset). An
ensemble of cells resembles a bush network if
each cell directly and independently accesses the
same signal, and because bush networks do not
contain trunk-based bottlenecks, substantial in-
creases in information might be obtained. To test
this hypothesis, we analyzed the collective TNF
response of different numbers of cells, as mea-
sured by immunocytochemistry. We varied cell
number by considering cells within nonoverlap-
ping circular regions of variable diameter (Fig.
5B) and used the average NF-kB response with-
in each region to simulate cells contributing to a
collective response in proportion to their NF-kB
activity. The bush model predicts (Eq. 2), and
the data confirm (Fig. 5A), that the information
should increase logarithmically with the number
of independently signaling cells functioning
collectively.

Moreover, we found that networks of just 14
cells can yield up to 1.8 bits of information, far
greater than the other network types analyzed
above. Because ensembles of this size can plau-
sibly experience a similar concentration of a dif-
fusing signal such as TNF and function collectively
(21, 38) [e.g., TNF-activated blood vessel en-
dothelial cells (39)], collective cell behavior can
effectively increase the information gained and
produce responses that can discriminate be-
tween many TNF concentrations. Nonetheless,
networks relying on cell-cell communication can
still contain bottlenecks. For instance, TNF can
be secreted by macrophages stimulated by lipo-
polysaccharide (LPS) from invading bacteria,
with the information about the initial LPS dose
lost within the macrophage signaling networks
before secretion of TNF.

By treating biochemical signaling systems as
information theoretic communication channels,
we have rigorously and quantitatively shown that,

Fig. 5. Information gained by signaling through networks of multiple cells. (A) Comparison of ex-
perimentally measured information obtained by collective cell responses (circles) versus logarithmic trend
(solid black line) predicted the bush model (inset). (B) Schematic of methodology used to measure
collective cell responses.
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in a single cell, noise can substantially restrict the
amount of information transduced about input
intensity, particularly within individual signaling
pathways. The bush and tree network models,
which provide a unified theoretical framework for
analyzing branched motifs widespread in natural
and synthetic signaling networks, further dem-
onstrated that signaling networks can be more
effective in information transfer, although bot-
tlenecks can also severely limit the information
gained. Receptor-level bottlenecks restrict the TNF
and also PDGF signaling networks (fig. S11) and
may be prevalent in other signaling systems.

We explored several strategies that a cell
might use to overcome restrictions due to noise.
We found that negative feedback can suppress
bottleneck noise, which can be offset by concom-
itantly reduced dynamic range of the response.
Time integration can increase the information
transferred, to the extent that the response under-
goes substantial dynamic fluctuations in a single
cell over the physiologically relevant time course.
The advantage of collective cell responses can
also be substantial, but limited by the number of
cells exposed to the same signal or by the in-
formation present in the initiating signal itself.

Responses incorporating the signaling history
of the cell might also increase the information
(40, 41). For instance, responses relative to the
basal state (fold-change response) might be less
susceptible to noise arising from diverse initial
states (23), although this does not necessarily
translate into large amounts of transferred infor-
mation (table S1). Similarly, for the reporter gene
system described here (fig. S12), ~0.5 bits of ad-
ditional information can be obtained if a cell can
determine expression levels at both early and late
time points. However, noise in the biochemical
networks that a cell uses to record earlier output
levels and to later compute the final response
may nullify the information gain potentially pro-
vided by this strategy. Overall, we anticipate that

the information theory paradigm can extend to
the analysis of noise-mitigation strategies and
information-transfer mechanisms beyond those
explored here, in order to determine what specific
signaling systems can do reliably despite noise.
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ER Tubules Mark Sites of
Mitochondrial Division
Jonathan R. Friedman,1 Laura L. Lackner,2 Matthew West,1 Jared R. DiBenedetto,1

Jodi Nunnari,2 Gia K. Voeltz1*

Mitochondrial structure and distribution are regulated by division and fusion events.
Mitochondrial division is regulated by Dnm1/Drp1, a dynamin-related protein that forms
helices around mitochondria to mediate fission. Little is known about what determines sites
of mitochondrial fission within the mitochondrial network. The endoplasmic reticulum (ER)
and mitochondria exhibit tightly coupled dynamics and have extensive contacts. We tested
whether ER plays a role in mitochondrial division. We found that mitochondrial division occurred
at positions where ER tubules contacted mitochondria and mediated constriction before Drp1
recruitment. Thus, ER tubules may play an active role in defining the position of mitochondrial
division sites.

Regulation ofmitochondrial division is crit-
ical to normal cellular function; excess
division is linked to numerous diseases,

including neurodegeneration and diabetes (1, 2).
The central player in mitochondrial division is
the highly conserved dynamin-related protein

(Drp1 inmammals,Dnm1 in yeast),which belongs
to a family of large guanosine triphosphatases
(GTPases) that self-assemble to regulate mem-
brane structure (3). Division dynamins are likely
to work by oligomerizing in a GTP-dependent
manner into helices that wrap around mitochon-
dria; locally controlled assembly-stimulated GTP
hydrolysis is thought to provide the mechano-
chemical force that completes fission of the out-
er and inner membranes (4). There are additional
proteins required formitochondrial division, such
as the outer membrane proteinMff (mitochondrial
fission factor), which is present only in mam-
mals (5). Although general mechanisms exist for
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