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Adaptive filtering enhances information
transmission in visual cortex
Tatyana O. Sharpee1,2, Hiroki Sugihara2, Andrei V. Kurgansky2, Sergei P. Rebrik2, Michael P. Stryker1,2

& Kenneth D. Miller1,2,3

Sensory neuroscience seeks to understand how the brain encodes natural environments. However, neural coding has
largely been studied using simplified stimuli. In order to assess whether the brain’s coding strategy depends on the
stimulus ensemble, we apply a new information-theoretic method that allows unbiased calculation of neural filters
(receptive fields) from responses to natural scenes or other complex signals with strong multipoint correlations. In the
cat primary visual cortex we compare responses to natural inputs with those to noise inputs matched for luminance and
contrast. We find that neural filters adaptively change with the input ensemble so as to increase the information carried
by the neural response about the filtered stimulus. Adaptation affects the spatial frequency composition of the filter,
enhancing sensitivity to under-represented frequencies in agreement with optimal encoding arguments. Adaptation
occurs over 40 s to many minutes, longer than most previously reported forms of adaptation.

The neural circuits in the brain that underlie our behaviour are well
suited for processing of real-world—or natural—stimuli. These
neural circuits, especially at the higher stages of neural processing,
may be largely or completely unresponsive to many artificial stimulus
sets used to analyse the early stages of sensory processing and, more
generally, for systems analysis. Thus, natural stimuli may be neces-
sary to study higher-level neurons. Characterizing neural responses
to natural stimuli at early or intermediate stages of neural processing,
such as the primary visual cortex, is a necessary step for systematic
studies of higher-level neurons. Neural responses are also known to
be highly nonlinear1–3 and adaptive4–20, making them difficult to
predict across different stimulus sets21. Therefore, even early in visual
processing, characterizations based on simplified stimuli may not be
adequate to understand responses to the natural environment.

For these reasons there has been a great deal of interest in studying
neural responses to complex, natural stimuli (for example, see refs 1,
21–26). However, the relationship between coding of natural and
laboratory stimuli remains elusive due to the difficulty of character-
izing neurons—assessing their receptive fields—from responses to
natural stimuli, as we now describe.

A simple and commonly used model of neural responses is the
linear–nonlinear model27,28. In this model, the response of the neuron
depends on linear filtering of the stimulus luminance values S by a
receptive field L defined over some region of space and time.
Mathematically, the filter output at time t is a sum over the spatial
positions (x,y) and temporal delays t 0 to which the neuron’s response
is sensitive:

P
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0
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0
Þ, which we abbreviate as

L*S. The output of this filter is then passed through a nonlinear
function f to yield the neuron’s response r: r(t) ¼ f(L*S). The
nonlinearity incorporates the fact that the firing rate cannot be
negative and other aspects of neural response such as threshold,
saturation and sensitivity or insensitivity to changes in stimulus
polarity. We will use the terms neural filter or receptive field
throughout this paper to mean the linear part L of the linear–
nonlinear model.

Traditionally, neural receptive fields have been estimated as the
spike-triggered average stimulus (STA; with appropriate correction
for autocorrelation of the inputs)1,23–25,27,28 or by related
methods10,26,29. These methods give unbiased results for linear sys-
tems for any stimulus ensemble or for nonlinear systems if the
ensemble is gaussian random noise. However, they produce systema-
tic deviations from the true filter of nonlinear ‘linear–nonlinear’
neurons probed with natural stimuli (or other non-gaussian stimuli),
even in situations where the only nonlinearity is due to a conversion
of the output of a linear receptive field to firing rate24,30. This happens
because natural stimuli, unlike gaussian stimuli which may be
completely described by pairwise correlations, have strong higher-
order as well as pairwise correlations31–33. The higher-order corre-
lations may be viewed as what distinguishes natural from random
gaussian stimuli. The bias in the filter estimate calculated using the
gaussian or linear assumption increases with the strength of the
nonlinearity and with the strength of stimulus correlations beyond
second order24,30, not vanishing even with infinite data.

Recently an information-theoretic method has been developed
that correctly estimates receptive fields of nonlinear model neurons
(with extensions to multiple linear filters) for arbitrary stimulus
ensembles regardless of the strength of multi-point correlations, even
in cases where the STA is zero30. According to this method, one
searches for the spatiotemporal filter L whose output, L*S, carries
the most mutual information with the experimentally measured
neuronal response r(t). In practice, this is done via a gradient ascent
procedure, searching in the space of all possible spatiotemporal
receptive fields or filters to find the most informative one (referred
to as ‘the most informative dimension’, or MID). We can then
calculate the nonlinearity associated with the MID from the data as
the probability of a spike given the filter output; there is no need to
make any assumption about the shape of the nonlinearity.

Similarly to other ‘spike-triggered’ methods, the MID method
compares two probability distributions of outputs for a given filter:
the distribution of outputs that occur before (or trigger) a spike, and
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the distribution of outputs over the entire stimulus ensemble
regardless of neural response. If a filter represents a stimulus feature
that affects neural responses, then certain values of its output will be
more probable before a spike, and so the two distributions should
differ from one another. The various methods all seek filters that
maximize the difference between the two distributions, but differ in
the measure of this difference. For the STA, the measure is the change
in the mean of the two distributions; for the spike-triggered covari-
ance method10,26,29, it is the change in the variance; and for the MID, it
is an information-theoretic measure (the Kullback–Leibler distance)
that corresponds to the mutual information between the filter output
and the spikes. The information-theoretic measure is more general
than the mean or variance, because it is sensitive to correlations of all
orders, which in part explains the success of the MID method in
estimating neural filters from responses to natural stimuli. Here we
apply this method to neural data, focusing on the single-filter model,
to address the question of whether and how V1 receptive fields adapt
to natural stimuli.

Receptive fields from noise versus natural scenes

We studied 40 simple cells (as characterized by responses to optimal
moving gratings34) in anaesthetized cat V1 (complex cells can also be
characterized by the MID method30 and will be considered in a future
publication). We probed these neurons with natural and white noise
inputs. These inputs differ in two important respects. First, they have
very different pairwise correlations, which are described by the power

spectra. The power spectrum of a white noise ensemble does
not depend on either spatial or temporal frequency within a
certain range, whereas the power spectrum of natural inputs
depends on spatial frequency k as ,1/k2 under a wide variety of
conditions31,33,35,36 (spatiotemporal statistics have similar structure36).
Second, natural scenes have strong statistical correlations beyond
second order that cannot be described by the power spectrum, as
evident in the much greater incidence of oriented edges in natural
scenes than in gaussian noise with the same power spectrum31,33.

To estimate spatiotemporal receptive fields or neural filters from
responses to noise and natural stimuli, we applied both the linear
systems and information-theoretic methods. The resulting estimated
filters and STAs for two example cells are shown in Fig. 1. With
respect to responses to the noise ensemble, we found the filter for
each cell either as the traditional STA or as the MID30. As expected for
white noise stimuli, the two estimates do not differ significantly from
each other for the illustrated cells or for most cells (P . 0.05 for 31
out of 40 cells, t-test, see Supplementary Methods); the remaining
differences can be attributed to the residual spatial correlations in the
white noise ensemble. This agreement illustrates the basic validity of
the MID method under circumstances where the STA offers an
independent unbiased estimate.

For responses to the natural stimulus ensemble, we calculated the
STA and corrected it for second-order correlations present in the
natural ensemble to obtain a decorrelated STA (dSTA). This would
describe the neuron’s filter if the neuron were linear. Because this

Figure 1 | Filters and nonlinearities for two simple cells. a, b, Top to
bottom: STA and MID for noise ensemble; STA, dSTA, dSTA with
regularization and MID for natural ensemble. Spatiotemporal receptive
fields have three time frames covering the indicated time interval (2133 to
233ms). In the right-most column for each filter we plot the probability

distribution of filter outputs in the stimulus ensemble (magenta) and the
spike probability given the filter output (blue; values on the y axis refer to
these probabilities). The colour scale shows the filter in units of its average
noise level (see SupplementaryMethods). x–y scale bars: 18. Error bars show
standard errors of the mean in all figures.
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procedure of correcting for stimulus correlations tends to amplify
noise, we also calculated the dSTA using regularization to prevent
such amplification—such decorrelation with regularization has been
used in most previous work estimating neural filters from responses
to natural signals1,21,24–26. Finally, we estimated the filter from natural
inputs as the MID. As can be seen in Fig. 1, the MID produces an
estimate of the filter for natural scenes that is much closer to the
white noise filter than either the dSTA or the regularized dSTA.
Across cells, the dSTA shows a greater difference from the white noise
filter than does the natural ensemble MID, as judged by smaller
correlation coefficients with either the noise ensemble STA or noise
ensemble MID (40 out of 40 cells, P , 1026). This demonstrates that
some of the differences between the neural filters obtained from
natural and noise stimulation in the linear model are due to biases in
the estimation of the natural filter that can be removed once the
linear–nonlinear model is considered and the MID is computed. In
Fig. 1, we also plot the nonlinear functions that show spike prob-
ability as a function of filter output. They are similar in shape for the
MIDs of the two ensembles, and this behaviour seems to be typical
across cells.

We used the MIDs to estimate both the noise and natural filters in
what follows. We studied all simple cells with a non-zero filter to both
natural and noise inputs.

Despite the similarity of the filters obtained under the two
conditions (see Fig. 1), a jackknife analysis of the errors in estimating
the neural filters shows that the differences between the filters derived
from noise and natural signals are statistically significant (P , 0.01)
for all cells. To investigate the source of these differences and to make
connections with classical studies on neural responses to moving
periodic patterns (gratings) of certain orientations and spatial
frequencies, we compute the spatiotemporal Fourier transform of
the filter in the two spatial dimensions and time. The position of
the maximum of the Fourier transform at the grating temporal
frequency is our prediction for the optimal grating orientation and

spatial frequency for a particular neuron. We did not detect any
systematic shifts in optimal orientation and only a small shift in
optimal spatial frequency as assayed from noise filters, natural signal
filters and grating stimuli, in agreement with previous findings using
the regularized dSTA25,26 (see Supplementary Discussion).

The most marked differences between the neural filters derived
from natural versus noise stimulation are seen by considering the
entire shape of the spatial frequency tuning curves (Fig. 2 and
Supplementary Figs 1 and 2) and not just the location of the single
best spatial frequency. For each cell and temporal frequency, we
calculated the spatial frequency profile along the cell’s preferred
stimulus orientation using interpolation of the filter’s two-
dimensional discrete Fourier transform. Note that our temporal
resolution allowed analysis only at two temporal frequencies (0 Hz
and 10 Hz in each of two opposite directions of motion). Results at
10 Hz did not depend on direction of motion, so both directions were
combined in Fig. 2, which shows the average tuning of the cells in our
data set. For low spatial frequencies sensitivity decreased (increased)
to common (rare) inputs, whereas at middle and high spatial
frequencies the sensitivity did not change. For example, at zero
temporal frequency, low spatial frequencies are more common in
the natural than in the white noise stimulus ensemble (Fig. 2b).
Correspondingly, neurons became less sensitive to those frequencies
during stimulation with natural inputs than during stimulation with
noise inputs (Fig. 2a). In the case of non-zero temporal frequencies
the trend is reversed, because the noise stimulus ensemble has
more power at nearly all spatial frequencies than the natural stimu-
lus ensemble (Fig. 2d, e). These changes in filter can be observed
in the majority of cells, and are not simply due to adaptation in a
small subset of cells. This is shown in Supplementary Fig. 1, which
illustrates the spatial frequency sensitivities of the two example cells
for which the receptive fields are shown in Fig. 1, and Supplementary
Fig. 2, which shows scatter plots of spatial frequency sensitivity of
noise versus natural filters across all cells.

Figure 2 | Neural filters compensate for changes in the input power
spectrum. Average amplitude spectra of neural filters (a, d) and input
ensembles (b, e) corresponding to natural (blue circles) and white noise (red
circles) stimulation for temporal frequencies of 0 and 10Hz. The spectra
were taken along the optimal orientation for each cell by interpolating the

discrete two-dimensional Fourier transform. We use filled circles at
frequencies where mean sensitivity was significantly different between the
two ensembles (small circles for P , 0.05 and large circles for P , 0.01), and
open circles otherwise. c, f, Plots of the product of the average neural filter
and input ensemble amplitude spectra.
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Optimal filtering in a nonlinear system

In retrospect, such shifts in spatial frequency sensitivity may be
expected for neural coding to be optimal for both of two input
ensembles (white noise and natural stimuli) that have such vastly
different power spectra31,33,35 (compare Fig. 2b, e). In general it is
difficult to map optimal coding strategy from one ensemble to
another; however, it could be done if both of the stimulus ensembles
were gaussian so that they were entirely characterized by their power
spectra. Suppose a neuron uses filter LA and nonlinearity fA to
encode optimally gaussian stimulus ensemble A with spatiotemporal
amplitude spectrum PA(k,q). What would then be an optimal
strategy to encode gaussian ensemble B with amplitude spectrum
PB(k,q)? One solution is to leave the nonlinearity unchanged and to
compensate for differences in the input power spectra by changing
neural filter properties so that:

LAðk;qÞPAðk;qÞ ¼ LBðk;qÞPBðk;qÞ ð1Þ

This will leave unchanged all statistics of neuronal response, and so in
particular will leave invariant any statistical measures of optimality.
Alternative strategies involving a change in nonlinearity cannot be
optimal unless there are multiple optima, because if ensemble A has a
unique optimum, then the above strategy will give the unique
optimum for ensemble B. (Note that, in response to an overall
change in contrast, the nonlinearity can be rescaled10,12, but this is
equivalent to a rescaling of the filter according to equation (1) with
no change in nonlinearity.)

These conclusions about the receptive field and nonlinearity apply
only to gaussian stimuli. The higher-order correlations present in
natural scenes may both lead to deviations from equation (1) in
neural filters and cause changes in the shape of the nonlinearity. But
in practice, the changes in the shape of the nonlinearity are small, and
changes in neural filters that do take place act to compensate for
changes in the input power spectrum as predicted from equation (1)
(Fig. 2c, f). These changes in frequency sensitivity occur primarily at
low spatial frequencies. No changes are observed at mid-to-high
spatial frequencies, resulting in significant deviations from equation
(1) in the middle range of frequencies. We can only speculate
that other factors may limit the range of spatial frequencies over
which adaptation can occur.

Adaptation increases information transmission

The above optimal coding argument provides at least a qualitative
explanation of observed receptive field changes. Most theories of
optimal coding define optimality in information-theoretic terms. To
test directly whether the information maximization argument
applies to our data, we calculated the average mutual information

between the filter output and the neural response; the response at a
given time is simply taken as the presence or absence of a single
spike30.

The changes in receptive fields act to increase the information after
changes in stimulus ensemble, and this information would be
substantially reduced if receptive fields did not change with the
ensemble. That is, the natural filter carries more information about
responses to the natural ensemble than to the noise ensemble
(P , 1024, paired Wilcoxon two-tailed test), whereas the noise filter
carries more information about responses to the noise ensemble
than to the natural ensemble (P ¼ 0.03). The average information
values across the population are shown in Fig. 3, and scatter plots on
a cell-by-cell basis are provided in Supplementary Fig. 4. Each filter
produces roughly equal information about responses to its own
ensemble: the difference in information values achieved by applying
the noise filter to the noise ensemble versus applying the natural filter
to the natural ensemble is not significant (P ¼ 0.18, paired Wilcoxon
test). Each filter produces substantially less information about
responses to the other ensemble (P , 1024 for natural or noise
ensemble filtered with natural versus noise filter; paired Wilcoxon
tests), and there is no significant difference between the swapped
combinations (natural filter applied to noise ensemble or vice versa,
P ¼ 0.06, paired Wilcoxon test). We note that the changes in
information are not due to overfitting or other computational arte-
facts, because information was calculated from responses to ensemble
segments that were not used in calculating the filters, and the effects
were not seen in data from a model linear–nonlinear cell with
unchanging filter that was analysed similarly (see Supplementary
Information).

In addition to considering information I in bits (Fig. 3, top), we
also measured information for each cell in units of I spike

37, the
information in the neuron’s response (as defined above) about
the full, unfiltered stimulus (Fig. 3, bottom). I/I spike measures the
fraction of the total possible information that is captured by the
single most informative filter (I spike is a separate measurement that
was available only for a subset of cells, making the data set smaller).
As can be seen, the MID captures roughly 35% of the possible
information for simple cells. Each filter provides a greater fraction of
the overall information when applied to its own ensemble than
the other (P # 1024 for natural filter applied to natural versus
noise ensemble and for either ensemble filtered with natural versus
noise filter; P ¼ 0.05 for noise filter applied to natural versus noise
ensemble; paired Wilcoxon test).

Dynamics of receptive field adaptation

Even though the best linear–nonlinear model systematically changes
with the stimulus ensemble, this does not establish that the neuron
has changed its encoding strategy. The true encoding strategy may be
complicated and nonlinear, so that even if it is static, the best linear–
nonlinear estimate of it may change with the ensemble, much as the
best linear approximation to a curve changes with position on the
curve.

The most direct method to distinguish between an adaptive
strategy and a complex but static coding strategy would be to
estimate the filter as a function of time and see it change. This
method yields very poor time resolution, because ,5 min of data are
needed to estimate the filter, so adaptation that occurs on a faster
timescale cannot be seen. Nonetheless we tried this method and saw
appropriate, if weak, adaptation to noise stimuli even on this long
timescale (see Supplementary Fig. 5). To achieve finer time resolu-
tion, we studied adaptation by measuring changes with time in
the information carried by the output of a single, static filter;
this information can be estimated from ,30 s of data. We used
the following reasoning. If the coding is static, then the mutual
information between this filter’s output and the neuron’s responses
to a given ensemble should not systematically change in time.
However, if the neuron’s receptive field adapts to the stimulus

Figure 3 | Receptive field adaptation increases information transmission.
Bars show the mutual information between spikes and outputs of either the
noise (blue, N) or natural scenes (red, S) filter applied to the natural scenes
ensemble (solid) or noise ensemble (pixelated). NS, white noise filter applied
to natural scenes ensemble; SS, natural scenes filter applied to natural scenes
ensemble; NN, white noise filter applied to noise ensemble; SN, natural
scenes filter applied to noise ensemble. The information values are given in
bits (a) or in units of the total information carried by the arrival of a single
spike I spike

37 (b).
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ensemble, then this information may systematically change in time.
In particular, we take the static filter to be that characterizing a
neuron when it is well adapted to a given ensemble—say the natural
ensemble. When the neuron is newly exposed to a natural ensemble,
the information carried by this filter should increase with increasing
time of exposure to the natural ensemble, as the neuron adapts so
that the filter that it actually uses to encode incoming stimuli into
spikes becomes closer and closer to this static, fully adapted filter.
Similarly, when the neuron is newly exposed to a noise ensemble, the
information carried by this filter should decrease with increasing
time of exposure to the noise ensemble, as the neuron’s own filter
adapts to the noise and becomes less and less like the fully adapted
natural scenes filter.

We derived filters from the last half of the 10-min presentations of
each stimulus ensemble, when the neuron would be best adapted to
the given ensemble if adaptation occurs. We then applied these static
filters to both noise and natural stimuli, and measured information
between spikes and filtered stimuli in successive 34-s periods during
the first half of stimulus presentation (if the filter was derived from
the second half of this stimulus) or in successive 68-s periods during
all of the presentation of the opposite ensemble. Most cells did
not show significant adaptation when considered individually, pre-
sumably due to the variability in measuring information over such
brief time periods. However, averaging over the entire population of
simple cells revealed clear adaptation over time, consistent with an
adaptive coding strategy (Fig. 4). The information progressively
increased with time when natural inputs were filtered with the neural
filter derived from the natural stimulus ensemble (Fig. 4a; see also
Supplementary Discussion and Supplementary Fig. 6), whereas the
information decreased with time when that same filter was applied to
noise inputs (Fig. 4b).

Fits of a single exponential to the average data demonstrate that
there is a statistically significant monotonic change with time, with
time constants t ¼ 42 ^ 9 s for adaptation to the natural ensemble
and t ¼ 22 ^ 2 min for adaptation to the noise ensemble. These
time constants are consistent with the fact that we could not detect
adaptation to the natural ensemble with the 5-min timescale of direct
filter measurements, but we could detect adaptation to the noise
ensemble (Supplementary Fig. 5). Note, however, that the time

constants are based on the assumption of exponential decay and
do not exclude the possibility of multiple timescales, including scales
faster than we were able to measure, or of alternative functional
forms of decay.

We could not detect a significant trend with time in the infor-
mation carried by the noise filter about either ensemble (see
Supplementary Fig. 7). This is perhaps not surprising given that
the average decrease in information for the noise filter applied to the
noise versus natural ensembles was not significant (P ¼ 0.14,
unpaired t-test), and that the slow time course of adaptation to the
noise ensemble suggests that the filter we tested was not fully adapted
to it (see also the legend of Supplementary Fig. 7). Nonetheless, the
presence of significant monotonic changes in the expected directions
for the natural scenes filter applied to each ensemble demonstrates
that the neuron’s coding strategy is adapting over time with exposure
to a given ensemble.

Discussion

Adaptation is ubiquitous throughout the nervous system, and it
occurs in many forms. In vision, adaptation to luminance mean and
variance (contrast) has been observed in the retina5,6,9,13,14,17,18, lateral
geniculate nucleus16 and primary visual cortex4,7,8,20, and related
changes are observed in perception38. In the framework of our
model, adaptation may affect the neural gain (the nonlinear input–
output function) or the spatiotemporal filter itself. Adaptation of the
gain to the mean and variance of the stimulus ensemble (and perhaps
to higher-order statistics39) serves to fit a neuron’s dynamic range to
the dynamic range of the stimulus5–7,9,10,12–14,16. In addition, adap-
tation of the filter to the mean and variance of the stimulus2,3,5,6,14,17

has been observed, and it has been argued that such adaptation along
with adaptation to the stimulus covariance can serve to maximize the
information per spike in the neuron’s response40,41. In general, filter
adaptations are nearly instantaneous (,0.1 s), whereas changes in
gain can be more gradual (time constants up to 10 s and perhaps
longer for some components of adaptation to mean lumi-
nance)5,6,9,13,14,16,17. Here we find an adaptive change in neural
filters in response to stimulus statistics beyond the mean and
variance, and one that occurs over much longer timescales than
previously found even for contrast gain changes. This suggests that

Figure 4 |Adaptation dynamics. a, b, The neural filter derived from the last
half of natural stimulation is applied to the first half of natural (a) or to the
noise (b) ensemble. Symbols show information (green, left y axis) and firing
rate (blue, right y axis) averaged across cells, versus time. The solid line is an
exponential fit; dashed lines show one standard deviation based on the

jacobian of the fit (P ¼ 0.01 in a and P ¼ 0.003 in b using an F-test with null
hypothesis of no time dependence). The taller (shorter) red bars show
information for the natural filter applied to natural (noise) inputs (as in
Fig. 3, but n ¼ 45). The firing rates demonstrate that recordings are stable.
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the observed adaptation represents a new mechanism for optimal
coding.

Adaptation to the power spectrum could be considered a gener-
alized form of contrast adaptation, in which different frequency
channels providing input to cortical cells differentially adapt their
gains so that channels with more stimulus power show greater
adaptation. Indeed, variation of gain adaptation across different
retinal pathways has been observed9,13,16,18. However, these obser-
vations, and a recently reported pattern-specific component of
retinal adaptation42, involved adaptation on significantly faster time-
scales than observed here. Also, in the lateral geniculate nucleus,
adaptive changes between white noise and natural stimulation were
not observed in the temporal domain, at least for a majority of cells43.
This suggests that the adaptive changes reported here are of cortical
origin. A pattern-specific component of cortical adaptation has been
observed: for example, one that differentially affects responses
according to the difference of the stimulus orientation, direction or
spatial frequency from that of the adapting stimulus8,11,15,19,20. At least
in one case, this adaptation has been observed to have time constants
on the order of a minute or longer11. It is possible that the present
observations may share some underlying mechanisms with such
pattern-specific adaptation.

Many recent studies have used versions of the linear model or
related models to estimate receptive fields from responses to natural
stimuli1,21,23–26. Some have reported that the estimates calculated
from responses to natural stimuli differ from those calculated from
responses to noise1,21,23, whereas others25,26 found no change in the
major parameters of neural filters, such as optimal stimulus orien-
tation and spatial frequency. It is not clear from these observations to
what degree reported differences in neural filters are genuinely
stimulus-induced or are due to biases in the estimation induced by
the non-gaussian statistics of natural stimuli together with the
nonlinearity of the input–output function. The fact that the receptive
field obtained for a given ensemble from the linear model best
predicted responses to other examples of its own ensemble1,21,23

suggests at least partially genuine differences, which is also supported
by our results on spatial frequency adaptation. However, the fact that
we found larger differences between filters obtained in the linear
approximation (dSTA for natural stimulus ensemble and STA for
white noise ensemble) than between filters obtained in the linear–
nonlinear model (MID for natural stimulus ensembles and STA or
MID for white noise ensemble) suggests that biases also exist, and the
new information maximization procedure used here removes these
biases for real neurons, just as was demonstrated in numerical
simulations30.

We have found that V1 neurons adapt their filters to stimulus
statistics beyond the mean and variance. This filter adaptation occurs
over 40 s to many minutes, suggesting that it is not a consequence of
previously described mechanisms of luminance or contrast adap-
tation. The adaptation serves to preserve information transmission
and to reduce relative responses to stimulus components that are
relatively more abundant in the stimulus ensemble, as predicted
by optimal encoding arguments. It remains to be determined
whether the neurons are adapting to changes in power spectra, in
higher-order statistics, or both. The gradual nature of adaptive
changes and their correspondence to optimization principles
suggests that it might be possible to predict the direction and degree
of adaptation to stimulus sets with statistics intermediate between
those of white noise and natural stimuli. Thus, there is hope for
creating a unified picture of neural responses across various input
ensembles.

METHODS
All experimental recordings were conducted under a protocol approved by the
University of California, San Francisco, Committee on Animal Research with
procedures previously described44. Spike trains were recorded using tetrode
electrodes from the primary visual cortex of anaesthetized adult cats and

manually sorted off-line. Visual stimulus ensembles of white noise and natural
scenes were each 546 s long. After manually estimating the size and position of
the receptive field, neurons were probed with full-field moving periodic patterns
(gratings). Cells were selected as simple if, under stimulation by a moving
sinusoidal grating with optimal parameters, the ratio of their response modu-
lation (F1; that is, amplitude of the Fourier transform of the response at the
temporal frequency of the grating) to the mean response (F0) was larger than
one34. The rest of the protocol typically consisted of an interlaced sequence
consisting of three different noise input ensembles of identical statistical proper-
ties, and three different natural input ensembles. The interval between presenta-
tions varied in duration as necessary to provide adequate animal care. All natural
input ensembles were recorded in a wooded environment with a hand-held
digital video camera in similar conditions on the same day (see Supplementary
Movie). The noise ensembles were white overall, but the spatial frequency
spectrum was divided into eight circular bands, and each particular frame was
limited to one band chosen at random; this white noise design was intended to
increase the number of elicited spikes. The mean luminance and contrast of the
noise ensembles were adjusted to match those of the natural ensembles. Both
noise and natural inputs were shown at 128 £ 128 pixel resolution, with angular
resolution of approximately 0.128 per pixel. To calculate receptive fields, input
ensembles were down-sampled to 32 £ 32 pixels. The receptive field centre was
determined from the maxima in the STAs for noise and natural ensembles and
was set to the same position for analysis of both noise and natural inputs. A patch
of 16 £ 16 pixels was selected around the centre (angular resolution of 0.488 per
pixel) to make analysis computationally feasible and to minimize effects due to
undersampling (we strove to have the number of spikes greater than the
dimensionality of the receptive fields30). In all cases subsequent analysis of
receptive fields verified that the selected patch fully contained the receptive field.
These receptive fields were used in all quantitative analyses (Figs 2–4). Examples
in Fig. 1 were computed at and are shown at twice the angular resolution to
illustrate the finer structure of the receptive field, as well as differences in
performance of the various methods.
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