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A diversity of decision-making systems has been observed in animal
collectives. In some species, choices depend on the differences of
the numbers of animals that have chosen each of the available
options, whereas in other species on the relative differences (a
behavior known as Weber’s law), or followmore complex rules. We
here showthat this diversity of decision systems corresponds to a sin-
gle rule of decisionmaking in collectives.Wefirst obtained a decision
rule based on Bayesian estimation that uses the information pro-
vided by the behaviors of the other individuals to improve the esti-
mation of the structure of the world. We then tested this rule in
decision experiments using zebrafish (Danio rerio), and in existing
rich datasets of argentine ants (Linepithema humile) and sticklebacks
(Gasterosteus aculeatus), showing that a unified model across spe-
cies can quantitatively explain the diversity of decision systems. Fur-
ther, these results show that the different counting systems used by
animals, including humans, can emerge from the common principle
of using social information to make good decisions.

collective behavior | public information | probability matching

Sensory data always has some degree of ambiguity, so animals
need to make decisions by estimating the properties of the

environment from uncertain sensory data (1–5). This estimation
has been shown to be close to optimal in many cases, making
optimal Bayesian decision making a successful framework shared
by behavioral, neurobiological, and psychological studies (1–7).
A richer scenario for decision making takes place when ani-

mals move in groups. In this case, the behaviors of other animals
are an extra source of information (6–34). Animals of different
species have been observed to incorporate this extra information
in their decisions in different ways. Some species make decisions
that can be explained using the differences of the numbers of
animals taking each option (21, 22), others according to the
relative differences (Weber’s law) (23, 24) or using other rules
(25–34). This diversity of decision schemes has translated into
a diversity of models (21, 22, 24–34).
To search for a unified framework having the diversity of de-

cision-making schemes as particular cases, we generalized Bayesian
decision making to the case of animal collectives. Our previous at-
tempt at building such a theory predicted that the only relevant
social information is the difference of the numbers of individuals
already choosing each available option, and not the numbers
themselves or the relative differences (or Weber’s law) (22). How-
ever, this theory was limited to the particular case in which only one
of the options could be a good option (22). We have now general-
ized the theory, allowing all available options to be good or bad
options. We found that this generalization explains the diversity of
decision rules observed in collectives, maintaining the same con-
ceptual and mathematical simplicity, and containing our previous
theory as a particular case. We have tested the theory experimen-
tally in decision experiments using zebrafish (Danio rerio), but to
cover the diversity of decision systems, we have also tested it using
rich datasets of decision making in argentine ants (Linepithema
humile) (24) and three-spined sticklebacks (Gasterosteus aculeatus)
(25, 26).We found a quantitative match between the theory and the
different decision systems of these representative species.

Results
We studied how the behaviors of others should be taken into
account to improve the estimations of the structure of the world
and make decisions in animal collectives. For a situation with two
identical options to choose from (Fig. 1A), we looked for the
probability that one option, say x, is a good option given that nx
and ny animals have already chosen options x and y, respectively.
We used Bayesian theory to find an approximated analytic ex-
pression for this probability as (SI Text)

Pðx  is goodÞ = 1

1+ as−ðnx−knyÞ
: [1]

Parameter a measures the quality of nonsocial information
available to the deciding individual, and s measures how reliably
an individual that has chosen x indicates to the deciding individual
that x is a good option. According to Eq. 1, the higher the number
of individuals that chose option x, nx, the higher the probability
that option x is good for the deciding individual, and more so the
higher the reliability s of the information from the individuals
that already chose x. However, each individual that chooses y de-
creases the probability that x is a good option. Parameter k meas-
ures the relative impact of these two opposing effects. Individuals
need to decide based on the estimated probabilities in Eq. 1. A
common decision rule in animals, from insects to humans, is prob-
ability matching, according to which the probability of choosing
a behavior is proportional to the estimated probability (35–44),

Px =
Pðx is goodÞ

Pðx is goodÞ + Pðy is goodÞ: [2]

This rule is known to be optimal when there is competition for
resources (39, 40) and when the estimated probabilities change
in time (41–44). Probability matching in Eq. 2, together with the
estimation in Eq. 1, gives that the probability of choosing x is

Px =

 
1+

1+ as−ðnx − k  nyÞ
1+ as−ðny − k  nxÞ

!−1
; [3]

and Py = 1−Px is the probability of choosing y. The main
implications of Eq. 3 are apparent in its plot (Fig. 1B). First,
decision making in collectives is predicted to be different for low
and high numbers of individuals. For low numbers, there is a fast
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transition between preferring one side over the other, whereas
for high numbers the transition has an intermediate region with
no preference in which the probability has a plateau of value of
one-half. There is a clear separation between the low- and high-
numbers regimes at the point τ= logðaÞ=ðlogðsÞ  ð1− kÞÞ in which
the plateau starts (Fig. 1B; SI Text). Second, in the high-numbers
regime, the isoprobability curves are straight lines of slope k. We
can use this slope to classify three very different scenarios we
found to correspond to different experimental datasets: k= 0,
0< k< 1, and k= 1 (Fig. 1C).
For k = 0, the animals at one option do not impact negatively on

the estimated quality of the other option; this can take place, for
example, when animals at one option do not seem to have in-
formation about the other option. An important prediction for this
case is that for high numbers of animals there is a large plateau of
probability one-half of choosing each of the two options (Fig. 1C,
Left). To have a significantly higher probability of choosing one
option, say x, it is then needed not only that nx > ny but also to be
outside of the large plateau, which means that very few animals
have chosen the other option y, ny < τ. A second prediction is that
there is a finite number of animals that need to be distinguished; to
see this, consider that the probability that option x is a good one
(Eq. 1) for k = 0 increases monotonically with nx and converges to
1. The number of animals nx needed to reach a high probability of
0.95 is given by α = ðlogðaÞ+ logð1=0:95− 1ÞÞ=logðsÞ (Fig. S1).
Beyond α the probability changes very little, thus in practice it is
not necessary to count beyond that number. For a wide range of
parameters a and s, α has low values, corresponding to counting up
to a low number of animals (Fig. S1).
We have found that wild-type zebrafish (D. rerio) in a two-

choice setup used for tests of sociability (45, 46) make choices
that quantitatively correspond to the predictions of the k = 0 case.
The setup has three chambers separated by transparent walls;

a central chamber with the zebrafish we monitor, and two lateral
chambers with different numbers of zebrafish acting as social
stimuli (Fig. 2A;Materials and Methods). An interesting feature of
this setup is that it measures the behavior of a single individual
when presented with social stimuli, allowing a direct test of the
individual decision rule in Eq. 3. Specifically, we measured the
probability that the focal fish chooses each of the two options for
a range of configurations (Fig. 2B; each dot is the mean of typi-
cally n = 15 animals). We found that these experimental results
correspond to Eq. 3 for a = 11.2, s = 5, and k = 0 (Fig. 2B, blue
surface) with a robust fit (Fig. S2). To make a more quantitative
comparison between theory and experiment, we highlighted sev-
eral lines on the theoretical surface, using different colors to in-
dicate different numbers of fish at option y. Fig. 2C compares the
probability values for these five lines with the experimental data,
showing a close match. The model offers both a quantitative fit to
data and a simple explanation of the experimental result. Fish do
not choose directly according to the number of other fish, but to
how these numbers indicate that a place is a good option, giving
a rule of “counting up to 3.”
The close match between experimental data and the decision-

making model supports that zebrafish behavior corresponds to
probabilistic estimations about the quality of sites using social in-
formation. However, the processing steps made by the fish brain
need not have a one-to-one correspondence with the computa-
tional steps in the theory. Instead, a likely option is that zebrafish
use simple behavioral rules that approximate good estimations.We
foundmechanisticmodels with simple probabilistic attraction rules
for individual fish that approximate well the decision-making
model and the data (Figs. S3 and S4).
The second case we consider has parameter k in the range from

0 to 1. For this range, the estimation that x is a good option increases
with how many animals have already chosen x and decreases,

Fig. 1. A general decision-making rule in animal collectives. (A) Decision making between two sites when nx and ny animals have already chosen sites x and y,
respectively. (B) The probability of choosing x in the general rule (Eq. 3), plotted as a function of the animals that have already chosen between the two sites,
nx and ny. The theory predicts very different structure in the probability for the case of low and high numbers of animals, separated by point
τ= logðaÞ=ðlogðsÞ  ð1−kÞÞ. The rate of change of Px in the transition regions depends on the reliability parameter s, with the width of these regions pro-
portional to 1=logðsÞ. (C) Same as B but for three different values of parameter k: k = 0 (Left), 0 < k < 1 (Center), and k = 1 (Right).
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although at a slower rate, with how many have chosen option y.
This situation might be common, for example, in food search.
Animals choosing one option can indicate that there is a food
source in that direction, but also that there might not be a food
source at the other option. In this case, the probability of choosing
x has a plateau in which both options are equally likely, but in-
creasing the number of animals that have chosen x, nx, reaches
a transition region of rapid increase in probability (Fig. 1B). This
transition region follows a straight line of slope k in the probability

plot (Fig. 1B). This line obeys for high number of animals that
ny ≈ k  nx. This is aWeber law (23, 24), according to which the just-
noticeable difference between two groups is proportional to the
total number of individuals. Indeed, if we substitute ny ≈ k  nx into
ΔN=N ≡ ðnx − nyÞ=ðnx + nyÞ we obtain a constant of value
ðk− 1Þ=ðk+ 1Þ. A second prediction of the model is that decisions
should deviate from Weber behavior at low numbers (below the
transition point τ in Fig. 1B).
We have found that decisions made by the Argentine ant (L.

humile) correspond to the case 0< k< 1. Ants′ choices to turn left
and right have been recorded by Perna et al. (24), and we found
that they have choice probabilities well described by Eq. 3, except
that experimental probabilities do not reach values as close to 0 or
1 as the theory. This differencemight be due simply to the fact that
ants are not always making turn decisions based on pheromones,
but responding to other factors, such as roughness of terrain or
collisions with other ants. We therefore considered that ants
choose at random with a given probability and otherwise make
a decision according to Eq. 3 (Eq. 4). This modification only
introduces an overall rescaling in the probabilities, so all structural
features described below are present in Eq. 3 (Fig. S5). We obtain
a good correspondence with data for high (Fig. 3A) and low
numbers of animals (Fig. 3B) with a fit that is robust (Fig. S6). The
experimental data are smoother than the theory, without a central
plateau, but still with a close correspondence, as also shown in the
following analysis. According toWeber’s law, isoprobability curves
should be horizontal lines in the ΔN=N ≡ ðnx − nyÞ=ðnx + nyÞ vs.
N ≡ nx + ny plane, and this is true both for the theory and experi-
ments for high numbers of total animals N (Fig. 3C). The advan-
tage of this plot is that it magnifies the region of low N, where the
data deviate from Weber’s law similarly to the theoretical pre-
diction. A further quantitative analysis revealing the close corre-
spondence between theory and data are shown in Fig. 3D. We
performed a linear fit to the experimental probability along the
lines of constant nx+ ny depicted in Fig. 3D Inset. The slope of each
linear fit was then plotted against the total number of animals N
(Fig. 3D, blue dots). The experimental data has a very close cor-
respondence with the theoretical values in this plot (Fig. 3D, red
line). For a high number of animals, both theory and data show
Weber behavior, corresponding in this logarithmic plot to
a straight line with slope−1 (Fig. 3D, black line) (24). Interestingly,
for low numbers of animals, the theoretical prediction of a de-
viation from Weber behavior corresponds to the data.
The last case we consider has k= 1, for which Eq. 3 depends

only on the variable ΔN ≡ nx − ny. This situation could take place
when there is a high probability that only one of the options is
good, and those animals choosing x indicate that x may be the
good one in a similar way that those choosing y may indicate that
x might not be the good one. We have previously shown (22) that
the simple decision rule Px = 1=ð1+ a  s−ΔNÞ explains well a large
dataset of collective decisions in sticklebacks, G. aculeatus (25,
26). In these experiments, animal groups were made to choose in
two-choice setups with different combinations of social and
nonsocial information (Fig. 4A, Far Left). Interestingly, Eq. 3 has
the simple rule Px = 1=ð1+ a  s−ΔNÞ as a particular case for k = 1
(SI Text). Indeed, all experimental results (blue histograms in Fig.
4A and Fig. S7) are fit using Eq. 3 with parameters s = 2.5, k = 1
(Fig. 4A, red lines). Additionally, for low numbers of animals (up
to τ in Fig. 1B), an approximated ΔN rule can also be found for
any value of k but with different values of the nonsocial reliability
parameter a (SI Text). Therefore, the stickleback data can be fit
with any value of k (green and blue lines in Fig. 4A and Fig. S7 for
k = 0.5 and k = 0, respectively), with robust fits (Fig. S8). The
reason why in this case k can have any value is that its main effect is
to control the slope of the boundaries of the plateau of probability
0.5, which is not present in the experimentally explored region of
the stickleback dataset (Fig. 4B, white triangle). Still, all these fits

Fig. 2. Zebrafish choices correspond to the general rule of decisions in
collectives. (A) Focal fish choosing between two sites with different number
of zebrafish, separated from the focal fish by glass. (B) Probability of
choosing option x for different numbers of zebrafish at sites x and y, nx and
ny. Theoretical probabilities for a= 11.2 and s= 5, andk= 0 in Eq. 3 represented
as a surface and experimental data represented as dots indicating the mean
value of typically 15 animals at each configuration. Different dot colors cor-
respond to different values of ny and bars are SEM. (C) Same as B but plotted
only as a function of nx and different colors representing the value of ny.
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have in common an effective ΔN rule for the experimental region
(Fig. 4B), giving strong support to this rule in this dataset.

Discussion
Our results support that estimation by the brain using social in-
formation to counteract the ambiguity of sensory data is a funda-
mental principle in collective decisionmaking. The theory explains

also the diversity in number discrimination schemes used in col-
lective decisions, including counting up to a given number of ani-
mals, counting the difference of animals choosing among options,
ΔN, or the relative difference, ΔN=N, as well as observed devia-
tions from these ideal cases and the existence of different counting
regimes for high and low numbers as observed in many species,
including humans (47, 48). A single mathematical rule contains all
these cases and can be used as a first-principles approach to
quantitatively study decisions in animal collectives.
One important ingredient of our theory is the use of proba-

bility matching (Eq. 2); for symmetric decisions, it implies
a functional form of the type Px = f ðx; yÞ=ðf ðx; yÞ+ f ðy; xÞÞ. Our
model in Eq. 3 is a particular case of this function, with f ðx; yÞ
derived from an approximation to Bayesian estimation. In-
terestingly, many previous approaches derive from the form
Px = f ðxÞ=ðf ðxÞ+ f ðyÞÞ (21, 22, 27, 28), which is also a particular
case of Px = f ðx; yÞ=ðf ðx; yÞ+ f ðy; xÞÞ, and therefore compatible
with probability matching. In other cases, the basic form Px =
f ðxÞ=ðf ðxÞ+ f ðyÞÞ has been modified by adding constant terms
(29, 30) or an extra function (25), as Px = f ðxÞ=ðf ðxÞ+ f ðkÞÞ, with
k a constant when animals have access to a single choice (31, 32,
34). Weber behavior can also be seen as a particular case. It
has been previously described using a function (24) that can be
expressed as f ðx; yÞ= 1=2+ δðnx − nyÞ=ðnx + nyÞ, with δ between
0 and 1/2. This function obeys f ðx; yÞ+ f ðy; xÞ= 1, so in this case
Px = f ðx; yÞ, following Weber behavior.
These previous functions are very useful when applied to par-

ticular datasets because they may use few parameters in these
conditions. In particular, our previous model (22), a particular case
of Eq. 3 (SI Text), used only one parameter in the symmetric
experiments with sticklebacks, and a model with two parameters
described the ants dataset (24). However, these two models cannot
fit the three datasets or even two of them (Fig. S9 A and D and
S10). For the zebrafish data in Fig. 2, none of the previously pro-
posed functions (21, 22, 24, 27–29) give a good fit of the plateau in
the data (Fig. S9). Our approach has been developed to be applied
in very different species and conditions, here tested for three large
datasets in three different species. One important factor in this
ability to describe different datasets is that our basic function f ðx; yÞ
has a term s−ðnx−k  nyÞ that captures how the estimated quality of an
option depends not only on the animals choosing that option but
also on the animals choosing the other option. These two sources
of information are balanced by parameter k, and different datasets
are found to correspond to different balances k.
Previous functions describing ant foraging include a constant

term that represents a threshold of pheromone concentration
below which ants do not react (24, 27, 28). In this way, these
functions can describe the deviation from Weber’s law at low
pheromone concentration (24). In our case, the theory naturally
shows this behavior as one more particular case of the predicted
difference between a low and high number of animals. Comparing
the two approaches, it is interesting to consider that the behavior
for low numbers that is predicted from estimation theory can be
achieved in ants using a threshold of pheromone concentration.
An advantage of our approach is that the form of the function f is

derived for any type of setup simply from estimation given non-
social sensory data and the behaviors of others (SI Text). For ex-
ample, we predict for a symmetric setup with N options a
generalization of Eq. 1 of the form

Pðx is goodÞ = 1
1+ as−ðnx−k MÞ;

with M =
PN

i≠x ni the total number of animals choosing any
option except x (see Eq. S10 for the more general case of
asymmetric choices).
A further advantage is that the parameters a, s, and k are not

only fitting parameters but have expressions, Eqs. S4, S9, and

Fig. 3. Ant choices correspond to the general rule of decisions in collectives.
(A) Probability of choosing option x as a function of how many ants have
previously been at locations x and y, nx and ny, for theory (Left) using Eq. 4with
a = 2.5, s = 1.07, k = 0.53, prand = 0.39, and experiments (Right) from Perna
et al. (24). (B) Detail of A. (C) Same as A but represented as a function of ΔN=N
and N. (D) Slope of the probability of choosing x in A as obtained from a linear
fit along the lines depicted in Inset. Experimental values (blue dots; error bars
are 95% confidence interval), theory (red line), and Weber’s law (black line).
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S16, respectively, which give additional predictions. For example,
the social reliability parameter is given by

s=
PðβjX ;CÞ
PðβjX ;CÞ;

with β a given animal behavior. This expression means that the
social reliability parameter s is higher for a behavior β that is
produced with high probability when x is a good option, and with
very low probability when it is not a good option. Among all
behaviors, those with higher s allow an individual to obtain a higher
probability that option x is a good one (Eq. 1), so we expect them to
have a larger effect on collective decision making.
Another advantage of an approach based on a theory of es-

timation is that generalizations of the theoretical expressions can
be envisaged deriving models using fewer assumptions. For ex-
ample, including dependencies in the behaviors of the other
individuals and explicit space and time variables should be nat-
ural extensions of the theory.

Materials and Methods
Experimental Protocol for Zebrafish. All procedures met with European Eco-
nomic Community (EEC) guidelines for animal experiments under Directive
86/609/EEC. Experimental procedures were approved by the Bioethics Sub-

committee of Consejo Superior de Investigaciones Científicas. We used wild-
type adult zebrafish, D. rerio, of both sexes. Fish were acclimatized to the
setup water for 1 d before the experiments (Fig. S11). At 1 h before the
experiment, each fish was isolated and fed to ensure uniform nutritional
status across individuals. A focal fish entered the setup and swam freely in
a central chamber between two social chambers with different number of
fish and separated from the choice chamber by glass. Once a fish had been
recorded for 5 min it could be placed in one of the lateral chambers as
a social stimulus for another fish. The fish in the lateral chambers were
interchanged between trials to ensure uniformity, and sides were random-
ized. The central chamber of the setup was washed between trials to remove
odor traces. We computed the probability Px as the fraction of time the focal
fish spent on the black region close to one of the social chambers, x. This
fraction of time converges to Px for a fish that makes repeated decisions
choosing x (y) with probability Px (Py = 1 − Px). A total of 238 fish were tested
only once. To test the effect of previous experience, another 233 trials were
performed with fish that were tested several times. We found no significant
difference between the two groups in the mean times spent at each side
(Fig. S12), so all data were pooled for Fig. 2.

Model with Noise Added to the Decision Rule. The model in Eq. 3 has a good
agreement with data from experiments using the Argentine ant, L. humile
(24), except that experimental probabilities do not reach values as close to
0 or 1 as the theory. To account for the experimental data, we made a simple
modification of the model by assuming that the ant has some probability
prand of making the decision at random motivated by unknown factors.
Then, with probability (1 − prand), the ant makes the decision according to
Eq. 3. Therefore, the probability of turning toward x is

Px =
prand

2
+
�
1−prand

� 
1+

1+ as−ðnx − k  nyÞ
1+ as−ðny − k  nxÞ

!−1
: [4]

The parameters that best fit the ant data are a = 2.5, s = 1.07, k = 0.53, and
prand = 0.39. This same model can be applied to the zebrafish and stickleback
datasets, but in these cases the best fit is obtained for prand ≈ 0, which cor-
responds to Eq. 3.

Analysis of the Ants Dataset. Both the raw dataset and preprocessing routines
were provided by Perna et al. (24), and we used their data assuming no
evaporation of pheromone (this assumption does not change the results
significantly). We calculated from the data the probability of turning right
or left, not a continuous angle, to compare directly to our predicted prob-
abilities. To reduce the noise in the experimental maps of Fig. 3, we sym-
metrized the data so that the probability shown at point (nx,ny) is obtained
as (Px(nx,ny) + (1 − Px(ny,nx)))/2.

Experimental data from Perna et al. (24) measures a quantity that is
proportional to the number of ants previously at the left/right of the de-
ciding ant, not directly the numbers, so the number of ants (nx, ny) used in
the plots are related to the actual number of ants that count for the decision
(nx,true, ny,true) by nx = λ nx,true, ny = λ ny,true, where λ is an unknown pro-
portionality constant. This relation means that the model still applies but
with s = strue

λ, where strue is the actual value of the reliability parameter.

Asymmetric models. For the case of sticklebacks deciding in the presence of
a predator (Fig. 4A, Middle), we derived the more general asymmetric ver-
sion of Eq. 1, Eq. S22 (Figs. S13 and S14). We also derived Eq. S23 for the case
with two different types of replicas (Fig. 4A, Bottom).

Fitting Procedures. To fit the model’s parameters to the data, we per-
formed 2D exhaustive searches in the space of parameters. For functions
with more than two parameters, we performed the search successively
with all possible pairs of parameters. In these cases we repeated the fit
several times starting from different initial conditions, always getting the
same final result.
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Fig. 4. Stickleback choices correspond to the general rule of decisions in
collectives. (A) Probability of finding a final proportion of sticklebacks choos-
ing option x (blue histograms are experimental results from refs. 25 and 26
and theoretical values as lines for k = 1, k = 0.5, and k = 0) for different group
sizes (two, four, and eight fish) and for three types of setups: a symmetric
setup with different numbers of replica fish going to x and y (Top), a setup
with a replica predator at x and different replica fish going to x (Middle), and
a symmetric setup with modified replica fish (Bottom). See model parameters
and 68 additional experiments with fits in Fig. S7. (B) Theoretical Px for k = 1,
a = 1 (Left), k = 0.5, a = 5 (Center), and k = 0, a = 224 (Right), and s = 2.5 in the
three cases. All models require an effective ΔN rule to compare with data for
the number of animals used in experiments (triangle).
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Here we give the derivation of Eq. 1, the derivation of a more
general equation for an asymmetric setup (Fig. 4A, Middle row),
and the derivation of an equation for a symmetric setup but with
different types of animals to follow (Fig. 4A, Bottom row). Addi-
tionally, we show that the model in ref. 1 is a particular case of
Eq. 3. We also present the derivation of an expression for the
point τ separating the low-number and high-number decision
behaviors, and proof of the approximate ΔN rule for low N.

Derivation of Eq. 1. The following derivation follows similar steps
to our derivation in ref. 1, except for the key difference that animals
now estimate the probability that different options are good in-
stead of the best. This simple difference makes the theory more
general with previous results in ref. 1 only a particular case, as
shown in a subsequent section.
Consider a focal individual making a decision among several

options (x, y, z, . . .). To make this decision, it estimates the
probability that each option is a good choice. “Good” may refer
to the presence of food, shelter, absence of predators, or any
other feature. To perform this estimation, the individual uses
the information of the environment gathered directly by its
sensors (nonsocial information, C), and the behaviors of the
other individuals (social information, B). The probability that
a given option (say, option x) is a good choice, given both non-
social and social information is

PðX jC;BÞ; [S1]

where X stands for “x is a good choice.” We can compute this
probability using Bayes′ theorem,

PðX jC;BÞ ¼ PðBjX ;CÞPðX jCÞ
PðBjX ;CÞPðX jCÞ þ PðBjX ;CÞPðX jCÞ; [S2]

where X stands for “x is not a good choice.” Dividing the nu-
merator and denominator of Eq. S2 by the numerator, we get

PðX jC;BÞ ¼ 1
1þ axSx

; [S3]

with

ax ¼ PðX jCÞ
PðX jCÞ [S4]

and

Sx ¼ PðBjX ;CÞ
PðBjX ;CÞ; [S5]

where we use the subindex x to indicate that it refers to the
estimation for option x. Each of the options has a set of
equations like Eqs. S3–S5. Note that ax only contains non-
social information (C), so we call it a nonsocial term, whereas
the social information (B) is contained in the social term, Sx. A
practical version of Eq. S3 is obtained using the approxima-
tion that the focal individual does not take into account the
correlations among the rest of individuals (however, see ref. 1
for a treatment of these correlations). This assumption implies

that the probability of a given set of behaviors is equal to the
product of the probabilities of individual behaviors. We apply this
to the probabilities needed to compute Sx in Eq. S5,

PðBjX ;CÞ ¼ Z∏
N

i¼1
PðbijX ;CÞ; [S6]

where B is the set of behaviors of the other N animals at the time
the focal individual is choosing, B ¼ fbigNi¼1, and bi denotes the
behavior of individual i. Z is a combinatorial term counting the
number of possible decision sequences leading to the set of be-
haviors B, that will cancel out below. Substituting Eq. S6, and an
analogous expression for PðBjX ;CÞ, into Eq. S5, we get

Sx ¼ ∏
N

i¼1

PðbijX ;CÞ
PðbijX ;CÞ: [S7]

Amore useful expression is obtained if we consider, instead of
the full individual behaviors (bi) with all their details, a set of
behavioral classes that group together the behaviors that contain
similar information about the choice. For example, in a two-
choice setup, useful behavioral classes might be “choosing x”
(denoted as βx) and “choosing y” (βy). Consider in general L
behavioral classes fβjgLj¼1. We do not here consider animals to
have individual differences, so all have the same probabilities for
each behavior; for example, the samePðβ1jX ;CÞ andPðβ1jX ;CÞ for
behavior β1, which means that if the first n1 individuals are per-

forming behavior β1, we have∏
n1
i¼1

Pðbi jX ;CÞ
Pðbi jX ;CÞ ¼

�
Pðβ1jX ;CÞ
Pðβ1jX ;CÞ

�n1
. We can

then write Eq. S7 as

Sx ¼ ∏
L

j¼1
s−njxj ; [S8]

where nj is the number of individuals performing behavior βj, and

sxj ¼
PðβjjX ;CÞ
PðβjjX ;CÞ: [S9]

To summarize, the probability that option x is a good choice is,
using Eqs. S3 and S8,

PðX jC;BÞ ¼
 
1þ ax ∏

L

j¼1
s− nj
xj

!−1
; [S10]

with ax in Eq. S4 and sxj in Eq. S9.
The zebrafish experiments in the main text were performed in

a setup with two identical sites to choose from, except for the
number of animals at each site, nx and ny. The focal animal can
observe two types of behaviors: stay at x (βx) and stay at y (βy).
Eq. S10 then reduces to

PðX jC;BÞ ¼ 1
1þ axs

−nx
xx s−nyxy

: [S11]

Similarly, for option y the estimation is
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PðY jC;BÞ ¼ 1
1þ ays

−ny
yy s−nxyx

: [S12]

The nonsocial information for the two sites x and y is identical
by experimental design, so

PðX jCÞ ¼ PðY jCÞ
P
�
X jC� ¼ P

�
Y jC� : [S13]

The relations in Eq. S13, together with Eq. S4, mean that ax =
ay. For notational simplicity, we then define

a ≡ ax ¼ ay: [S14]

The symmetry of the setup also implies the following relations

PðβxjX ;CÞ ¼ P
�
βyjY ;C

�
P
�
βxjX ;C

� ¼ P
�
βyjY ;C

�
PðβxjY ;CÞ ¼ P

�
βyjX ;C

�
P
�
βxjY ;C

� ¼ P
�
βyjX ;C

�
: [S15]

In an idealized situation in which the only possible behaviors
were “stay at x” and “stay at y,” we would have that
PðβxjX ;CÞ ¼ 1−PðβyjX ;CÞ. Because real behaviors are much
more complex, and different behaviors can exist, these two
probabilities will not sum 1 in general.
According to Eqs. S15 and S9, we have that sxx = syy and sxy =

syx. It is then useful to define

s ≡ sxx ¼ syy

k ≡−
log
�
sxy
�

logðsxxÞ ¼ −
log
�
syx
�

log
�
syy
� : [S16]

Using Eqs. S14 and S16, we can write Eqs. S11 and S12 as

PðX jC;BÞ ¼ 1

1þ as−ðnx−knyÞ

PðY jC;BÞ ¼ 1

1þ as−ðny−knxÞ
; [S17]

obtaining Eq. 1. Note that s ¼ PðβxjX ;CÞ=PðβxjX ;CÞ ¼
PðβyjY ;CÞ=PðβyjY ;CÞ, that is, the probability of choosing one
option when it is a good choice over the probability of choosing it
when it is a bad choice. Therefore, parameter s measures how
reliable are the choices of each of the other individuals.
The probability of choosing x or y is then obtained using

probability matching, Eq. 2 to give Eq. 3,

Px ¼
 
1þ 1þ as−ðnx − k  nyÞ

1þ as−ðny − k  nxÞ

!−1
: [S18]

Derivation of a More General Equation for an Asymmetric Setup. In
the case of an asymmetric setup (as in Fig. 4A, Middle row), the
nonsocial information for the two sites x and y is different, so

PðX jCÞ ≠ PðY jCÞ
P
�
X jC� ≠ P

�
Y jC� : [S19]

The relations in Eq. S19 mean that ax ≠ ay, as is clear from its
definition in Eq. S4.
In the symmetric case, we used the relations in Eq. S15,

PðβxjX ;CÞ ¼ P
�
βyjY ;C

�
P
�
βxjX ;C

� ¼ P
�
βyjY ;C

�
PðβxjY ;CÞ ¼ P

�
βyjX ;C

�
P
�
βxjY ;C

� ¼ P
�
βyjX ;C

�
: [S20]

Because the nonsocial asymmetry can modulate the probabilities
for the behaviors, these relations need not be satisfied exactly.
However, this effect is probably much weaker than the effect of the
nonsocial asymmetry on the nonsocial term in Eq. S19. Therefore,
for simplicity we use relations (Eq. S20) also for the asymmetric
setup. The good fit with experimental data confirms that they are
a good approximation.
According to Eqs. S20 and S9, we have that sxx = syy and sxy =

syx, and using the definitions in Eq. S16, we find that Eqs. S11
and S12 become

PðX jC;BÞ ¼ 1

1þ axs−ðnx−knyÞ

PðY jC;BÞ ¼ 1

1þ ays−ðny−knxÞ
: [S21]

The probability of choosing x or y is then obtained using prob-
ability matching (Eq. 2) to get

Px ¼
 
1þ 1þ axs−ðnx − k  nyÞ

1þ ays−ðny − k  nxÞ

!−1
; [S22]

represented in Fig. S13.

Derivation of an Equation for a Symmetric Setup but with Different
Types of Animals to Follow.Whentherearedifferent typesofanimals
to follow, as in Fig. 4ABottom row, following the steps ofDerivation
of Eq. 1, wefind that each type of animal has its own reliability s. For
the particular case of the experiment of ref. 2, we have three dif-
ferent types of animals (real animals, the most attractive replica,
and the less-attractive replica, with reliability parameters s, sR, and
sr, respectively). When the most attractive replica goes to x and the
less attractive one goes to y, Eq. S18 becomes

Px ¼
�
1þ 1þ as−ðnx − k  nyÞs−1R skr

1þ as−ðny − k  nxÞskRs−1r

�−1
: [S23]

Demonstration That the Model in Ref. 1 Is a Particular Case of Eq. 3.
The decision-making model we used in ref. 1 was developed for
a case in which an animal has to choose using the probability that an
option is the best one, whereas the model in this paper is for esti-
mated good options. In ref. 1 we obtained that the probability of
choosing x in a two-choice setup that can present an asymmetry as

Px ¼
�
1þ aold s−ðnx − nyÞ�−1; [S24]

with aold = 1 for the symmetric case.
Multiplying and dividing inside the brackets of Eq. S24 by�
1þ 1

aold
s−ðny−nxÞ

�
, we rewrite this expression as

Px ¼
 
1þ 1þ aold   s−ðnx − nyÞ

1þ a−1
olds

−ðny − nxÞ

!−1
; [S25]

so that Eq. S22 reduces to Eq. S24 for

Arganda et al. www.pnas.org/cgi/content/short/1210664109 2 of 11

www.pnas.org/cgi/content/short/1210664109


k ¼ 1
ax ¼ a−1y ¼ aold

; [S26]

as we wanted to demonstrate.

Derivation of an Expression for the Point τ Separating the Low-
Number and High-Number Decision Behaviors, and Proof of the
Approximate ΔN Rule for Low N. We now consider the general
expression of the probability (Eq. S22)

Px ¼
�
1þ 1þ axs−ðnx − k  nyÞ

1þ ays−ðny − k  nxÞ
�−1

: [S27]

For the reasons described below, the transition between
the two regimes takes place when the following conditions
are met

axs−ðnx−k  nyÞ ¼ 1 and ays−ðny−k  nxÞ ¼ 1: [S28]

These conditions define a point (τx,τy) with (Fig. S13):

τx ¼
log
�
ax
�þ klog

�
ay
�

ð1− k2ÞlogðsÞ [S29]

τy ¼
klog

�
ax
�þ log

�
ay
�

ð1− k2ÞlogðsÞ :

This transition point is relevant because when the left-side terms
of Eq. S28 are much lower than 1 they can be neglected, so Px is
always 0.5. Therefore, the region above the transition point
(τx,τy) in which both left-side terms of Eq. S28 are lower than
1 (region 1 in Fig. S14) is the plateau of Px = 0.5.
However, if the two left-side terms of Eq. S28 are

much higher than 1, we can use the approximations
1þ axs−ðnx−k  nyÞ≈ axs−ðnx−k  nyÞ and 1þ ays−ðny−k  nxÞ≈ ays−ðny−k  nxÞ to
write Eq. S27 as

Px ≈
�
1þ ax=ays−ΔNð1þkÞ

�−1
; [S30]

which only depends on ΔN. Therefore, the region below the
transition point (τx,τy) in which both left-side terms of Eq. S28
are higher than 1 (region 2 in Fig. S14) corresponds to a ΔN rule
for decision making.
For the case of symmetric nonsocial information, in which a ≡

ax = ay, Eq. S29 reduces to

τ ≡ τx ¼ τy ¼ logðaÞ
ð1− kÞlogðsÞ: [S31]

1. Pérez-Escudero A, de Polavieja GG (2011) Collective animal behavior from Bayesian
estimation and probability matching. PLOS Comput Biol 7(11):e1002282.

2. Sumpter DJT, Krause J, James R, Couzin ID, Ward AJW (2008) Consensus decision
making by fish. Curr Biol 18(22):1773–1777.

Fig. S1. Maximum number of individuals (α) that need to be counted according to the model for k = 0. (A) Probability that option x is good (Eq. 1) here plotted
for parameters a = 11.2, s = 5, and k = 0. For k = 0, this probability only depends on the variable nx, increasing as nx increases to a value of 1. We compute α as
the value of nx for which the probability in Eq. 1 reaches 0.95, getting α ¼ ðlogðaÞ þ logð1=0:95− 1ÞÞ=logðsÞ. Because for k = 0 the probability to choose x (Eq. 3)
only depends on nx through P (x is good), to make the decision the animals do not need to keep count of nx beyond α. (B) The number up to which animals
need to count, α, as a function of parameters a and s. For the parameters of the zebrafish dataset, animals only need to count up to 3.

Fig. S2. Robustness of fit to zebrafish data. (A) Root mean-squared error between model predictions and data as a function of a and s (k = 0). The dotted line
limits the region with error below 0.05. (B) Root mean-squared error between model and data as a function of k (a = 11.2, s = 5).
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Fig. S3. A simple mechanistic model gives an approximation to Eq. 3. (A) Comparison between decisions using a simple stochastic model (dashed lines) and the
model in Eq. 3 (solid lines). In the stochastic model, the focal fish either follows one of the other fish present in the setup (going to the zone where the
followed fish is) or does not follow anyone (and therefore moves randomly). If there are N fish in the setup (apart from the focal one), the focal fish will follow
any of them with equal probability P when NP < 1 and otherwise with probability 1/N. The probability of not following another fish, and thus choosing at
random, is then max({1 − NP, 0}). We modeled the experiment as a series of repeated decisions following this rule, and calculated the time spent at each side in
the limit of infinite decisions. Despite the simplicity of this simple stochastic model, it already shows some of the qualitative features of the data. (B) Same as A,
but now the stochastic model considers that the focal fish has a different probability to follow close and far individuals. The implementation of the model was
as follows. The probability of not following anyone is now max({(1 − NclosePclose − NfarPfar),PnF}), where Nclose (Nfar) is the number of fish in the same (opposite)
zone as the focal fish, and PnF is the minimum probability of not following anyone. When NclosePclose + NfarPfar > 1 − PnF, Pclose and Pfar are renormalized so that
NclosePclose + NfarPfar = 1 − PnF, whereas Pclose/Pfar remains constant. The model with Pclose = 0.71, Pfar = 0.005, PnF = 0.1 (dashed lines) has a very good agreement
both with the model in Eq. 3 (solid lines) and the experimental data (points). (C) Difference between the model in Eq. 3 and the mechanistic model in B as
a function of a and s. For most values, there is a close agreement. (D) Maximum number of individuals that is necessary to count according to model in B when
parameters are fitted to match the model in Eq. 3. For most parameter values, we can make Pfar = 0 without a significant worsening of the fit. Then, the
probability of not following any fish is max{(1 − NclosePclose), PnF}, which saturates when Nclose ≥ (1 − PnF)/Pclose. Due to this saturation, the fish only needs to
count up to (1 − PnF)/Pclose. This model is consistent with the notion that for a very wide parameter range, animals only need to count up to a small number.

Fig. S4. A very simple mechanistic model gives an approximation to Eq. 3 for parameters corresponding to zebrafish data. (A) Schematic diagram of the
model. The focal fish (the one on the shaded area) takes into account only the fish that are at the same side. If there are no other fish at the same side, the focal
fish moves randomly, and therefore has probability one-half of choosing any side at the next time step (Top). If there are other fish at its side, the focal fish
follows one of them; at the next decision, it chooses either to stay following the same fish (with probability 1 − Pc) or to change (with probability Pc) and follow
another fish, or not follow anyone. If there is only one fish at the same side, changing means necessarily not following anyone in the next time step, and
therefore moving randomly (Middle). If there are more than one fish, then changing may lead to follow another fish and therefore remain at the same side,
with probability 1 − Pr, or not follow anyone, with probability Pr (Bottom). (B) Comparison among model in A (dashed lines), model in Eq. 3 (solid lines), and
experimental data (points) for Pc = 0.28 and Pr = 0.34. The correspondence is good except for the ny = 2 case (blue). The model corresponds to “counting up to
2”, whereas the data are best fitted with a “counting up to 3” model, as in the more complex model of Fig. S3B.

Arganda et al. www.pnas.org/cgi/content/short/1210664109 4 of 11

www.pnas.org/cgi/content/short/1210664109


Fig. S5. Eq. 3 reproduces the structure of the ant dataset. Same as Fig. 3 but comparing the ant dataset to Eq. 3 (or, equivalently, Eq. 4 setting prand = 0 instead
of the value prand = 0.39 in the main text). (A) Probability of choosing option x as a function of how many ants have previously been at locations x and y, nx and
ny, for theory (Left) using Eq. 4 with a = 2.5, s = 1.07, k = 0.53, prand = 0 and experiments (Right). (B) Detail of A. (C) Same as A but represented as a function of
ΔN/N and N. (D) Slope of the probability of choosing x in A as obtained from a linear fit along the lines depicted in the Inset. Experimental values (blue dots;
error bars are 95% confidence interval), theory (red line), and Weber law (black line).
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Fig. S6. Robustness of the fit of the model in Eq. 4 to the ant dataset. (A) Mean squared error between model and data as a function of parameters a and s,
for k = 0.53 and prand = 0.39. To adequately sample the data, that span several orders of magnitude, we scanned the nx − ny plane using sections of constant nx +
ny equispaced in a logarithmic scale, instead of a square grid. (B) Mean squared error as a function of k and prand for a = 2.5 and s = 1.07. Sampling of the nx − ny

plane as for A.
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Fig. S7. Complete stickleback dataset (1, 2) and model fits. The three figures show experimental data as blue histograms and results for the k = 1 model (3) as
red lines and green and blue lines for k = 0.5 and k = 0, respectively. In the three cases, s = 2.5 and a was refitted for each k. Pink regions limit the 95%
confidence intervals for the k = 1 case. (A) Results for symmetric setup with different number of replica fish going to each side (e.g., 1:2 means one replica
going to y and two replicas going to x). ax = ay = 1 for k = 1 (red line), ax = ay = 5 for k = 0.5 (green line), and ax = ay = 224 for k = 0 (blue line). (B) Results for
symmetric setup and differently modified replica fish going to each side. We set the intermediate replica’s reliability parameter equal to the one of the real fish
(s = 2.5), and adjust the others to match the ratios found in ref. 3. We got ssmall = 1.25, smedium = 2.5, slarge = 3.57, sthin = 1.88, smedium = 2.5, sfat = 3.62, slight = 1.95,
smedium = 2.5, sdark = 4.55, splain = 2.5, and sspotted = 5.81. Parameter a as in A. (C) Results for setup with a replica predator at x. ax = 9.5, ay = 1/9.5 for k = 1 (red
line), ax = 1.25, ay = 31.5 for k = 0.5 (green line), ax = 1,250, and ay = 10,000 (in this case, if we multiply these two parameters by any number greater than 0.1,
the fit changes very little) for k = 0 (blue line).
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Fig. S8. Robustness of the fit for the stickleback dataset. (A) Results of fits for k = 1. (Left) Log-likelihood as a function of parameter s (symmetric setup in red,
setup with two different types of replicas in green, setup with predator in blue). (Center) Log-likelihood as a function of parameter a (red for symmetric setup
and green for setup with modified replicas). (Right) Log-likelihood as a function of parameters ax and ay for the asymmetric setup with predator. (B) Same as A
but for k = 0.5. (C) Same as A but for k = 0. All log-likelihoods are relative to their maximum value.

Fig. S9. Best fit of different functions to zebrafish dataset. (A) Logistic function Px ¼ δnx =ðδnx þ δny Þ, as in refs. 1 and 2, for δ ¼ 1:4. (B)
Px ¼ ðδþ nxÞ«=ððδþ nxÞ« þ ðδþ nyÞ«Þ, as in refs. 3 and 4, for δ ¼ 0:1 and « ¼ 0:7. (C) Px ¼ ðδþ «nxÞ=ð1þ «ðnx þ nyÞÞ, as in ref. 5, for δ ¼ 0:5 and « ¼ 1:6. (D)
Px ¼ 0:5þ δðnx −nyÞ=ðnx þ ny þ «Þ, as in ref. 6, for δ ¼ 0:48 and « ¼ 0:47. (E) Our model in Eq. 3 for a = 11.2, s = 5. (F) Comparison of the five previous models for
line ny = 2. Only the model in Eq. 3 gives a good fit in this region.
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Fig. S10. The models in refs. 1 and 2 do not explain other datasets. (A) Same as Fig. 3, but using Px ¼ ð1þ s− ðnx −ny ÞÞ−1, with s = 1.012. This model was used in
ref. 1 to describe the stickleback dataset, and cannot describe the ant dataset. (B) Same as Fig. S7A, but with Px ¼ 0:5þ Aðnx −nyÞ=ðnx þ ny þ TÞ, with A = 0.5
and T = 0.4, which is the function used in ref. 2 to describe the ant dataset, with the 0.5 term added and with A restricted between 0 and 0.5, so that
probabilities are between 0 and 1.
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Fig. S11. Experimental setup for zebrafish. (A) The behavioral setup is inside a bigger tank so that fish are acclimatized to the same water for 1 d before the
experiment, housed in waiting containers in groups of 8–10 fish. At 1 h before the experiment, each fish is isolated and fed with frozen artemia in an individual
container. The fish stays in the individual container until placed in the release chamber and gently pushed into the waiting chamber with a net that fits tightly
between the walls to prevent the fish from going back to the release chamber. The door to the setup is then lifted and, once the fish enters the setup, it is
closed. The camera records for 5 min from the opening of the door. After the experiment, the fish is pushed back to the release chamber, where it is caught.
Then, a segment of wall opposite to the entrance door is removed, and water from outside is pumped into the central chamber so that odors are washed out.
(B) The T-shaped setup is made of white LEGO bricks, with transparent walls separating the three chambers made of UV-transparent PLEXIGLAS (PLEXIGLAS GS
2458; Evonik Para-Chemie). The setup’s central chamber (choice chamber) measures 20 × 13 cm. The floor of this central chamber has a central white zone 5 cm
wide, and two black lateral zones 7.5 cm wide each. The two lateral chambers measure 14 × 13 cm each. Walls are 17-cm high, and water level is 6 cm. (C)
Illumination is provided by four 500-W halogen lamps pointing to a white sheet on the ceiling. A Basler A622f camera records from above. An opaque roof just
above the camera provides uniform shading on the setup.

Fig. S12. Comparison of results using naive and nonnaive zebrafish. (A) Results for naive zebrafish, which have never seen the setup before the experiment.
(B) Results for zebrafish that have been tested several times in the setup. Lines correspond to the theoretical model (Eq. 3) with same parameter values as
for Fig. 2C.
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Fig. S13. Probability to choose x, Px, for the general case of asymmetric nonsocial information (Eq. S22). Parameters: s = 2.5, k = 0.5, ax = 100, ay = 10,000.
Compare this figure with the one corresponding to symmetric social information in Fig. 1B. See Eq. S29 for an analytical expression of (τx,τy).

Fig. S14. Transition point τ between the low- and high-numbers regimes. Region 1 corresponds to the plateau with Px = 0.5. The ΔN rule is approximately
valid in region 2. Parameters are as in Fig. S13.
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