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Epigenetics as a First Exit Problem
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We develop a framework to discuss the stability of epigenetic states as first exit problems in dynamical
systems with noise. We consider in particular the stability of the lysogenic state of the l prophage. The
formalism defines a quantitative measure of robustness of inherited states.
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Epigenetics means inherited states in living systems,
which are not encoded as genes, but as the (inherited) pat-
terns of expressions of genes. Modulation of gene expres-
sion underlies a wide number of biological phenomena,
from response to a changing nutrient supply in bacteria, to
cell differentiation in multicellular organisms. Some of the
simplest examples of inherited gene expression are found
among bacteriophages, DNA viruses growing on bacterial
hosts. The classical example is the lysogenic state of phage
l in Escherichia coli [1–3].

Upon infection of an E. coli cell, either l enters a path-
way leading to lysis, multiplying and killing the host, or
it integrates its DNA into that of the host. In both cases
different sets of genes are expressed. The latter, known
as lysogeny, can be passively replicated for very long
times. Indeed, the wild-type rate of spontaneous loss of
l lysogeny is only about 1025 per cell and generation [3],
a lifetime of the order of 5 yr. Moreover, this number is but
a consequence of random activation of another part of the
genetic system, the bacterial DNA repair response involv-
ing RecA. The intrinsic loss rate has in several indepen-
dent experiments been found to be less than 1027 per cell
and generation [4–6]. The rate of mutations in the part of
the lambda genome involved in lysogeny is between 1026

and 1027 per generation [5,6]. Epigenetics is therefore in
this system actually more stable than the genome itself.

A stable state can be likened to a control switch that
is on. For l the analogy is quite direct [1,3]: lysogeny is
maintained by regulatory proteins CI and Cro, and l DNA,
around an operator OR, which consists of three binding

sites OR1, OR2, and OR3, overlapping with two promoter
sites PRM and PR; see Fig. 1. At the binding sites ei-
ther CI or Cro can bind. CI has highest affinity for OR1,
thus blocking RNA polymerase, the enzyme which cataly-
ses the production of mRNA transcripts from DNA, from
binding to promoter PR, and initiating transcription of cro.
Cro conversely binds primarily to OR3, thereby blocking
promoter PRM and subsequent production of CI. Finally,
the rate of initiation of transcription of cI from PRM de-
pends on whether CI is bound at OR2. In lysogeny, CI
production balances dilution from bacterial growth at a
steady state with 200–350 CI per bacterial cell [3]. This
is functionally a control switch, because if CI concentra-
tion becomes sufficiently low, increased activation of cro
increases Cro concentration and decreases cI activation, so
that lysogeny is ended and lysis follows.

The simplest mathematical model which embodies
Fig. 1 is a set of coupled equations for the time rate of
change of numbers of CI and Cro in a cell [7]:

!NCI " fCI!NCI, NCro" ,
!NCro " fCro!NCI,NCro" ,

(1)

where the net production rates are

fCI " ScIfCI!NCI, NCro" 2 NCI#tCI ,

fCro " ScrofCro!NCI, NCro" 2 NCro#tCro .
(2)

ScI and Scro the number of CI and Cro protein molecules
produced from one mRNA transcript of the respective
gene. The transcription rates fCI and fCro are assumed
the following functions of CI and Cro concentrations:

fCI " RRM!P010 1 P011 1 P012" 1 Ru
RM!P000 1 P001 1 P002 1 P020 1 P021 1 P022" ,

fCro " RR!P000 1 P100 1 P200" ,
(3)

where Ps is the probability of a state s, encoding whether
the operator sites in Fig. 1 are free, occupied by CI, or
occupied by Cro. Ru

RM is the base rate of transcription of
cI, RRM is the stimulated rate if OR2 is occupied by a CI
dimer, and RR is the rate of cro transcription. We use a
grand canonical formula

Ps " N 21$CI%is $Cro%jse2G!s"#RT , (4)

where [CI] and [Cro] are the concentrations of CI and Cro
dimers in cytoplasm, and is and js are the numbers of these
molecules bound to operator sites in state s. By dimeriza-
tion balance we solve for the number of free dimers as a
function of the total molecule numbers, using (4) to sub-
tract the number of these molecules bound to operator sites,
and association balance to subtract the numbers bound
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FIG. 1. Right operator complex, OR , consisting of the three
operators OR1, OR2, and OR3. cI is transcribed when OR3 is
free and OR2 is occupied by CI. cro is transcribed when both
OR2 and OR1 are free. CI dimers bind cooperatively to OR1
and OR2.

unspecifically to DNA [2]. We further use a formula analo-
gous to (4) to compute and subtract the expected number of
CI and Cro bound to a second operator site OL, and finally
assume that the bacterial and viral genome are, on the av-
erage, present in three copies in the cell [8]. The reference
values for the binding free energies are shown in Table I,
and the other numerical constants discussed above in the
caption to that table. We note that fCI has been directly
measured in the absence of Cro [16], and agrees well with
the parametric representation given by (3). The model is
conveniently visualized by the phase space plot in Fig. 2.

TABLE I. Binding free energies of CI and Cro dimers to oper-
ator sites. The bindings at OR are from [9–11]. Cro is assumed
to bind without cooperativity, and, e.g., the binding energy G211
is taken to be G200 1 G011. The single-site binding energies
at OL are taken from [11], the cooperativities have been as-
sumed the same as at OR. The value of RT is 0.617 kcal#mol.
The bacterial volume is taken 2.0 3 10215l [12]. The reference
value of ScI is 1, which is in the range given by the compari-
son to lacZ in [13], while that for Scro is 20, as deduced from
[14] and [15]. Relative values of the rate constants RRM, Ru

RM,
and RR have been reported in [16], and can be deduced from,
e.g., the number of resulting CI molecules in lysogeny, as dis-
cussed in [6]. We here use RRM " 0.115, Ru

RM " 0.01045, and
RR " 0.30, all three in units s21. The decay constants have
been taken tCI " 2943 s to match the generation time in the
strains used in [5], and tCro " 5194 s, see [17]. The dimeriza-
tion constants of CI and Cro have been taken 211.1 [18] and
27.0 kcal#mol [19], respectively. Cro dimers bind to unspecific
DNA with 26.5 kcal#mol [9]

OR free energy OL free energy
State [kcal#mol] [kcal#mol]

000 0.0 0.0
001 212.5 211.5
010 210.5 29.7
100 29.5 29.7
011 225.7 223.9
101 222.0 221.2
110 222.9 222.3
111 235.4 233.8
002 214.4 214.5
020 213.1 212.6
200 215.5 214.5

If the numbers of CI and Cro were macroscopically
large, then (1) would be an entirely accurate description of
the dynamics. The numbers are, however, only in the range
of hundreds. The actual production process is influenced
by many chance events, such as the time it takes for a
CI or a Cro in solution to find a free operator site, or
the time it takes a RNA polymerase molecule to find and
attach itself to an available promoter. If in a time interval
Dt the expected number of transcriptions is fDt, then an
actual realization has scatter

p

fDt. As a minimal model
of the switch with finite-N noise, we therefore consider
the following system of two coupled stochastic differential
equations, with two independent standard Wiener noise
sources !dvCI

t , dvCro
t ":

dNCI " fCIdt 1 gCIdvCI
t ,

dNCro " fCrodt 1 gCrodvCro
t .

(5)

We assume that there is an equal amount of finite-N noise
in decay as in production, and the two noise amplitudes
are hence

gCI "
q

S2
cIfCI 1 NCI#tCI ,

gCro "
q

S2
crofCro 1 NCro#tCro .

(6)

The problem of escape from a stable equilibrium point like
S under a dynamics like (5) is a first-exit problem in the
theory of stochastic processes [20]. The probability of a
given realization of the noise in time $0, T% is

Prob!&vCI
t , vCro

t 'T
0 "

~ exp

"

2
1
2

Z T

0
! !vCI

t "2 1 ! !vCro
t "2 dt

#

(7)

" exp

"

2
Z T

0

! !NCI 2 fCI"2

GCI
1

! !NCro 2 fCro"2

GCro
dt

#

,

50 55 60 65
80

100

120

0 50 100 150 200 250
CI number

0

50

100

150

C
ro

 n
um

be
r

Phase space plot of lambda lysogeny
Solid line is the optimal exit path
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FIG. 2. The phase space plot of the dynamical system (1), and
the optimal exit path in the stochastic dynamical system (5).
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where we have introduced the diagonal elements of the
diffusion matrix, GCI " g2

CI and GCro " g2
Cro.

Of all the realizations that move the system from S to
A, the most probable is the one that minimizes the action
functional

A "
1
2

Z T

0T

∑

! !NCI 2 fCI"2

GCI
1

! !NCro 2 fCro"2

GCro

∏

dt ,

(8)

where the initial position is S, the final position A, and the
minimization is taken over all paths that go from S to A
in time T . If A ¿ 1 it can be proved, see [21], that the
most probable exit point from the basin of attraction of S
is indeed A, and the rate of exit is

Rate!exit" ~ exp!2Amin" . (9)

The leading correction to (9) is the appropriate fluctua-
tion determinant, which has dimension one over time. In
our case it sets a scale of the order of once per bacterial
generation.

Since the Lagrangian in (8) is not explicitly time depen-
dent, the Hamiltonian

H "
1
2

!GCIp2
CI 1 GCrop2

Cro" 1 pCIfCI 1 pCrofCro

(10)

is conserved along the path. The momenta !pCI, pCro" are
conjugate to the generalized coordinates !NCI, NCro", and
the path is given by a solution of Hamilton’s equations
!#N " ≠H

≠ #p and !#p " 2
≠H
≠ #N

. We note that the energy of
the optimal exit path, the value of H in the auxiliary
mechanical system, must be non-negative, since the drift
field vanishes at the two end points. On the other hand,
we have in general ≠A#≠T " 2E, where E is the energy
and T is the transit time. It hence follows that the optimal
exit path is a zero-energy path from S to A under the
Hamiltonian in (10).

Conceptually, the general problem of exit from an equi-
librium through a basin boundary is similar to thermal
exit from a potential well, see [22,23], with (9) playing
the role of the Arrhenius factor. Indeed, the integrand

in Eq. (8) can be rewritten 1
2 ! !#N 1 #f" ? G21! !#N 1 #f" 2

2
!#N ? !G21 #f". If G21 #f " 2 #=V for some V , the second

term gives the same value for all paths, and therefore drops
out of the minimization, while the quadratic term can be
decreased to zero [20]. For a recent derivation in the con-
text noise in switches, see [24]. The action is hence then

always minimized by
!#N " 2 #f, i.e., a path going against

the drift field, and equal to twice the difference in V . In
the general case no similar analytic prescription exists, and
the optimal path must be computed by numerical proce-
dure, see below.

An important feature of the general exit problem is,
however, that the action (9) is only defined locally around
each equilibrium, that is, from S the bottom of the effec-
tive well, up to A, the saddle point. One can therefore,

in contrast to the potential case, have a series of min-
ima, S1, S2, . . . , SN , such that the system jumps preferen-
tially between them in a definite order, e.g., as S1 ! S2 !
· · · ! SN ! S1 ! · · · . This might be a possible model
of cyclic processes, for instance the cell cycle with check-
points [25], as recently remarked in [24].

In a general exit problem the optimal path can be
computed by the following numerical procedure, using the
relaxation method of computing solutions to 2-point
boundary problems in an ODE [26,27]. We first find a
natural parameter in the system, and vary that to get close
to a bifurcation where the stable and unstable equilibria
(S and A) coalesce. The diffusion matrix G is then
practically constant in a neighborhood around both points,
while the drift field is small. Hence, we can compute
a path between the two points at high energy starting
from a straight path at constant speed. The energy and
the parameters are then changed incrementally, using the
previous solution as the trial solution. The zero-energy
paths in the intermediate neighborhoods of the two points
always need to be taken care of by a local calculation
[21]. The optimal path is shown in Fig. 2.

There is an emerging consensus in molecular biology
and biological physics that chemical networks in living
cells have to be robust [28,29]. For the l phage, robust-
ness of lysogeny has been experimentally established for
several large modifications of the OR complex [5]. The
present work allows us to quantify robustness of epigenetic
states. A state only exists at all if deterministic equations
like (1) have a stable equilibrium with the corresponding
properties. This state is stable for long times, even if the
number of molecules involved is small, if the action A (9)
is much larger than unity. The state is finally robust with
respect to variation of a parameter, if the state still exists
and is stable after the variation.

In Figs. 3(a) and 3(b) we examine lysogenic stability
as function of one parameter, the binding of Cro to OR3.
If we first disregard the noise, we see that a change of
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FIG. 3. Systemic changes due to changes in affinity of Cro
to operator site OR3. The standard value is 215.5 kcal#mol.
Stronger binding energies are investigated for use in numerical
procedure (see main text), and to explore robustness of lysogeny
to parameter changes. (a) Location of stable equilibrium (S) and
unstable equilibrium (A) as affinity is varied. (insert) CI number
in lysogenic equilibrium as function of affinity (b) Wentzel-
Freidlin action as a function of affinity.
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affinity by 2.25 kcal#mol brings the stable and unstable
equilibria together, such that the lysogenic state disappears
altogether. We also observe a sensitive dependence of the
position of the unstable equilibrium, while the number of
CI in the stable equilibrium (lysogenic state) only changes
by 30%. The lysogenic state therefore looks qualitatively
similar over this range of parameters. These are features
of the model embodied by Eq. (1) only. If we then bring
in our model of the noise, Eq. (5), we see that the action
A changes from more than 30 to less than 3 when affinity
changes by 1 kcal#mol, the approximate change of binding
energy under a single point mutation. Such a change hence
suffices to destabilize the switch over biologically relevant
time scales. The model is therefore not robust to such
changes, in contradiction to recent experimental data [5],
which implies the presence of some additional mechanism,
in order for robustness to prevail.

In conclusion, we have examined the general problem of
escape from a stable equilibrium in more than one dimen-
sion, and demonstrated how this determines the stability
of states of genetic networks. In contrast to Kramers’ es-
cape from a potential well, the stability of inherited states
in such networks is not a mathematically, or computation-
ally, trivial problem. Indeed, in an earlier separate contri-
bution we studied lysogenic stability in phage l in a purely
numerical model [6]. The semianalytic model introduced
here, where the most likely exit path is computed from an
auxiliary classical mechanical system, has the advantages
of being conceptually simpler, of extending standard theo-
retical tools in condensed matter physics, and of facilitating
investigations of robustness properties. We note, however,
that a more detailed modeling of the noise, as in [6], may
be important for phenomena on shorter time scales, as in
the lysis/lysogeny entry decision [30]. The overall lesson
of this study is that an examination of equilibria and their
bifurcations with changing parameter values allows us to
quantify both the stability and the robustness of states of a
genetic control system.
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