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Abstract
The immune response to a pathogen has two basic features. The first is the expansion of a few
pathogen-specific cells to form a population large enough to control the pathogen. The second
is the process of differentiation of cells from an initial naive phenotype to an effector
phenotype which controls the pathogen, and subsequently to a memory phenotype that is
maintained and responsible for long-term protection. The expansion and the differentiation
have been considered largely independently. Changes in cell populations are typically
described using ecologically based ordinary differential equation models. In contrast,
differentiation of single cells is studied within systems biology and is frequently modeled by
considering changes in gene and protein expression in individual cells. Recent advances in
experimental systems biology make available for the first time data to allow the coupling of
population and high dimensional expression data of immune cells during infections. Here we
describe and develop population-expression models which integrate these two processes into
systems biology on the multicellular level. When translated into mathematical equations, these
models result in non-conservative, non-local advection-diffusion equations. We describe
situations where the population-expression approach can make correct inference from data
while previous modeling approaches based on common simplifying assumptions would fail.
We also explore how model reduction techniques can be used to build population-expression
models, minimizing the complexity of the model while keeping the essential features of the
system. While we consider problems in immunology in this paper, we expect
population-expression models to be more broadly applicable.

S Online supplementary data available from stacks.iop.org/PhysBio/10/035010/mmedia

1. Introduction

The central feature of the adaptive immune system is the
ability to respond to a broad range of pathogens, including
emerging threats never before encountered, without mounting
responses to the native tissues of the body [1]. This dynamic
is explained by the clonal selection theory, which underlies
our understanding of immunology. This theory postulates that
we begin with a very diverse population of immune cells
(lymphocytes), with each lymphocyte having a unique and
fixed specificity. Consequently the number of lymphocytes
specific for a given pathogen is very small. Following infection

these pathogen-specific lymphocytes undergo rapid division
(clonal expansion) and differentiation into effector cells, which
are able to control the pathogen. Following clearance of the
pathogen some of these lymphocytes differentiate into memory
cells, which are maintained for extended periods and account
for long-term protection. The clonal selection theory describes
the generation of the T cell and B cell responses. In figure 1
we show a schematic of clonal selection for a typical CD8 T
cell response to a viral infection.

The enormous changes in population sizes suggested that,
as in ecology, ordinary differential equation (ODE) models
of the populations would prove useful to understanding the
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Figure 1. Schematic illustration of a typical CD8 T cell response to
an infection. The plot shows the enormous changes in numbers of
pathogen-specific CD8 T cells during the course of infection, as
well as changes in cell phenotype. The response has three phases
which correspond to population expansion, contraction and stability.
Differentiation results in changes in the phenotype of cells from
naive to effector and memory. Typically this type of a response is
described by ordinary differential equations that govern changes in
populations of cells having naive, effector and memory phenotypes.

immune response [2–4]. In these models cells are restricted to
a few distinct phenotypes with division, death, and transition
rates between the phenotypes to describe the dynamics.
The models typically ignore how the systems biology on
the cellular scale governs the rate laws in the models on the
population scale. While such models have proven useful in
addressing a number of population level questions, they have
their limitations. For the approach to work well, phenotypic
states must be well resolved and the transitions between them
must be rapid.

Figure 2 presents data capturing the dynamics of T cells
obtained via flow cytometry. This figure shows the density of
CD8 T cells following a yellow fever vaccination plotted as
a function of two surface expressed molecules (CD45RA, a
signaling molecule that regulates antigen receptor signaling,
and CCR7, a molecule which aids in trafficking of T cells
to lymph-nodes) [5]. The population gradually transitions
from CD45RA low to high during the contraction and
memory phases. This figure illustrates one problem with ODE
models of multicellular population dynamics: how does one
unambiguously partition data into distinct phenotypes when
there is considerable heterogeneity or gradual transitions?
This ambiguity gives rise to subjectivity and quantitative

disagreement between labs in the analysis of immunological
data [6].

The flow of populations as they differentiate (figure 2) is
governed largely by the systems biology of the cells [7–9].
(While the term systems biology has been used very broadly,
in this paper we adopt the most common usage, referring to
models of chemical reaction networks typically within single
cells or homogeneous cell cultures [10].) Typical systems
biology models consist of ODEs or stochastic differential
equations that model reaction rates between chemical species,
providing a finer resolution of phenotypic states.

While population models loose accuracy in not
considering the chemical scale, systems biology models
have contrasting limitations resulting from omission of the
population dynamics. Typically, the analysis and parameter
estimation of differentiating populations has been performed
on time scales where division is negligible [11]. On longer
time scales, population dynamics and systems biology are
coupled and must be considered together. The expression
levels of gene products control cell division and death rates. In
their turn, cell division and death rates change the number
of cells in various phenotypic states and hence shape the
expression profiles of populations. Additionally the process
of cell division dilutes expression and can generate spurious
correlations between expressed chemicals. Clearly, modeling
immune system dynamics requires an integrated approach,
combining population dynamics and systems biology.

One way to do this is to conceptualize each flow cytometry
data set as samples from a density in a multidimensional
cellular configurational space, where each dimension denotes
the quantity of a specific chemical. Individual cells would
trace out trajectories in this configurational space as they
differentiate. Unfortunately in vivo single cell longitudinal
data is difficult to obtain, and for dividing cells the term
longitudinal is undefined. Thus instead of tracking cells over
time, one can focus on tracking populations, or distributions
of cells in the configurational space. This can be done using
partial differential equations (PDEs) and related mathematical
concepts, an approach gaining popularity in theoretical
immunology [12–14]. We refer to the dynamics of chemical
expression (gene, protein, metabolite, etc) in a dynamic
population as the population-expression, and models of the
population-expression as population-expression models.

Days post vaccination

11 14 30 90

CD45RA

CCR7

Figure 2. The differentiation of human CD8 T cells following yellow fever vaccination. These flow cytometry plots show the population of
antigen specific CD8 T cells (red) responding to the vaccination differentiating from CD45RA negative to positive while expanding and then
contracting in number. This transition is associated with the transition from effector memory to central memory. Reproduced with
permission from [5] (copyright 2009. The American Association of Immunologists, Inc.).
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Such population-expression models circumvent our
inability to define clean cellular phenotypic states. They
remove the inherent subjectivity in phenotype discrimination
[6], and they remove the need to incorporate additional
phenotypes to better fit models to data. They integrate the
within cell stochastic chemical kinetics into models of the
population dynamics. Ultimately, they allow analysis of the
diversity of protein expression within populations, how it
changes with time, and how the diversity is affected by
selection.

The main goal of this paper is to introduce such
population-expression modeling, explain utility of the
approach in the context of toy models, and discuss
the methodological developments needed for practical
applications of the ideas. To achieve this, we first introduce
a formalism for population-expression models using PDEs,
and non-local PDEs. Following this we provide a number of
examples of population-expression models, illustrating where
ecological based ODE models succeed and fail, how cell
division dilutes chemical quantities, where single-cell analyses
fail to describe the population, and how we can infer from data
which chemicals may be drivers in regulatory networks. We
end with a critical look at some of the key problems arising
when we confront population-expression models with ever
increasing dimensionality of experimental datasets.

2. Population-expression approach: PDE
formulation

Instead of predefining a limited number of cell phenotypes, our
population-expression approach takes the abundance of cells
with different chemical states as the dynamical variable. We
denote by ρ(�A, t) the density of cells at time t, with internal
biochemical expressions (internal states) of �A.

To describe how ρ(�A, t) changes with time, we first
consider how a single cell moves in the configurational space
of �A values. Denoting the set of differential equations that
describe the changing chemical quantities within a single cell
by

d�A

dt
= �γ (�A), (1)

the abundance ρ flows according to the vector field denoted
by �γ (�A). A number of techniques exist to translate from
the single cell model to a population model [15]. In the
accompanying supplementary materials we provide two such
contrasting derivations, one more common to the fluid-
dynamics community (based on the divergence theorem), and
the other more common to statistical physics and systems
biology (based on the chemical master equation). These
techniques have identical results, generating an advection
equation describing how the density changes according to the
vector field �γ (�A):

∂ρ(�A, t)

∂t
= −�∇ · [�γ (�A)ρ(�A, t)]. (2)

The quantity in the square brackets denotes the total flux of
cells changing in expression level as they move through the
configurational space, and �∇ defines the divergence operator,

a vector of partial derivative operators (∂/∂A1, ∂/∂A2, . . .).
The formulation is valid for arbitrary dimensionality, and the
examples in the following sections use either one or two
dimensions for simplicity.

Incorporating population dynamics into these equations
can be done with additional terms for cell death and sources
of new cells:

∂ρ(�A, t)

∂t
= −�∇ · [�γ (�A)ρ(�A, t)] − ν(�A)ρ(�A, t) + �(�A). (3)

Here ν(�A) denotes a cellular death rate that is a function of
the chemical concentration and �(�A) is an influx of new cells
entering the system in a chemical state �A.

Cell division can be included by adding nonlocal terms
to equation (3). For example, if in a symmetric cell division,
all chemicals in the cell are split equally between the two
daughters, we have

∂ρ(�A, t)

∂t
= −�∇ · [�γ (�A)ρ(�A, t)] − μ(�A)ρ(�A, t)

+ 2d · 2μ(2�A)ρ(2�A, t) − ν(�A)ρ(�A, t) + �(�A). (4)

Here μ(�A) is the division rate, which we assume depends on
the cell age and other properties only implicitly through the
instantaneous state of the cell, �A. In this equation, cells with
chemical quantity �A are removed from the abundance at �A as
they divide with rate μ(�A). Separately, each cell dividing at
abundance 2�A is adding two cells to the abundance at �A. The
factor of 2d arises from a subtlety of the non-local calculus.
Division adds to an infinitesimal volume of the space, bounded
in each dimension by (Ai, Ai + δAi) where δ is an infinitesimal
quantity. The cells however are coming from a region with
boundaries (2Ai, 2Ai +2δAi), which is twice the width in each
of the d dimensions. This equation can also be modified to
describe dilution in asymmetric cell division.

It is frequently the case that non-locality gives rise to
integro-differential equations. If we incorporated partitioning
noise into our equation, it would generate an integral term as
new cells would enter the population at �A from a range of values
centered around 2�A. When considering systems with small
numbers of molecules, this approach is an important extension.
With large numbers of molecules, the relative variation is
small, and partitioning noise can be neglected.

Finally we can very naturally incorporate the stochastic
fluctuations resulting from the chemical dynamics [16, 17].
This is typically done by constructing a chemical master
equation, and expanding in small relative fluctuations [18]. An
example derivation is provided in the supplementary material,
available at stacks.iop.org/PhysBio/10/035010/mmedia. Ex-
panding the chemical master equation to lowest order gives
equation (2). The expansion of the chemical master equation
to next highest order results in a nonlocal analogue of the
Fokker–Planck equation, which spreads the population in
the �A space due to stochasticity of the intrinsic chemical
processes:

∂ρ(�A, t)

∂t
= −�∇ · [�γ (�A)ρ(�A, t)]

−μ(�A)ρ(�A, t) + 2d · 2μ(2�A)ρ(2�A, t)

− ν(�A)ρ(�A, t) + �(�A) + �∇ · (D(�A)∇ρ(�A, t)). (5)
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Here D(�A) is a diffusion tensor. The advection dynamics
becomes advection-diffusion dynamics with the incorporation
of within-cell stochasticity. Such approaches to modeling
fluctuations in single cells are now commonplace in molecular
systems biology [19], and many efficient simulation and
analysis algorithms have been developed [20].

As in systems biology, in population-expression models
some state variables may remain discrete. For example the
state of transcription factor binding may be best described by
a binary on/off variable, or compartmental spacial dependence
could be incorporated into the model (e.g. lung, spleen, etc).
In these cases we typically describe multiple coupled densities
ρi(�A, t), with population-expression dynamics, equation (5),
for each density and with terms that couple the equations
through transitions between the states, such as

∑
i k jρ j(�A, t).

Of possibly high relevance to the current work, cross-sectional
flow cytometry samples from cellular populations at different
time points have been used to infer parameters of chemical
reaction rates �γ [11]. The population-expression approach
differs from these analyses by incorporating the effects of
proliferation, cell death, and dilution by cell division. We show
below that these effects can substantially bias the resulting
expression profile of a population.

Note that, for much of this paper, we assume that ρ(�A, t)
can be measured: that the number of samples is large enough
so that inference of ρ is not a hard task. This breaks
down if d = dim �A � 1. We will discuss this case in
section 4. Similarly, we assume that population-expression
equations are sufficiently low-dimensional to be numerically
solvable. When this is not the case, Monte-Carlo simulations
might be needed, and we briefly touch on this topic in
the discussion.

3. Population-expression approach: examples

In this section, we use the population-expression approach to
model simple processes of relevance to different aspects of
immune dynamics. The examples illustrate the inadequacy of
single cell systems biology (expression) and ecological based
ODE (population) modeling approaches.

3.1. Ecological based ODE model failure: slow expression
dynamics

Ecological based ordinary differential equation models of
phenotypical population dynamics work well only when
phenotypes are sharply defined and transitions between them
are rapid. This is not always the case. Consider, for example,
a transition between phenotypes that occurs when an internal
state has changed, but the observables take time to reach their
characteristic values for this new state. For example, a good
measure of the phenotypic state of a cell may be the binding
of transcription factors (TFs) to DNA, which is possible but
not easy to measure [21]. On the other hand, we routinely
measure expression levels of protein using flow cytometry.
These levels are typically controlled by transcription factor
binding, but changes in protein expression lag behind changes

in TF binding. Thus the dynamics of switching observed in
flow cytometry data may be non-trivial.

Here we model cells having a discrete state denoting
transcription factor binding (‘off’ or ‘on’), and a continuous
variable A for expression level. Off cells can switch to the
on state with the rate k, and the dynamics of A is given by
dA/dt = γoff/on, where γoff/on depends on the state. Namely,
the chemical A has two possible production rates: αoff, and
αon. In both states there is the same degradation rate β. This
kinetics may correspond, for example, to the expression and
decay of mRNA or protein if mRNA levels equilibrate quickly
in comparison to the protein dynamics. We consider the cells
in the two states separately: ρoff(A, t) is the density of cells in
the off state with expression level A, and ρon(A, t) are the cells
in the on state. The population-expression equations are
∂ρoff(A, t)

∂t
= − ∂

∂A
[(αoff − βA)ρoff(A, t)]

+1

2

∂2

∂A2
[(αoff + βA)ρoff(A, t)] − kρoff(A, t), (6)

∂ρon(A, t)

∂t
= − ∂

∂A
[(αon − βA)ρon(A, t)]

+1

2

∂2

∂A2
[(αon + βA)ρon(A, t)] + kρoff(A, t). (7)

Similar models for single cells in equilibrium [22, 23], and
even off-equilibrium for simpler cases [24], have been solved
exactly. Here we analyze this system numerically in the non-
equilibrium context. We solve these equations with a method
of lines integration with a finite differencing approximation
for A derivatives, and Matlab ODE45 routine for integrating
forward in time.

Figure 3 plots numerical solutions of ρ(A, t) =
ρoff(A, t) + ρon(A, t), defined by equations (6) and (7), for
two contrasting pictures of differentiation. The left panels
shows infrequent TF switching with rapid protein expression
(k � β〈A〉). In this case the protein concentration in each
cell tracks its transcriptional state well, phenotypes are well
defined, and an ODE model describing switching between
them works well. The right panels in figure 3 represent the case
when TF switching is rapid, but change in protein expression is
gradual. The initial and final states are identical to the scenario
on the left. The gradual protein expression gives a large density
of cells with intermediate protein expression on day 15, and
no well-resolved phenotypes.

Dashed lines in figure 3 define low and high expressing
phenotypes, as is typical in the analysis of flow cytometry
data. The number of cells in the low expressing phenotype is
shown as a function of time in figure 4 for both scenarios. For
rare switching, modeling the system with two phenotypes with
population sizes X1 and X2, respectively, as

dX1

dt
= −kX1,

dX2

dt
= +kX1, (8)

produces great fits to the data. In contrast, two-state modeling
for the slow protein expression case is inaccurate.

To model the data with ODEs and discrete states, several
approaches could be taken. As is common in immunology
[25] one could introduce sub-phenotypes, partitioning the cells
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low-expressing cells plotted in figure 4. In the simulation on the left:
α1 = 94.5 copies/day, α2 = 190 copies/day, β = 1.0 day−1, k =
0.075 day−1; while on the right: α1 = 5.0 copies/day, α2 =
10.0 copies/day, β = 0.05 day−1, k = 0.2 day−1.
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(as defined by the cutoff in figure 3) for the two scenarios. When the
expression level equilibrates rapidly after the transcription factor is
bound (dashed line), the system has a single characteristic decay
time scale, and the number of cells in the low state can be modeled
with a single ODE. When the protein expression dynamics are slow
to respond (solid line), the decay of the population in the low state is
non-exponential.

into n > 2 domains by some predefined thresholding of their
expressions, such that

dX1

dt
= −k1X1,

dXi

dt
= −kiXi + ki−1Xi−1, i = 2, . . . , n − 1,

dXn

dt
= +kn−1Xn−1. (9)

One would then optimize the parameters ki to produce the
best fit to the data. This approach also has its limitations. The
steady state distribution given by equations (6) and (7) has a
width, while equation (9) has a steady state where all cells
are within the Xn partition. Any overlap between the steady
state distribution and the Xn−1 state will not be resolved by
such a model. Additionally this method introduces spurious
phenotypes having little to do with the underlying biology.
Alternatively, one could make the transition rate k a function
of time k(t). Like the previous case, this technique describes
the data, but provides little insight into the biology of the
system.

3.2. Failure of single cell systems biology: cell division

The models presented here are constructed based on chemical
number rather than concentration. This gives correspondence
with fluorescence experiments and enables accurate estimation
of stochastic effects. Upon cell division we must divide
the contents of a cell in half (assuming symmetric cell
division). This gave us the non-local PDE in equation (4). Such
nonlocal partial differential equations are uncommon and most
computational tools are ill-equipped to deal with them. The
use of finite difference, finite element, and spectral methods in
solving these types of equations has been studied in a series of
papers [26–28]. For large dimensional systems, Monte-Carlo
integration can provide a more efficient numerical solution. In
these examples we use finite difference methods.

Dilution of a dye. As a simple example of dilution by
division, consider a dye such as CFSE or BrdU. These dyes are
used to measure cell division rates in vivo and are frequently
used in studying the cellular dynamics of immune responses.
These dyes are not produced by the cells and are degraded
slowly, yielding γ = 0. This removes the advection term in
equation (4) yielding

∂ρ(A, t)

∂t
= −μρ(A, t) + 4μρ(2A, t). (10)

For a dye that initially has a narrow Gaussian distribution
in cells, we have the output shown in figure 5. This system has
been well described using ODE models [29, 30], with a single
ODE for the number of cells in each peak. We note that, for
brevity, we are using a model with exponentially distributed
division times. For rapidly dividing cells, more detailed models
of cell cycle provide greater accuracy [30, 13].

Dilution and homeostasis. For a chemical that is produced
in the cell, division can bias the population-expression.
Figure 6 shows an example of this effect. Here we have
simulated two populations of cells, one not-dividing (solid) and
one undergoing homeostatic division (cell death and division
rates are equal, dashed curve). These curves are stationary
distributions generated by the equation
∂ρ(A, t)

∂t
= − ∂

∂A
[(α − βA)ρ(A, t)]

+1

2

∂2

∂A2
[(α + βA)ρ(A, t)] − 2μρ(A, t) + 4μρ(2A, t),

(11)
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where we have also included the stochastic effects of the
chemical dynamics. To keep the system from growing, we
have cell death rate equal to division rate, giving an extra
factor of 2 in the second to last term.

Figure 6 shows stable distributions for this system with
and without μ = 0. As we can see, cell division biases the
distribution, reducing the mean and increasing the width. In
general, the more rapid the division, the more exaggerated the
effects. If the division rate exceeds the chemical degradation
rate β, the stable distribution is very different from what is
seen here, and is centered close to A = 0.

Statistical deviations resulting from cell division have
been studied in previous work [31–33]. This type of noise
is typically considered extrinsic noise [31]. It is also
often approximated as a local and continuous process and
incorporated into chemical decay terms [34], a modeling
choice which omits many of the effects illustrated in this
section.

Dilution and expansion. Figure 7 shows a simulation of a
bivariate process where the vertical axis represents a chemical
A1 that is produced by the cell, as in equation (4) (figure 6),
and the horizontal axis represents a dye concentration A2, with
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Figure 7. Simulation of a population of cells on day 7 for a two
dimensional system with chemical A1 obeying chemical rate law
dA1/dt = α − βA1, and A2 representing a dye. Contours are spaced
logarithmically and we have included stochastic effects of A
expression. The population initially had A1 distributed at
equilibrium for a non-dividing population. At day 0 the population
began dividing which dilutes A1 and A2, though A1 is produced in
the cell giving a vertical spread. This simulation has correspondence
with a resting population of lymphocytes that is dyed and then
stimulated by an infection on day 0 resulting in rapid expansion.
Thought there is no change in the production rate α dilution gives a
reduction in expression. Population-expression models can
discriminate between reduction in expression resulting from a
change in chemical dynamics and this simple dilution. Here μ =
0.09 day−1, α = 43 copies/day, β = 0.08 day−1.

dynamics as in equation (10) (figure 5). Here the population is
expanding rather than undergoing homeostatic division. The
equation describing the dynamics of the system is

∂ρ(A1, A2, t)

∂t
= − ∂

∂A1
[(α − βA1)ρ(A1, A2, t)]

+1

2

∂2

∂A2
1

[(α + βA1)ρ(A1, A2, t)]

−μρ(A1, A2, t) + 8μρ(A1, A2, t), (12)

The simulation considers a system where cells are initially
in an equilibrium distribution for a non-dividing population
(solid curve in figure 6 for vertical axis, and day 0 density
in figure 5 for horizontal axis). Beginning on day 0 in this
simulation, the cells are stimulated to divide. This simulation
has correspondence with resting lymphocytes that are dyed
with CFSE before the system is infected on day zero,
initiating rapid lymphocyte division. Contours are drawn with
logarithmic spacing. On day 7 shown in figure 7, A1 is diluted
as the population divides. There has been no internal change
in the chemical dynamics as is typically considered in down-
regulation of a gene-product. The use of population-expression
models can help to discriminate between a down regulation
where production rate α is decreased and where simple dilution
is occurring.

Cell division and spurious correlations. Another effect
of cell division is that two chemical quantities that have
independent dynamics can have correlations generated by cell
division. Cell division will cut both otherwise independent
quantities in half simultaneously. The population-expression
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Figure 8. Cell division introduces correlations between otherwise
independent gene products. Here A1 and A2 have simple rate laws
(dA1/dt = α − βA1 and dA2/dt = δ − εA2 with A2 dynamics faster
than A1). In a non-dividing population, we see that these products are
not correlated (top). In dividing cells, both A1 and A2 are halved at
the same time (cell division) introducing correlations in expression
level (bottom). The effects of cell division should be accounted for
when analyzing expression data for correlations to avoid spurious
conclusions. Numerical values used in this simulation were
α = 200 copies/day, β = 0.4 day−1, δ = 800 copies/day, ε =
1.6 day−1, and μ = 0.07 day−1 for the dividing population.

equation is

∂ρ(A1, A2, t)

∂t
= − ∂

∂A1
[(α − βA1)ρ(A1, A2, t)]

+1

2

∂2

∂A2
1

[(α + βA1)ρ(A1, A2, t)]

− ∂

∂A2
[(δ − εA2)ρ(A1, A2, t)]

+1

2

∂2

∂A2
2

[(δ + εA2)ρ(A1, A2, t)]

− 2μρ(A1, A2, t) + 8μρ(A1, A2, t), (13)

having a similar form to equation (12). However, A2 also obeys
a simple gene-product rate law, and we include an extra factor
of 2 in the second to last term for homeostatic division.

A simulation of the equilibrium distribution of
equation (13) is shown in figure 8. This is a two-
dimensional extension of figure 6. The non-dividing
population corresponding to the solid curve in figure 6 is
depicted at top, and the correlated spread resulting from cell
division shown at bottom. The asymmetry in the distribution
is a result of the A2 dynamics being more rapid than the A1

dynamics (δ > β).
We note that correlated fluctuations in expression levels

are frequently used to infer the structure of genetic regulatory

[35, 36], signaling [37], and metabolic networks [38]. Failing
to account for the effects of cell division in such an analysis
can lead to the incorrect reconstruction of the genetic network.
Spurious correlations between gene-products are strongest for
pairs where both have slow degradation rates. Correlations
in gene-product expression result very naturally from cell
division. These correlations are typically grouped with other
forms of extrinsic noise [31]. Population-expression models
allow us to resolve the relative magnitude of different noise
sources in extrinsic noise, potentially improving genetic
regulatory network reconstruction methods.

3.3. Failure of single cell systems biology: selection bias

Consider now a two gene example with influx and selection.
Here there is an initial population of cells localized around(
A0

1, A0
2

)
. These cells have chemical dynamics such that at

t = 0, A1 begins to rapidly decrease and A2 begins to gradually
increase. The population dynamics that underlies selection in
this system arises from changes in the rate of division and
death of cells in a manner dependent on the concentrations of
A1 and A2 within the cell. We set the division rate proportional
to A1 and the death rate proportional to A2. The system also has
a gradual influx of cells �(A1, A2) entering the system around(
A0

1, A0
2

)
. Here we do not consider the effects of dilution with

cell division.
The system is described, using the vector notation, by

γ1 = α − βA1, (14)

γ2 = δ − εA2, (15)

∂ρ

∂t
= −�∇ · [�γ ρ] + �∇ · (D∇ρ)+ dA1ρ − dA2ρ + �(A1, A2),

(16)

where we have used terms introduced in Section 2 and omitted
the dependence of terms on the quantities A1 and A2 for brevity.

Figure 9 shows the evolution of the density in the A1, A2

plane. We see that, by day 10, the initial population has
proliferated and progressed along the differentiation pathway.
By day 50 we see there has been considerable proliferation and
the cells that are furthest along in the differentiation pathway
have begun to decay. We also see the effects of the gradual
influx of new cells at day 50 where the population now has a
tail of recent immigrants that have proliferated. By day 100
the initial population has decayed completely and there is a
stable distribution. This stable distribution is maintained by
the influx of new cells and not by a lack of cell turnover.
There is no change in ‘phenotypic state’ for the cells in this
simulation, meaning cells maintain the same production and
degradation values for A1 and A2 throughout the simulation.

The average differentiation path of a cell is given by the
solid black curve in figure 9. Though the stable distribution
is localized, it does not correspond to the phenotypic state
described by the A1, A2 dynamics. The population dynamics
gives a strong bias to the distribution that is not predicted
by the chemical dynamics alone. In statistical physics it
is common to use the ‘fluctuation-dissipation theorem’ to
estimate model parameters from the equilibrium distribution.
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Figure 9. A two dimensional system with selection. Here cells proliferate with rate proportional to A1 and die with rate proportional to A2.
An initial population localized around (A0

1, A0
2) in the lower right (Day 0) and proliferates as they begin to differentiate (Day 10). There is a

constant but gradual influx of new cells entering the system around (A0
1, A0

2) that can be seen biasing the population by day 50, giving the
population a tail of higher A1 expression. The A2 dynamics are slower and cells die before they ever reach the steady state predicted by the
chemical dynamics (dashed black circle at Day 100). Instead a steady state that is a product of the population dynamics and the
differentiation is reached which requires constant influx to maintain. The black curve illustrates the mean trajectory of the cells as predicted
by the chemical dynamics. In this simulation α = 100 copies/day, β = 1 day−1, δ = 13.33 copies/day, ε = 0.07 day−1, d = 0.04
copies−1day−1.

Any such analysis of a dynamic population must also take
selective effects into account [39].

Rather than discuss the dynamics of A1 and A2 separately
we can discuss the differentiation of cells moving along the
one dimensional average path (black curve). To do this we
introduce the variable a where cells enter the system at a = 0
and the differentiation pathway takes them toward a = 1;
though, as seen in figure 9 Day 100, they may never reach
a = 1. In this reduced model we also neglect the stochastic
effects and the only heterogeneity in the system is due to the
influx of new cells.

The one dimensional description is given by

γ = ε − εa, (17)

A1(a) = α

β
−

(
α

β
− A0

1

)
(1 − a)β/ε, (18)

A2(a) = A0
2(1 − a) + δ

ε
a, (19)

∂ρ(a, t)

∂t
= − ∂

∂a
[(η − ηa)ρ(a, t)]

+ dA1(a)ρ − dA2(a)ρ + �(a = 0). (20)

In this one-dimensional model we still have a distribution of
cells since influx of a = 0 cells gives diversity to the system. In
the absence of this influx we can describe the population with
an ODE model where the population has an internal variable
(a zero-dimensional approximation):

da

dt
= ε − εa, (21)

dX (t)

dt
= dA1(a)X (t) − dA2(a)X (t), (22)

where A1(a) and A2(a) are described by equation (18)
and (19). This approach was recently used to describe
the exhaustion of CD8 T cells during a chronic infection
where the internal variable corresponded to the level of
exhaustion in the population and where thymic influx could be
neglected [40].

4. Choosing the right variables

Traditional flow cytometry interrogates large numbers of cells.
However the information from a single cell is limited by
the spectral overlap of the fluorescent dyes to measuring
the concentration of about 15 different molecules. Soon,
new techniques such as Cy-TOF [41] (which merges mass-
spectrometry with flow cytometry) will allow us to overcome
this limitation and obtain simultaneous measurements of the
concentration of hundreds of molecules at the single cell level.
As the dimensionality increases, the techniques of population-
expression modeling become computationally intractable.
This necessitates dimensional reduction and identification of
‘key players’ among the measured molecular expressions. At
the same time, even as we measure more and more quantities,
some of the key players will still be omitted, forcing us to look
for such important missing links.

In the simplest case, the expression dynamics for all
chemical species in the system would be determined by a few
key regulators, Bμ, i.e. dAi/dt = αi(�B, Ai) − βi(�B, Ai) + η,
where α and β are the production/degradation functions,
and η is the noise term. Bμ can be an individual chemical
species, or more likely some function of many of the individual
expressions. The goal is to find the minimal set �B from data, or
to understand if the data does not provide sufficient information
to do so.

There is no single universal approach for dealing
with large-dimensional data that would solve both of
these problems in the immunological context. In fact the
problems are not unique to immunology, or even to biology.
Classic dimensionality reduction techniques include principal
components analysis (PCA) [42], independent components
analysis (ICA) [43], LASSO regression [44], and other
approaches that explicitly identify (locally) linear subspaces
spanned by data [45–47]. Many of these would be problematic
in immunology since they measure importance by explained
variance, which changes depending on the measurement units
used. For example in PCA, using the measured brightness
or its logarithm as the raw data may give very different
results. The problem is solved elegantly with information-
theoretic approaches, which are manifestly reparameterization
invariant [48].
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Figure 10. A two dimensional system of coupled stochastic biochemical species, with deterministic dynamics as in equations (23) and (24),
with α0 = 200 copies/day, α1 = 2000 copies/day, β = 22 day−1, K = 30 copies, n = 6. A1 exhibits bistability. Since it controls the
expression of A2, the distribution of the latter is also bimodal. Notice the asymmetry of the contour plots of the joint probability distribution.
By itself, such asymmetry, as in the central panel, simply signals unequal regulation of the two species. However, time series measurements
will notice that the population average of dA2/dt is correlated with the population average of A1, but not the other way around. Graphically,
this corresponds to the population escaping from the low expression steady state along the A1 direction first, with A2 following. This is a
signal of the potential causal regulation A1 → A2.

For this and related reasons, some of the most successful
dimensionality reduction approaches in quantitative cell
biology (and in computational neuroscience) have relied
on information-theoretic techniques. For example, finding
pairs of genes with high mutual information among their
microarray mRNA expression profiles that cannot be explained
away by confounding effects of other regulatory interactions
uncovers ‘minimal’ transcriptional regulatory networks in
cells as complex as human lymphocytes [35]. Higher order
information-theoretic analyses [49] further disambiguate
scenarios where simple pairwise interactions do not explain
the data and more complex regulatory patterns are needed
instead, (e.g. two or more factors regulating expression [50]).
Similarly, searching for projections of the combinatorially
complex stimulus space that preserve the information about the
rate of spiking is one of the most powerful methods for finding
receptive fields of neurons from electrophysiology data [51].
All of these approaches are special cases of the rate-distortion
framework [48], where a ‘small’ description of data is sought
that nonetheless preserves the information about the variable
of relevance [48, 52]. The balance between the amount of
information kept and the model size is controlled by the needs
of the modeler and the data availability.

These methods should work for the context of
immunology, but some changes are needed. First, typical
immunology flow cytometry experiments make it hard to
assay many different phenotypic or temporal conditions,
as is typically used for information-theoretic analyses
[35, 51]. This limits the range of variation of the data and
can artificially reduce the values of the measured information
quantities. Luckily, as demonstrated in [53], having many (tens
of) thousands of single cell measurements allows accurate
information estimation in these scenarios. However, it is
crucial for the measurements to be of a very high accuracy.

The second distinction of immunological data is that,
in the foreseeable future, the number of profiled quantities
will be in the hundreds, but not in the thousands, with cell
surface molecules being the easiest to profile. This leaves a
possibility for missing key regulators in the data sets. As was
demonstrated recently [53], information theoretic analysis can
detect when such important regulators are missing. This is

done by observing that a missing regulator induces complex
statistical dependences among all of its targets that cannot
be explained by simple pairwise correlations [49]. While
identification of such missing regulators in a semi-automated
fashion is possible [50], the smaller dimensionality of the
immunological data requires resetting the balance between
the precision and the recall.

The third, and the most fundamental, distinction of
immunological data is their population-expression nature.
As illustrated in figure 8, cell division and death introduces
spurious statistical relations among the measured expressions.
Distinguishing effects of regulation versus population on the
interactions among the measured variables should be possible
by measuring the statistics of relations among physically non-
interacting variables in experimental data and in numerical
simulations.

Since development and differentiation of immune cells
is fast and can be tracked in flow cytometry experiments
on the scale of days, the data offers an ability to establish
causality of regulation [54]. This is in contrast to identification
of non-causal, symmetric relations among variables in most
systems biology or computational neuroscience data analysis
approaches. We illustrate this on the example of two coupled
biochemical species obeying the deterministic dynamics

dA1

dt
= α0 + α1An

1

Kn + An
1

− βA1, (23)

dA2

dt
= α0 + α1An

1

Kn + An
1

− βA2. (24)

Here A1 is self-regulating and can have two stable expression
levels. A2 is regulated by A1 and will also be bimodal, but
there is a clear difference between the two variables. Solution
of the corresponding Fokker–Planck system is shown in
figure 10, illustrating that the dynamics of the transient shapes
of the joint probability distribution can signal the causality of
regulatory relations.

This could be confirmed experimentally by sorting the
cell population at an early time (e.g. day 1) into subpopulations
based on expression levels. The contrast between the dynamics
of the A1-high, A2-low subpopulation and the A1-low, A2-high
subpopulation would reveal which is the driver of the system.
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These sorted subpopulations would be placed into animals
where they are recognized by unrelated genetic markers (e.g.
Thy1.1) and monitored to see which subpopulation reaches
A1-high, A2-high more rapidly.

5. Conclusion

Modeling in systems immunology is still in its infancy.
Modeling requires identifying the key players and parameters
that describe the behavior of interest. Population-expression
models provide a tool for interpreting the changing expression
profiles of multi-cellular populations that are differentiating
while dividing and undergoing selection. They achieve this
by connecting the population scale with intracellular systems
biology.

The interpretation of immunological data has typically
consisted of enumerating cellular phenotypes and describing
how the sizes of these populations change over time. In
contrast, the interpretation of data with population expression
models focuses on the chemical interaction network common
to all these phenotypes, and on the dependence of expression
levels on division and death rates. One could instead continue
adding additional phenotypic states to more accurately
describe the data, but this is reminiscent of the ‘epicycles on
epicycles’ used to described the motion of the planets in the
Ptolemaic geocentric model of the universe. Looking at the
problem differently can yield both simplicity and insight.

A complete view of systems biology would capture
population dynamics, within-cell systems biology, and spatial
effects. The spatial effects like clustering can occur at different
scales. At the within-cell scale for example, clustering of
molecules in the cell membrane plays an important role
in the detection of antigen (infected cells) by T cells.
At the population level, pathogens can be localized to
the specific tissues and organs which they infect, while
B and T cell responses occur in other sites such as the
lymph nodes. Some spatial effects can be easily incorporated
into the population-expression framework. The population-
expression models are well suited to compartmentalization,
where one considers a population-expression equation for
different tissues and expression dependent trafficking rates
between these compartments. For finer scale spatial effects,
the population-expression approach breaks down, as the PDEs
assume large numbers of cells in the compartments. In these
low density regimes one must instead consider a model which
treats cells discretely. In molecular systems biology, master
equations and discrete stochastic simulations using Gillespie
and related algorithms are very commonly used to describe
the discreteness of stochastic changes in the phenotype of
individual cells [55] alongside continuous Fokker–Planck and
Langevin equation approaches. For methodological purposes,
we built the current work around the population-expression
analogue of the Fokker–Planck equation. However, it is clearly
possible to develop the corresponding master equations and
stochastic simulation algorithms, where the number of cells in
a certain chemical state would be tracked. Nonlocal transitions
due to cell division and related phenomena are not conceptually
difficult to implement in such approaches, but the number of

types of possible transitions, and hence the time complexity
of a simulation, might grow excessively because of the
nonlocality. We leave the development of these simulation
algorithms for future publications.

Advances in a field often require the integration of
theoretical and experimental approaches. In the past the use of
cellular dynamics data, such as flow cytometric data, typically
allowed us to enumerate large numbers (millions) of cells but
restricted us to making a handful of measurements on each cell,
limiting the phenotypic resolution. The extension of traditional
flow cytometry to Cy-TOF [41] allows the measurement of
hundreds of biochemical species simultaneously at the single
cell level. This allows, for the first time, tracking cellular
systems biology dynamics and the population dynamics
simultaneously and with high accuracy. The aim is to
understand interactions among internal states of single cells
and the composition of cellular populations, and hence the
responses of the populations to infections. In this paper, we
touched upon key problems that need to be addressed for such
analysis: simultaneous representation of molecular system and
population dynamics, including proliferation and cell death,
and identification of key components of regulatory networks.
We outlined a few ways in which these problems can be tackled
computationally, by modifying current analysis approaches
and by introducing population-expression modeling.
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