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Abstract

We study properties of popular near—uniform (Dirichlefpps for learn-
ing undersampled probability distributions on discretametric spaces
and show that they lead to disastrous results. However, aam@estyle
phase space argument expands the priors into their infinkeira and
resolves most of the observed problems. This leads to aisingly good
estimator of entropies of discrete distributions.

Learning a probability distribution from examples is onetloé¢ basic problems in data
analysis. Common practical approaches introduce a farhggi@ametric models, leading to
guestions about model selection. In Bayesian inferengapating the total probability of
the data arising from a model involves an integration oveapeter space, and the resulting
“phase space volume” automatically discriminates agamdels with larger numbers of
parameters—hence the description of these volume termsenOfactors [1, 2]. As we
move from finite parameterizations to models that are desdrby smooth functions, the
integrals over parameter space become functional integrad methods from quantum
field theory allow us to do these integrals asymptoticaljgia the volume in model space
consistent with the data is larger for models that are snev@hd hence less complex [3].
Further, at least under some conditions the relevant degsmoothness can be determined
self-consistently from the data, so that we approach saonmglike a model independent
method for learning a distribution [4].

The results emphasizing the importance of phase spacadanttearning prompt us to
look back at a seemingly much simpler problem, namely learai distribution on a dis-
crete, nonmetric space. Here the probability distribufojust a list of numbergq; },

1 =1,2,---, K, whereK is the number of bins or possibilities. We do not assume any
metric on the space, so that a priori there is no reason teusetlhat any; andg; should

be similar. The task is to learn this distribution from a skewamples, which we can

describe as the number of times each possibility is observed in a set8f = Zfil n;

samples. This problem arises in the context of languageremtne index; might label
words or phrases, so that there is no natural way to place dcnoetthe space, nor is it
even clear that our intuitions about similarity are corsistith the constraints of a met-
ric space. Similarly, in bioinformatics the indéxmight label n—mers of the the DNA or
amino acid sequence, and although most work in the field isthas metrics for sequence
comparison one might like an alternative approach that doesest on such assumptions.
In the analysis of neural responses, once we fix our timeuésalthe response becomes
a set of discrete “words,” and estimates of the informatiomtent in the response are de-



termined by the probability distribution on this discrepase. What all of these examples
have in common is that we often need to draw some conclusighsiata sets that armot

in the asymptotic limitV > K. Thus, while we might use a large corpus to sample the
distribution of words in English by brute force (reachidg>> K with K the size of the
vocabulary), we can hardly do the same for three or four wbrdges.

In models described by continuous functions, the infinitenbar of “possibilities” can
never be overwhelmed by examples; one is saved by the notismaothness. Is there
some nonmetric analog of this notion that we can apply in theréte case? Our intuition
is that information theoretic quantities may play this rdfeve have a joint distribution of
two variables, the analog of a smooth distribution would be which does not have too
much mutual information between these variables. Even msianply, we might say that
smooth distributions have large entropy. While the ideansdXimum entropy inference”
is common [5], the interplay between constraints on theogytiand the volume in the
space of models seems not to have been considered. As weeghpkin, phase space
factors alone imply that seemingly sensible, more or les®um priors on the space of
discrete probability distributions correspond to disassty singular prior hypotheses about
the entropy of the underlying distribution. We argue thdiabde inference outside the
asymptotic regiméV >> K requires a more uniform prior on the entropy, and we offer one
way of doing this. While many distributions are consisteithvthe data whenv < K,
we provide empirical evidence that this flattening of the@pit prior allows us to make
surprisingly reliable statements about the entropy itsetiiis regime.

At the risk of being pedantic, we state very explicitly what mean by uniform or nearly
uniform priors on the space of distributions. The naturaliform” prior is given by
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where the delta function imposes the normalizatinjs the total volume in the space of
models, and the integration domaihis such that each; varies in the rangé), 1]. Note
that, because of the normalization constraintiralividual ¢; chosen from this distribution
in fact is not uniformly distributed—this is also an exampf@hase space effects, since in
choosing one; we constrain all the othellg;; }. What we mean by uniformity is that all
distributions that obey the normalization constraint apeadly likely a priori.

Inference with this uniform prior is straightforward. If bexamples come independently
from {¢;}, then we calculate the probability of the mode)} with the usual Bayes rulé:

P({gi}{ni}) = P({”i}llj?i)ﬁ;({%})’ P({ni}{a}) = H(Qi)m- 2

If we want the best estimate of the probabilityin the least squares sense, then we should
compute the conditional mean, and this can be done exagtljas [6, 7]

<Qi>:N+K'

®3)

Thus we can think of inference with this uniform prior asisgtiprobabilities equal to the

observed frequencies, but with an “extra count” in every Bihis sensible procedure was
first introduced by Laplace [8]. It has the desirable propérat events which have not
been observed are not automatically assigned probabdity. z

1| the data are unordered, extra combinatorial factors babe included inP({n; }|{g:}). How-
ever, these cancel immediately in later expressions.



A natural generalization of these ideas is to consider ptioat have a power—law depen-
dence on the probabilities, the so called Dirichlet familypdors:

» B 1 K K 51
=1 =1

It is interesting to see what typical distributions fromghepriors look like. Even though
different ¢;'s are not independent random variables due to the normglizifunction,
generation of random distributions is still easy: one camnsthat if ¢;'s are generated
successively (starting from= 1 and proceeding up to= K) from the Beta—distribution

xa—l (1 _ (E)b_l
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then the probability of the whole sequence os

ical distributions generated this way. They”
represent different regions of the range of ‘ ‘
possible entropies: low entropy-(1 bit, o2 ‘ :
where only a few bins have observable
probabilities), entropy in the middle of the” .

possible range, and entropy in the vicinity ,L_L A o ‘ N
of the maximumog, K. When learning oo — ‘ ‘
an unknown distribution, we usually have
no a priori reason to expect it to look like®
only one of these possibilities, but choos- o ki it NG A
ing 3 pretty much fixes allowed “shapes.” ° 20 nnumper. 0 1™
This will be a focal point of our discussion. Figure 1: Typical distributions’s’ = 1000.

Even though distributions look different, inference withpaiors Eq. (4) is similar [6, 7]:

{¢:} s Ps({¢:}). Fig. 1 shows some typ- [B=00007. 5=105bits ] .

n; + 8
N+&g’

This simple modification of the Laplace’s rule, Eq. (3), whigllows us to vary proba-
bility assigned to the outcomes not yet seen, was first exadrlity Hardy and Lidstone
[9, 10]. Together with the Laplace’s formuld,= 1, this family includes the usual maxi-
mum likelihood estimator (MLE)Z — 0, that identifies probabilities with frequencies, as
well as the Jeffreys’ or Krichevsky—Trofimov (KT) estimatgr = 1/2 [11, 12, 13], the
Schurmann-Grassberger (SG) estimatos; 1/ K [14], and other popular choices.

(gi)p = k=K. (6)

To understand why inference in the family of priors definecHoy (4) is unreliable, con-
sider the entropy of a distribution drawn at random from #risemble. Ideally we would
like to compute this whole a priori distribution of entropje

Pa(S) = / dgydgs -+~ daxc Po({a:}) 6

K
S+ gilog, Qi‘| ; )

i=1

but this is quite difficult. However, as noted by Wolpert andlfj6], one can compute
the moments oP3(S) rather easily. Transcribing their results to the presetdtian (and
correcting some small errors), we find:

£B)=(Sni=0])g = vo(k+1)=to(B+1), (8)
B+1

o(8) = (05 = )5 = i+ 1) —valr+ D), ©




where,, (z) = (d/dx)™*! log, I'(z) are the polygamma functions.

This behavior of the moments is shown on
Fig. 2. We are faced with a striking obser-
vation: a priori distributions of entropies in

— K=10

--k=100 | | the power—law priors are extremely peaked
- -- K=1000

for even moderately larg&’. Indeed, as
a simple analysis shows, their maximum
standard deviation of approximately 0.61
bits is attained af ~ 1/K, where¢(3) ~
1/1n2 bits. This has to be compared with
the possible range of entropiés, log, K],
which is asymptotically large witik'. Even
! o . o ) Wworse, for any fixe@ and sufficiently large

| b | K, £(8) = log, K — O(K), ando (8) o
Figure 2: £(8)/log, K ando(8) as func- 1/4/k. Similarly, if K is large, butx is
tions of 3 and K'; gray bands are the regiorsmall, thené(3) « &, ando(8) x /k.
of +0(3) around the mean. Note the transiThis paints a lively picture: varying be-
tion from the logarithmic to the linear scaldween) andoo results in a smooth variation
ats = 0.25in the insert. of &, the a priori expectation of the entropy,

from 0 to Smax = log, K. Moreover, for

large K, the standard deviation @3(S) is always negligible relative to the possible range
of entropies, and it is negligible even absolutelyfos- 1 (3 > 1/K). Thus a seemingly
innocent choice of the prior, Eq. (4), leads to a disadigng 5 specifies the entropy al-
most uniquely Furthermore, the situation persists even after we obsmme datauntil
the distribution is well sampled, our estimate of the engriggdominated by the prior!

Thus it is clear that all commonly used estimators menti@iexe have a problem. While
they may or may not provide a reliable estimate of the distiiin {¢; }2, they are defi-
nitely a poor tool to learn entropies. Unfortunately, oftee are interested precisely in
these entropies or similar information—theoretic quagjtas in the examples (neural code,
language, and bioinformatics) we briefly mentioned earlier

Are the usual estimators really this bad? Consider thishi®®MLE (3 = 0), Egs. (8, 9) are
formally wrong since it is impossible to normali®&({¢;}). However, the prediction that
Po(S) = 6(9) still holds. IndeedSy,, the entropy of the ML distribution, is zero even for
N =1, let alone forN = 0. In general, it is well known thaty;, always underestimates
the actual value of the entropy, and the correction

K* 1
S—SML+2N+O<N2) (10)
is usually used (cf. [14]). Here we must g€t = K — 1 to have an asymptotically correct
result. Unfortunately in an undersampled reginfe K, this is a disaster. To alleviate
the problem, different authors suggested to determine ¢perblencéd(* = K*(K) by

various (rather ad hoc) empirical [15] or pseudo—Bayesahriiques [16]. However, then
there is no principled way to estimate both the residual &rasthe error of the estimator.

The situation is even worse for the Laplace’s rule= 1. We were unable to find any
results in the literature that would show a clear understandf the effects of the prior
on the entropy estimates;,. And these effects are enormous: the a priori distributibn o
the entropy has (1) ~ 1/v/K and is aimosb-like. This translates into a very certain,
but nonetheless possibly wrong, estimate of the entropyb#lieve that this type of error

2In any case, the answer to this question depends mostly ofrtagic” chosen to measure
reliability. Minimization of bias, variance, or informati cost (Kullback—Leibler divergence between
the target distribution and the estimate) leads to vergrfiit “best” estimators.



(cf. Fig. 3) has been overlooked in some previous literature

The Schurmann—Grassberger estimatos; 1/K, deserves a special attention. The vari-
ance ofPg(S) is maximized near this value ¢f(cf. Fig. 2). Thus the SG estimator results
in the most uniform a priori expectation Sfpossible for the power—law priors, and conse-
guently in the least bias. We suspect that this feature presble for a remark in Ref. [14]
that thisg was empirically the best for studying printed texts. Butretree SG estimator is
flawed: it is biased towards (roughly) In 2, and it is still a priori rather narrow.

Summarizing, we conclude that simple °
power—law priors, Eq. (4), must not be used
to learn entropies when there is no strong

a priori knowledge to back them up. On ¥
the other hand, they are the only pnors 2f
we know of that allow to calculatéy;), 'ul,
(S), (x?), ...exactly [6]. Is there a way ¢
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to resolve the problem of peakedness of % ---4----- Boo-Eocoogesosde o ®
P3(S) without throwing away their analyt- _,| AT
ical ease? One approach would be to use | x

ﬂat({Q1}) _ Ps({g:}) Pactual(s[qi]) as E,/

Pp(Slai]) 3 ‘ ‘ ‘
a prior on{g; }. This has a feature thatthe 0 0 100 30 1000 3000 10000

a priori distribution ofS deviates from uni- Figure 3: Learning thé = 0.02 distribution
formity only due to our actual knowledgefrom Fig. 1 with 3 = 0.001,0.02,1. The
pactual(Glg,]), but not in the wayPs(S)  actual error of the estimators is plotted; the
does. However, as we already mentionedrror bars are the standard deviations of the
P3(S[g:]) is yet to be calculated. posteriors. The “wrong” estimators are very
certain but nonetheless incorrect.

Another way to a flat prior is to write
P(S)=1= [6(S—¢)d¢. If we find a family of priorsP ({¢; }, parameters) that result in
ad-function overS, and if changing the parameters moves the peak across tHe rainge
of entropies uniformly, we may be able to use this. LucKity(S) is almost a-function!®

In addition, changing results in changing(3) = ( S[n; = 0] )g across the whole range
[0,log, K]. So we may hope that the pritr

P({a:}; 8) = —6(1—Zqz>qu L) p ) (11)

may do the trick and estimate entropy reliably even for sivaland even for distributions
that are atypical for any one. We have less reason, however, to expect that this will give
an equally reliable estimator of the atypical distribudhemselved Note the termi¢ /d3

in Eq. (11). Itis there becaugenot 3, measures the position of the entropy density peak.

Inference with the prior, Eqg. (11), involves additional eaging overs (or, equivalently,

*The approximation becomes not so goodsas> 0 sinces(3) becomesO(1) before dropping
to zero. Even worsePs(.S) is skewed at smalB. This accumulates an extra weight&t= 0. Our
approach to dealing with these problems is to ignore thentevite posterior integrals are dominated
by §'s that are far away from zero. This was always the case in iooulations, but is an open
question for the analysis of real data.

“Priors that are formed as weighted sums of the different neesnbf the Dirichlet family are
usually calledDirichlet mixture priors They have been used to estimate probability distributains
for example, protein sequences [17]. Equation (11)inéinite mixture, is a further generalization,
and, to our knowledge, it has not been studied before.



§), but is nevertheless straightforward. The a posteriormmoats of the entropy are

_ J d€ p(&,{ni})(S™[ni]) pe)

gm = TdE Pl o) , where (12)
N L(x(€) vy D+ B(8)

Here the moment$.S™[n;] )z are calculated at fixed according to the (corrected)
formulas of Wolpert and Wolf [6]. We can view this inferenaheme as follows: first, one
sets the value of and calculates the expectation value (or other momentsjeoéntropy
at thiss. For smallV, the expectations will be very close to their a priori valdas to the
peakedness dPs(S). Afterwards, one integrates ovg(¢) with the densityp(¢), which
includes our a priori expectations about the entropy of tis&ridution we are studying
[P (B (£))], as well as the evidence for a particular valuegsdi-terms in Eq. (13)].

The crucial point is the behavior of the evidence. If it hag@punced peak at sontk;,

then the integrals ovet are dominated by the vicinity of the pea@(js close tc¢(8.1), and
the variance of the estimator is small. In other words, dsg¢detts” some value gf, much

in the spirit of Refs. [1] — [4]. However, this scenario may fa two ways. First, there
may be no peak in the evidence; this will result in a very widstprior and poor inference.
Second, the posterior density may be dominated@ by 0, which corresponds to MLE,
the best possible fit to the data, and is a discrete analog afittiing. While all these
situations are possible, we claim that generically the evi@ is well-behaved. Indeed,
while small 5 increases the fit to the data, it also increases the phase gphcene of all
allowed distributions and thus decreases probability ohgaarticular one [remember that
(q:) g has an extr@ counts in each bin, thus distributions with< 3/(N + ) are strongly
suppressed]. The fight between the “goodness of fit” and theghpace volume should
then result in some non-trivial.;, set by factorsx N in the exponent of the integrand.

Figure 4 shows how the prior, Eq. (11), performs on some ofnttamy distributions
we tested. The left panel describes learning of distrilmgithat are typical in the prior
Ps({¢:}) and, therefore, are also likely R({g; }; 5). Thus we may expect a reasonable
performance, but the real results exceed all expectatfonsll three cases, the actual rel-
ative error drops to th@0% level at N as low as 30 (recall thak” = 1000, so we only
have~ 0.03 data points per bin on average)! To put this in perspectimaple estimates
like fixed g ones, MLE, and MLE corrected as in Eq. (10) wif* equal to the number of
nonzeron;’s produce an error so big that it puts them off the axes uyitib 100. > Our
results have two more nice features: the estimator seenrsote ks error pretty well, and

it is almost completely unbiased.

One might be puzzled at how it is possible to estimate angtima 1000—bin distribution
with just a few samples: the distribution is completely wd@fied for lowN'! The point is
that we are not trying to learn the distribution — in the alegeof additional prior informa-
tion this would, indeed, tak& > K — but to estimate just one of its characteristics. Itis
less surprising that one number can be learned well with afigndful of measurements.
In practice the algorithm builds its estimate based on thaber of coinciding samples
(multiple coincidences are likely only for smal), as in the Ma’s approach to entropy
estimation from simulations of physical systems [18].

What will happen if the algorithm is fed with data from a dilstition {g; } that is strongly
atypicalinP({¢;}; 8)? Since thereis nfg, } in our prior, its estimate may suffer. Nonethe-
less, for any{g; }, there is somg& which produces distributions with the same mean entropy
asS[g;]. Suchg should be determined in the usual fight between the “goodsfdgsand

>More work is needed to compare our estimator to more complehriques, like in Ref. [15, 16].
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Figure 4: Learning entropies with the prior Eq. (11) @@3) = 1. The actual relative
errors of the estimator are plotted; the error bars are tla¢ive widths of the posteriors.

(a) Distributions from Fig. 1. (b) Distributions atypical the prior. Note that whil& may

be safely calculated as jugt) g_, one has to do an honest integration age¢o get§5 and
the error bars. Indeed, singg;(.S) is almost a-function, the uncertainty at any fixgtlis
very small (see Fig. 3).

the Occam factors, and the correct value of entropy wilbkell However, there will be an
important distinction from the “correct prior” cases. Thaue of 3 indexes available phase
space volumes, and thus the smoothness (complexity) of tiieehelass [19]. In the case
of discrete distributions, smoothness is the absence of pégks. Thus data with faster
decaying Zipf plots (plots of bins’ occupancy vs. occuparanks) are rougher. The priors
Ps({q:}) cannot account for all possible roughnesses. Indeed, thigygenerate distribu-
tions for which the expected number of bimsvith the probability mass less than some
is given byv(q) = KB(q, 8,k — [3), whereB is the familiar incomplete Beta function, as
in Eq. (5). This means that the expected rank ordering fotlsmd large ranks is

B TR S VICR:)

- 1_{53(@& ;f)(K 1>2] i< K, (14)
. 1/8

. {ﬁB(ﬁ,H—Q(K—HU} L K—itl1<K. (15)

In an undersampled regime we can observe only the first of ¢febors. Therefore,
any distribution withg; decaying faster (rougher) or slower (smoother) than Eq) fd4
somef cannot be explained well with fixe@., for different N. So, unlike in the cases of
learning data that are typical 3 ({¢; }), we should expect to se&; growing (falling) for
gualitatively smoother (rougher) cases™grows.

Figure 4(b) and Thl. Lillustrate these points. First, welgtu N 1/2 full Zipf rough
the = 0.02 distribution from Fig. 1. However, we added &ynits -10-2 -10-L -10-3
1000 extra bins, each witfy = 0. Our estimator performs— 19 1.7 1907 16.8
remarkably well, ang.; does not drift because theranking 30 22 099 115
law remains the same. Then we turn to the famous Zipf'900 24 0.86 12.9
distribution, so common in Nature. Ithas o< 1/i,which 300 22 136 8.3
is qualitatively smoother than our prior allows. Corresppon 1000 2.1 2.24 6.4
ingly, we get an upwards drift i.;. Finally, we analyze 3000 1.9 336 54
a “rough” distribution, which hag; « 50 — 4(Ini)?, and 10000 2.0 4.89 45
B drifts downwards. Clearly, one would want to predic; . .
the dependencg. (V) analytically, but this requires cal-jﬁg\lsn %n ,ﬁzflg fg(rb)s olutions
culation of the predictive information (complexity) foreh ' '




involved distributions [19] and is a work for the future. @t that, the entropy estimator
for atypical cases is almost as good as for typical ones. Aiplesexception is the 100—
1000 points for the Zipf distribution—they are about twonstard deviations off. We saw
similar effects in some other “smooth” cases also. This magother manifestation of
an observation made in Ref. [4]: smooth priors can easilpamarough distribution, but

there is a limit to the smoothness beyond which rough priece®ne inaccurate.

To summarize, an analysis of a priori entropy statisticsammon power—law Bayesian
estimators revealed some very undesirable features. Werawmeate, however, that these
minuses can be easily turned into pluses, and the resuliimgator of entropy is precise,
knows its own error, and gives amazing results for a veryeatgss of distributions.
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