Natural Stimuli and Precision of Spike Timing in Fly Vision

Ilya Nemenman
(LANL/CCS-3)
and
William Bialek (Princeton)
Rob de Ruyter van Steveninck (Indiana)
http://nsb-entropy.sourceforge.net
H. L. Leertouwer

Why fly as a neurocomputing model system?

- Can record for long times
- Named neurons with known functions
- Nontrivial computation (motion estimation)
- Vision (specifically, motion estimation) is behaviorally important
- Possible to generate natural stimuli

Questions

- Can we understand the code?
- Which features of it are important?
- Rate or precise timing (how precise)?
- Synergy between spikes?
- What/how much does the fly know?
- Is there an evidence for optimality?

Recording from fly's H1

Motion estimation in fly H1

(Strong et al., 1998)

Linear decoding for sparse spikes

Small parameter $\sim \tau /\left(t_{i}-t_{i+1}\right)$ allows to build linear decoding schemes even for nonlinearly encoded stimuli.

$$
s_{\text {est }}(t)=\sum_{i} f_{1}\left(t-t_{i}\right)+\sum_{i j} f_{2}\left(t-t_{i}, t-t_{j}\right)+\ldots
$$

This is cluster expansion or spatially variable mean-field approximation in statistical mechanics.

Linear decoding

Natural stimuli

electrode holder
and amplifier
(Land and Collett, 1974)

Natural stimuli

- Poisson behavior for "boring" stimuli
- ~2 ms resolution known to be important for white noise stimuli
- Could such "brisk" spikes be due to $\sim 1 \mathrm{~ms}$ correlations in stimulus?
- What if stimulus has natural correlations?

Natural stimulus and response

Highly repeatable spikes (not rate coding)

How to characterize coding without an explicit decoding?

$$
\begin{aligned}
& S[x]=-\sum_{x} p(x) \log p(x), \quad x=s,\left\{t_{i}\right\} \\
& I\left[s,\left\{t_{i}\right\}\right]=\sum_{s\left\{t_{i}\right\}} p\left(s,\left\{t_{i}\right\}\right) \log \frac{p\left(s,\left\{t_{i}\right\}\right)}{p(s) p\left(\left\{t_{i}\right\}\right)}
\end{aligned}
$$

- Captures all dependencies (zero iff joint probabilities factorize)
- Reparameterization invariant
- Unique metric-independent measure of "how related"

Experiment design

$T=4$

$$
\mathrm{W}_{0} \quad \mathrm{~W}_{1} \ldots \mathrm{~W}_{9} \ldots \mathrm{~W}_{7} \ldots \mathrm{~W}_{0} \quad \mathrm{~W}_{1}
$$

$\mathrm{W}_{0}=0000 \quad \mathrm{~W}_{2}=0010$
$W_{1}=0001 \cdots W_{15}=1111$
$P(W) \longrightarrow S(W)=S^{t}$

10101000010010000101010000100001 10100100010100000011001000001001 01110000011010000101010000100010 01101000010010000101010001000010 10101000011010000011010000101001

$$
I=S^{t}-S^{n}
$$

(Strong et al., 1998)

Problems

- Total of about 10-15 min of recordings (limited by stationarity of the outside world)
- At most 200 repetitions
- Stimulus correlation of 60ms: only 10000 independent samples (repeated or nonrepeated)
- Need to sample words of length 30 ms (behavioral) to 60 ms (stimulus) at resolution down to 0.2 ms (binary words of length up to ~ 100).

Undersampling and entropy/MI estimation

Maximum likelihood estimation:

$$
\begin{aligned}
& \longmapsto p_{i}^{M L}=\frac{n_{i}}{N} \\
& \text { (K - \# of bins) } \\
& p_{i}, i=1 \ldots K \\
& S_{M L}=-\sum_{i} \frac{n_{i}}{N} \log \frac{n_{i}}{N} \\
& \left\langle S_{M L}\right\rangle \leq-\sum_{i} \frac{\left\langle n_{i}\right\rangle}{N} \log \frac{\left\langle n_{i}\right\rangle}{N}=S
\end{aligned}
$$

Undersampling and entropy/MI estimation

$$
\left\langle S_{M L}\right\rangle \leq-\sum_{i} \frac{\left\langle n_{i}\right\rangle}{N} \log \frac{\left\langle n_{i}\right\rangle}{N}=S
$$

$$
\text { bias } \propto-\frac{2^{s}}{N} \gg(\text { variance })^{1 / 2} \propto \frac{1}{\sqrt{N}}
$$

Fluctuations underestimate entropies and overestimate mutual informations.
(Need smoothing.)

Correct smoothing possible

$S \leq \log N$

Incorrect smoothing --over- or underestimation.

13 bits for NR, 6-7 bits for R
Even refractory Poisson process at this T, τ has over 15-20 bits of entropy!

For estimation of entropy at $K / N \leq 1$ see:
Grassberger 1989, 2003, Antos and Kontoyiannins 2002, Wyner and
Foster 2003, Batu et al. 2002, Paninski 2003, Panzeri and Treves
1996, Strong et al. 1998

What if $S>\log N$?

But there is hope (Ma, 1981):
For uniform K-bin distribution the first coincidence occurs for

$$
\begin{aligned}
& N_{c} \sim \sqrt{K}=\sqrt{2^{s}} \\
& S \sim 2 \log N_{c}
\end{aligned} \quad \text { Time of first coincidence }
$$

Can make estimates for square-root-fewer samples! Can this be extended to nonuniform cases?

- Assumptions needed (won't work always)
- Estimate entropies without estimating distributions.

What is unknown?

Binomial distribution:

$$
\begin{aligned}
& S=-p \log p- \\
& \quad(1-p) \log (1-p)
\end{aligned}
$$

What is unknown?

 $\frac{0_{0}^{2}}{0^{2}}$ daiases the estimation.

One possible uniformization strategy for S (NSB)

- Posterior variance scales as $1 / \sqrt{N}$
- Little bias, except in some known cases.
- Counts coincidences and works in Ma regime (if works).
- Is guaranteed correct for large N.
- Allows infinite \# of bins.

For large K the problem is extreme (S known a priori)

$$
P_{\beta}\left(\left\{q_{i}\right\}\right)=\frac{1}{Z(\beta)} \delta\left(1-\sum_{i=1}^{K} q_{i}\right) \prod_{i=1}^{K} q_{i}^{\beta-1}
$$

Dirichlet priors, a.k.a., adding pseudocounts (include the uniform prior, the ML prior, and others).
Inference is analytic

For large K the problem is extreme (S known a priori)

$P_{\beta}\left(\left\{q_{i}\right\}\right)=\frac{1}{Z(\beta)} \delta\left(1-\sum_{i=1}^{K} q_{i}\right) \prod_{i=1}^{K} q_{i}^{\beta-1}$

Dirichlet priors, a.k.a., adding pseudocounts (include the uniform prior, the ML prior, and others).
Inference is analytic.

Uniformize on S

$$
P_{\beta}\left(\left\{q_{i}\right\}, \beta\right)=\left.\frac{1}{Z} \delta\left(1-\sum_{i=1}^{K} q_{i}\right) \prod_{i=1}^{K} q_{i}^{\beta} \frac{d S}{d \beta}\right|_{N=0} P\left(\left.S\right|_{N=0}\right)
$$

- A delta-function sliding along the a priori entropy expectation.
- This is also Bayesian model selection (small β large phase space)
- Have error bars (dominated by posterior variance in β, not at fixed β).

Synthetic test

Refractory Poisson, rate 0.26 spikes $/ \mathrm{ms}$, refractory period 1.8 ms , $T=15 \mathrm{~ms}$, discretization 0.5 ms , true entropv 13.57 bits.

- Estimator is unbiased if consistent and self-consistent.
- Always do this check.
(Nemenman et al. 2004)

Natural data (all S)

Neural code:
 What remains hidden?

- Given entropy of slices, find the mean noise entropy with error bars (slice entropies are correlated and bimodal).
- Samples for total entropy are also correlated and have long tailed Zipf plots.
- For very fine discretizations and $T \sim 30 \mathrm{~ms}$ need extrapolation.

Information rate at $T=25 \mathrm{~ms}$

0.2 ms -- comparable to channel opening/ closing noise and experimental noise.

- Information present up to $\tau=0.3 \mathrm{~ms}$
- 30\% more information at $\tau<1 \mathrm{~ms}$. Encoding by refractoriness?
- ~1 bit/spike at 150 spikes/s and lowentropy correlated stimulus. Design principle?
- Efficiency $>50 \%$ for τ $>1 \mathrm{~ms}$, and $\sim 75 \%$ at 25ms. Optimized for natural statistics?

Synergy from spike combinations

New bits (optimized code)

- Spikes are very regular (>10 beats) WKB decoder? Interspike potential?
- CF at half its value, but fly gets new bits every 25 ms
- Independent info (even though entropies are T dependent).

Behaviorally optimized code!

Information about...

Signal shape

Zero-crossings time

Best estimation at 24 ms delay. Little time for reaction.

Precision is limited by physical noise sources

A very intelligent fly

- One often considers a 1/f rankorder plot as a sign of intelligence.
- But...

A very intelligent fly

- One often considers a 1/f rankorder plot as a sign of intelligence.
- But...

Zipf law may be a result of complexity of the world, not the language.

