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We model the neural dynamics in the primate primary visual cortex in terms of a continuous
director field that describes the average rate and the average orientational preference of active
neurons at a particular point in the cortex. This representation has a correspondence to the Landau
- de Gennes order parameter for nematic liquid crystal in two dimensions. Our linear-nonlinear
dynamical model incorporates long range connectivity patterns that enforce context dependence
present in the visual field. The model can distinguish large contiguous objects from the background
clutter by suppressing the clutter and by filling-in occluded elements of object contours. This results
in high-precision, high-recall detection of large objects in cluttered scenes.

PACS numbers: 84.35.+i, 87.85.dm, 87.19.lj, 42.30.Tz

To recognize an object in a visual scene, humans and
other primates process visual signals relayed through the
retina [1] in the ventral stream of the cortex. Contour
detection is a crucial part of this process (Fig. 1). It
is carried out at early stages of the processing, in the
area of the brain called V1 or the primary visual cortex
[2]. V1 consists of hundreds of millions of neurons orga-
nized topographically into columns of ∼ 104 . . . 105 neu-
rons each. Neurons in each column receive inputs from a
localized part of the visual field (called classical, or feed-
forward receptive field). They are directionally selective,
responding primarily to oriented edges within their re-
ceptive fields [3, 4]. Computational vision models that
account for such receptive fields of individual neurons
[5–10] typically incorporate them within feedforward hi-
erarchical structures similar to the cortex [11, 12]. Such
feedforward models account for the visual processes on
short time scales, and they achieve the error rate as low
as ∼ 10− 20% on typical object detection tasks [10, 13].

It is believed that, in vivo, the error rate is reduced
by orders of magnitude by contextual information that
influences local processing, and is not captured in classi-
cal models [14, 15]. These collective, recurrent dynamics
span large spatiotemporal scales and are supported by
thousands of axons laterally connecting distant columns
[16]. These interactions are believed to suppress the clut-
ter present in the visual field, while simultaneously bind-
ing contours across occlusions [17].

The goal of this paper is to build a model of the pri-
mary visual cortex that simultaneously achieves these
two contradictory tasks: removing clutter and filling in
occlusion gaps. For this, we elaborate on the proposal
that captures important properties of lateral connectivity
among V1 neurons [18, 19]. Specifically, we incorporate
the Hebbian constraint that neurons that are excited si-
multaneously by the same long, low-curvature contours
should activate each other [18]. Since the number of neu-
rons in V1 is ∼ 100 million, with each neuron having
& 103 connections, some of which extend for many mil-
limeters, we do not focus on individual neurons, as most

models do, but represent the activity as a coarse-grained,
continuous neural field, which we model as a complex-
valued field on the complex plane, W (z). The magnitude
and the phase of W represent the level of excitation and
the orientation of the contour element at point z. The
purpose of the coarse graining is to identify which fea-
tures of the neural structure and dynamics are essential
for contour recognition, and which may be omitted.

The complex field crucially distinguishes our model
from individual neurons models, as well as from most
other coarse-grained models. Indeed, typical continuum
approaches represent the activity as a real function of
three variables (position in the visual plane and the di-
rectional sensitivity) [20, 21], and do not account for the
parity symmetry of the neural field. Thus our model has
fewer degrees of freedom and is simpler. Other models
that used a similar complex field representation [22, 23]
have focused on development, rather than on the visual
performance of the cortex. Thus an ability of a reduced,
lower-dimensional model to solve visual tasks is far from
certain. Here we show that our model can reconstruct
object contours with very high precision and recall even
in the presence of dense clutter and large occlusions.

The model – The dynamical variables in our model are
the neural firing rate s(x, y), s ≥ 0, and the dominant
orientation preference Θ of active neurons, both aver-
aged over a microscopic patch of the cortex, which still
contains many thousands of neurons. Such averaging is
traditional in, for example, fluid dynamics, where con-
tinuous dynamics is sought from discrete agents. The
neural activity is invariant under parity (i. e., an edge
or its π rotation results in the same activity). Further,
two equal edges at one point oriented π/2 apart lead to
cross orientation suppression and no dominant orienta-
tion at the point [24]. So the fields s and Θ are combined
into a time varying complex field W (z, t) in a somewhat
uncommon way, forming an object called a director [25]:
W (z, t) = s × ei2Θ. The magnitude of this field is the
average of the firing rate, and the argument is twice the
average orientation preference of the dominant neurons
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FIG. 1: Contour Reconstruction Task: A 2d image (left top;
credit: http://9bytz.com/balloon-bridge/) is recorded as a
field of contrast by the retina and the LGN (left bottom). V1
neurons respond to regions of contrast changes in a direction-
selective manner, performing edge detection (middle bottom).
The information from edges is integrated to reconstruct long
contours (middle top). In this paper, we model the visual
process starting from edges in V1; sample input (bottom)
and output (top) to our model are on the right.

at a point z = |z|eiθ = x + iy [22, 23]. We similarly
coarse-grain the input images, identifying the dominant
orientation at every point (see Methods). This orienta-
tion field serves as the input to the model.

Neurophysiological and psychophysical experiments
[14, 15, 17, 26, 27] and theoretical considerations [18]
suggest that neurons in V1 are laterally connected, such
that active neurons excite nearby neurons with collinear
or large-radius co-circular directional preference. Con-
ceptually, simultaneous input from several collinear or
co-circular neurons can excite other neurons that might
otherwise not be getting enough excitation from the vi-
sual field due to occlusion or noise, cf. Fig. 2(a). At the
same time, neurons responding to high spatial frequency
clutter elements will not get sufficient lateral excitation,
and their activity will decay. These collective dynamics
integrate information over large spatial scales.

We can represent these phenomena in a traditional
linear-nonlinear model, where the neural field at a point
z is affected by a combination of lateral synaptic inputs:

dW (z, t)

dt
= Fδth [I(z, t)]− r(z, t) + j(z, t). (1)

Here Fδth is some sigmoidal function of the excitatory
input I(z, t), r(z, t) describes the inhibitory contribution
to the field, and j(z, t) is the stimulus.

The excitatory input, I(z, t), combines synaptic input
from all points z′ in its interaction region ‘Ex’

I(z, t) =

∫
Ex

d2z′ K[z − z′|W (z, t)] W ∗(z′, t), (2)

where K[z− z′|W (z, t)] is the excitatory interaction ker-
nel between the fields at point z′ and z, when the field
at z is W (z, t). The kernel for an arbitrary orientation

(a)

(s,Θ+ 2θ )

(s,Θ)

z

θ 2θ

(b)

FIG. 2: (a) Neurons send excitatory signals along tangential
co-circular directions. Thus neurons in occluded gaps may
get enough excitatory input along smooth contours. (b) Co-
circularity condition: The orientation at two points is said to
be co-circular if they are tangential to the circle connecting
the two points. If the orientation preference at the origin is
along the real axis, the co-circular edge at a point z = |z|eiθ
has the orientation 2θ. Multiplication by ei2θ can be written
as: ei2θ = (eiθ)2 = (z/|z|)2 = (z/z∗)2.

of W (z) can be defined by an appropriate rotation of the
kernel defined for W = 1 (parallel to the real axis):

K[z − z′|W ] = K
[
(z − z′) e−i

arg(W)
2 |1

]
. (3)

Co-circular excitation may be represented as

K[z|1] =
( z
z∗

)2

× exp
{
− |z|

2

2σ2
− µ |Im(z)|

[Re(z)]2

}
. (4)

The first term, derived in Fig. 2(b), determines the field
direction at z that is co-circular to the field at z′, and
is thus excited. The σ term in the exponent determines
the spatial range of the excitation. Finally, the µ term
determines the smallest radius for which substantial co-
circular excitations still exist, giving the kernel its char-
acteristic bowtie shape (Methods) [18].

We define the input nonlinearity using a complex step
function: Fδth(I ) = I

|I| × A H(|I| − δth), where H is

the Heaviside step function, and A is a constant that
determines the maximum excitation strength. Smoother
sigmoidal nonlinearities had little effect on the results
presented below. Thus if the total excitatory input is
higher than the threshold δth, then the field W (z) gets a
positive increment in the direction of the total input. For
this to happen, the excitatory contribution from a large
part of the neural field must align in the same direction,
representing coincidence detection. While importance of
this phenomenon in vision is unclear, it is crucial in the
context of auditory signal processing [28]. The threshold-
ing also suppresses clutter-induced spurious excitations,
as it is unlikely that the excitatory input from short clut-
ter elements becomes higher than the threshold in the
absence of contextual support from long contours.

The inhibitory term r in our model represents two dis-
tinct phenomena: local relaxation, which depends only

http://9bytz.com/balloon-bridge/
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on the local value of the field at a particular point [29],
and global inhibition [30], which keeps the activity of the
entire neural field in check (presumably through interme-
diate inhibitory neurons, not modeled explicitly):

r(z) = γlW (z) + γgH(|W (z)|) W (z)

|W (z)|

∫
In

d2z′|W (z′)|.

(5)

Here γl and γg determine the rates of local and global in-
hibition, and ‘In’ stands for the range of global inhibitory
interactions. Combined with the non-linear excitation,
this linear inhibition produces bimodal asymptotic field
values. This makes it easier to define which neuron is
‘active’ and which one is not.

Test data set – The time evolution of this model was
studied numerically using randomly generated computer
images, whose orientation fields were presented as inputs
j(z) in Eq. (1) (Fig. 3). The images contained one or two
large curvilinear closed contours (targets or amoebas)
with gaps that emulated object occlusion. The images
also contained small clutter elements that were obtained
from reshuffling fragments of another amoeba, and hence
were locally indistinguishable from targets. The goal was
to filter out the clutter while retaining and enhancing the
targets. Since we intended to capture the biological pro-
cesses in V1 only, we chose synthetic rather than natural
images. There the known generation rules ensured that
the targets and the clutter were only distinguishable by
their context of belonging to a large contour, and not
by other features such as texture, curvature, or conti-
nuity. Generation of images largely followed [19], and
is described in the Methods. Finally, we ensured that
essentially the same edges did not belong to the target
and the clutter at the same time – this made scoring
the model performance unambiguous, but without ar-
tificially inflating the performance itself. We tested the
model with a temporally constant input j(z, t) = j(z), as
well as instantaneous inputs j(z, t) = j(z)δ(t). Instanta-
neous inputs model exposures of as little as 10-20ms in
speed-sight-experiments, which is nonetheless often suffi-
cient for object detection (see [19] and references therein).
The results are similar in both cases, and in the rest of
the paper we present results from the instantaneous case.

Results —The model, Eq. (1), was solved numerically
for specific visual inputs j(t); the numerical integration
procedures can be found in the Methods. Figure 3 shows
the time evolution of the neural field W (z, t) for a sam-
ple input image, and for an image used in psychophysics
experiments with human subjects [31]. The gaps present
in amoeba target get filled, while the clutter decays with
time, resulting in emergence of long contours. Note also
that spurious activity appears around contours at large
simulation times, so that the best performance happens
at an intermediate time.

The performance of the model was quantified in terms
of precision, P , and recall, R. Precision determines the
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FIG. 3: (top) Time evolution of the neural field for a sample
image. The magnitude (line width) and the direction of the
field are plotted at every point where the strength of the field
is higher than a cutoff (0.35). Here and elsewhere in this work
we use A = 5, δth = 5, σ = 7.9, µ = 15, γg = 0.012, γl = 1,
which optimizes performance according to a genetic algo-
rithm. Dynamics removes the clutter and fills in the occlusion
gaps. However, spurious activity (widening lines) appears for
large simulation times, so that the best performance is ob-
tained for intermediate times. (bottom) Performance of the
model on an image used in psychophysics experiments [31];
like human subjects, the model can identify long contours.

fraction of the total field activity integrated over the im-
age that matches the actual target contour (visible and
occluded). Recall gives the fraction of the target contour
that has been recovered. P = 1 means there is no clutter,
and R = 1 means all parts of the contour have been iden-
tified. For a successful contour detection, we must have
R,P → 1 simultaneously. Both P and R depend on the
cutoff used to decide which neurons are considered active
(larger cutoff degrades clutter faster, but slows down oc-
clusion filling), and on the time of the simulation. Hence
different cutoffs and times must be explored.

Figure 4 gives the variation of precision and recall at
various cutoffs at a particular time during the simulation.
The neural field at t = 0 has (R,P ) = (0.75, 0.5), on av-
erage. That is about 25% of the target is occluded, and
the total lengths of the clutter and the target segments
are about the same. At t as small as 0.25 (with the sim-
ulation time step ∆t = 0.01), P,R are above 0.9 simulta-
neously for a large set of cutoff values (1%−42%). Since
we present the stimulus instantaneously only, its effect
eventually decreases with time. Thus there is a time that
optimizes performance; i.e., at which the precision vs. re-
call curve majorates the same curves for other times. For
the data-set in Fig. 4, this optimal time is t = 0.40×1/γl

(40 numerical iterations), where the curve reach R ≈ 0.97
and P ≈ 0.95 simultaneously.

Performance of the model depends only weakly on the
ad hoc details of the simulations and the data. For ex-
ample, we also defined the threshold parameter not as
an absolute value, but as a fraction of the maximum
activity of the field at a given time point; this did not
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FIG. 4: (top) P vs R averaged over 500 randomly generated
images at various simulation times starting with (R,P ) =
(0.75, 0.5). The numbers indicate cutoff values for a specific
data point at the corresponding simulation time. Note the
weak dependence on the cutoff. The simulation lengths of
t = 0.40 × 1/γl (black dots) produces the curve with the
best precision and recall combination. (bottom) P vs R with
different starting values of precision and recall averaged over
100 randomly generated images, but with the same model
parameters. Legend indicates the initial (R,P ). The black
dots are the same as in the top panel. Red ∗’s correspond to
a lower precision (more clutter), compared to the black dots.
Blue +’s stand for the same initial (R,P ) as black, but with
the target partitioned into more shorter segments (a larger
number of occlusions). Pink �’s correspond to higher initial
precision (less clutter), but the clutter elements are longer
and harder to suppress.

change the precision-recall curves much. Similarly, dif-
ferent amounts of initial clutter had only a moderate ef-
fect if the length of the clutter elements remained the
same (Fig. 4, bottom). This is because the time scale of
the clutter decay depends on the size of the segments,
and not on their number. For longer segments, the decay
takes longer, and hence the optimal processing time in-
creases. The optimal processing time also increases with
the linear dimension of the occlusions present in the tar-
get amoebas and with the number of occlusions (Fig. 4,
bottom). However, for all of these cases, the maximum
precision and recall remains simultaneously high.

Discussion – We developed a continuum, coarse-
grained model of the primary visual cortex to study
contour detection in complex images. The model de-
scribes neural activity as a parity-symmetric continuous
director field. The model incorporates some experimen-

tally observed properties of the visual neural dynamics,
namely non-linear excitation, thresholding, cross orien-
tation suppression, local relaxation, global suppression,
and, crucially, co-circular excitatory connectivity [18],
which brings long-range context to local edge detection.

The model identifies long object contours in computer-
generated images with the simultaneous recall and pre-
cision of over 90% for many conditions. This happens
even though large parts of objects are occluded (poten-
tially lowering recall), and clutter is present (potentially
decreasing precision). The model fills in the occlusions
and filters out the clutter based on the presence or ab-
sence of co-circular contextual edge support. The ability
to fill in the occlusions particularly distinguishes our ap-
proach from the previous work on co-circular excitatory
feedback [18, 19]. It remains to be seen to which extent
the performance is affected by more natural statistics of
images, and by the presence of stochasticity and synaptic
plasticity in neural dynamics.

The model has been developed to identify computa-
tional primitives needed to detect long contours. Thus
its ability to perform on par or better than agent-based
three-dimensional models (two spatial dimensions and
one orientation preference dimension) [19] illustrates that
discreteness of neurons and existence of the orientation
preference as an independent variable are not crucial for
this V1 function. The reduced dimensionality makes for
a more efficient computational implementation. Thus we
propose to augment practical feedforward models of ob-
ject detection, such as [10], with the laterally connected
layer developed in this work. We expect this to lead to
improvements in object recognition performance.

The model makes predictions that can be tested ex-
perimentally, such as regarding the amount of neural ex-
citation in V1 as a function of the computation time and
the duration of exposure to an image. Additionally, the
model predicts that the neural activity localizes to long
contours with time, which can be tested with certain
imaging technologies. Finally, the model can be used to
predict the dependence of the contour detection perfor-
mance on the statistical structure of images and on the
exposure time. Testing such predictions in psychophysics
experiments [19] will be a subject of the future work.

Finally, we notice that the neural field W (z) =
s(x, y) × ei2Θ(x,y) can be mapped exactly onto the Lan-
dau - de Gennes order parameter for a two-dimensional
nematic liquid crystal

Qµν =
1

2
s

(
− sin(2Θ) cos(2Θ)
cos(2Θ) sin(2Θ)

)
. (6)

This may help solve a crucial difficulty in implementing
an artificial laterally-interacting neural model: the com-
putational cost of long-range communication. Indeed,
one can think of materials with symmetry and dynami-
cal properties such that the neural computation and the
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communication are performed by the intrinsic dynam-
ics of the material itself. Potential implementations can
include polarizable liquid crystals with long-range mag-
netic interactions, polar colloidal materials, or heteroge-
nous solid state materials with long-range connectivity.
The liquid crystal analogy suggests the use of the well-
developed repertoire of theoretical physics to understand
the impact of different terms in the model neural dynam-
ics, Eq. (1). One can hope that the renormalization group
treatment of this dynamics can reveal the terms in the
interaction kernel K that are relevant for its long-time,
long-range aspects.

Acknowledgements: We thank G Kenyon, V Gin-
tautas, M Ham, L Bettencourt, and P Goldbart for stim-
ulating discussions. This work was partially supported
by grants from the Army Research Office and the James
S. McDonnell Foundation.

METHODS

Co-circularity Kernel

The shape of the co-circular kernel, Eq. (3) is illus-
trated in Fig. 5, alongside with the dynamics of a single
edge driven by this kernel.

Image generation

Targets – The amoeba targets are generated by choos-
ing a center at a random point in the image, and then
drawing the amoeba around this point in polar coor-
dinates, with the radius as a superposition of peri-
odic functions with different radial frequencies, ρ(φ) =
Σnk=0 ak sin(kφ + φk). The Fourier coefficients ak are
generated randomly from a normal distribution (σ = 1),
with k ≤ n = 3, and the phases φk are uniformly dis-
tributed between 0 and 2π. To create amoebas that
are about the same size, the coefficients are further con-
strained such that the minimum and the maximum radii
of the resulting amoeba and their ratios obey 0.2L <
Rmin < Rmax < 0.3L, 0.4 < Rmin

Rmax
< 0.6, where L is

the image size. The current then j(z) = δ(z − ze)ei2Θ,
for every point ze within 1 lattice spacing away from
any point on the amoeba contour, where Θ is tangen-
tial to the contour at that point. While generating an
amoeba we also determine an exclusion region around it
of 8 lattice sites. There clutter elements (see below) with
orientations parallel to the closest amoeba segment are
not allowed. Without such exclusion, it is impossible to
assign an edge to either the clutter or the amoeba un-
ambiguously, and thus the performance scoring (but not
the performance itself) is ambiguous.

Occlusions – We simulate occlusions in real-world im-
ages by removing parts of the amoeba. A random number

of 2-4 segments with random angular length combining
to the total of ∼ 30% of the amoeba length are chosen at
random positions along the amoeba contour. Within the
chosen segments, the current j(z) is then set to zero.

Clutter – We need the clutter to be indistinguishable
from the targets by curvature, brightness, and other lo-
cal statistics. Thus clutter is generated by first gener-
ating an amoeba as described above, partitioning it into
small segments, and then randomly shuffling and rotat-
ing the segments to break long-range contour continu-
ity. Specifically, the model cortex is divided into 5 × 5
square regions, which are then randomly permuted. The
center-of-mass (CoM) of an image within each region is
computed, and the dominant angular orientation is de-
termined. Then each region is rotated around its CoM
by a random angle, subject to a constraint that the re-
sulting dominant orientations of neighboring regions are
different. The constraint ensures that the clutter does
not form long range target-like structures.

Combined images – One or two targets and clutter re-
sulting from breakup of one or two additional targets
were then superimposed together to form test images,
see Fig. 3, top, for an example. Clutter in the exclusion
zones along the amoeba contours was removed.
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FIG. 5: Schematic shape of interaction kernel K[z − z′|1].
Arrows represent the orientation preference and darkness and
size represent the magnitude. (b) Results of dynamics with
the kernel K with the current j(z, t) = δ(z)δ(t). Here, as
always, µ = 15, σ = 7.9.
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Transforming pixel images – Images used in psy-
chophysics experiment (Fig. 3, bottom) were imported
into MATLAB and then converted to grey scale us-
ing rgb2grey. The resulting matrix was then thresh-
olded and converted into a binary matrix. A 2D Ga-
bor filter was used to find the edges in this bitmap im-
age. For each point in the image, we find the convo-
lution of a Gabor filter (σsmaller = 10 pixel, σlonger =
100 pixel, convolution range = 20 pixel × 20 pixel) with
the image at (360/n) angles where n = 100. The di-
rection with the maximum convolution is taken as the
orientation of the visual field at the point, and the result
of the convolution as the field magnitude. The image
thus processed is presented as an input for simulation.

Simulations

The time evolution of the model is studied on a square
lattice of a linear size L = 100 with periodic boundary
conditions using Euler iteration method. The lattice dis-
cretization is done for simulation purposes, and should
not be viewed as a representation of discrete neurons.

In each iteration cycle we first calculate the total in-
put I at each point z from all other points z′ in the
excitation region ‘Ex’ using a precomputed interaction
kernel K[z−z′|1] on a 4L×4L kernel lattice. Square dis-
cretization destroys the angular symmetry of the kernel
evaluated at an arbitrary z. The following procedure re-
stored the symmetry. First, to calculate the contribution
from z′ to I(z), the kernel lattice is superimposed on the
image lattice with the origin of the kernel lattice at point
z of the image lattice. Next the kernel lattice is rotated

by arg(W (z′))
2 with respect to the image. Then the con-

tribution from the point z′ to I(z) is W ∗(z′)×K(0, z′′),
where z′′ is the point on kernel lattice closest to z′. The
total input I(z) is then the sum of contributions from all
points z′ in the excitatory interaction region ‘Ex’. After
the input is calculated, if |I(z)| > δth, then the field is

incremented W (z, t + ∆t) ← W (z, t) + A I(z)
|I(z)|∆t, where

∆t is the time step. To account for degradation, we fi-
nally set W (z, t + ∆t) ← W (z, t + ∆t) × exp[−r(z) ×
∆t/W (z, t+∆t)], where r(z) is as in Eq. (5). To the first
order in ∆t, this is equivalent to the dynamics in Eq. (1).
However, this exponential form removes the large fluctu-
ations in r(z) when W (z) ≈ 0.

In our simulations, the excitation range ‘Ex′ is 3σ,
where σ is the effective spatial range of the kernel
K[z − z′|W (z)]. For global inhibition range ‘In′ is the
entire lattice. The model is easily modified to restrict
the suppression to a smaller inhibition region.

We first chose the parameter µ to be similar to the cur-
vature of a typical amoeba, and σ was chosen to be larger
than the extent of the occluded amoeba segments. γl and
γg were initially determined using steady state analysis of

the model, which leads to (Nγg +γl)W0 ∼ Fδ(∞), where
N is the typical number of points with non zero field,
and F thresholding function as defined in Eq. 1. Setting
γl = 1 and W0 = 1, we thus constrain all other parame-
ters. After starting with these values, genetic algorithm
was used to optimize the model for maximum simulta-
neous precision and recall. The final optimized values of
the parameters used for simulations presented here were:
A = 5, δth = 5, σ = 7.9, µ = 15, γg = 0.012, γl = 1.

The code was implemented in C, compiled with the
gcc v. 4.7, and optimized with OpenMP libraries. Simu-
lations were performed on a computer with Intel i7 2600k
(clock speed 3.4 GHz). The simulation time for 250 it-
eration cycles for one image took about 10s. All model
dynamics times were measured in units of 1/γl, which
was set to 1 in our simulations.

[1] D Felleman and D Van Essen. Distributed hierarchical
processing in the primate cerebral cortex. Cerebral cor-
tex, 1:1, 1991.

[2] O Creutzfeldt and H Nothdurft. Representation of com-
plex visual stimuli in the brain. Naturwissenschaften,
65:307, 1978.

[3] D Hubel and T Wiesel. Receptive fields and functional
architecture of monkey striate cortex. J Physiol, 195(1),
1968.

[4] D Hubel and T Wiesel. Receptive fields, binocular in-
teraction and functional architecture in the cat’s visual
cortex. J Physiol, 160:106, 1962.

[5] G Wallis, E Rolls, et al. Invariant face and object recogni-
tion in the visual system. Progr Neurobiol, 51:167, 1997.

[6] L Itti, C Koch, and E Niebur. A model of saliency-based
visual attention for rapid scene analysis. Pattern Analysis
and Machine Intelligence, IEEE Trans, 20:1254, 1998.

[7] Y LeCun, L Bottou, Y Bengio, and P Haffner. Gradient-
based learning applied to document recognition. Proc
IEEE, 86:2278, 1998.

[8] S Thorpe, A Delorme, and R van Rullen. Spike-based
strategies for rapid processing. Neural Netw, 14:715,
2001.

[9] Y-L Boureau, F Bach, Y LeCun, and J Ponce. Learning
mid-level features for recognition. In Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Confer-
ence on, page 2559, 2010.

[10] T Serre, A Oliva, and T Poggio. A feedforward architec-
ture accounts for rapid categorization. Proc Natl Acad
Sci USA, 104:6424, 2007.

[11] M Riesenhuber and T Poggio. Hierarchical models of
object recognition in cortex. Nat Neurosci, 2:1019, 1999.

[12] M Riesenhuber and T Poggio. Models of object recogni-
tion. Nat Neurosci, 3:1199, 2000.

[13] Y LeCun, F Huang, and L Bottou. Learning methods
for generic object recognition with invariance to pose and
lighting. In Computer Vision and Pattern Recognition,
Proc 2004 IEEE Comp Soc Conf, volume 2, page II, 2004.

[14] D Stettler, A Das, J Bennett, and C Gilbert. Lateral
connectivity and contextual interactions in macaque pri-
mary visual cortex. Neuron, 36:739, 2002.



7

[15] A Angelucci, J Levitt, E Walton, J Hupe, J Bullier, and
J Lund. Circuits for local and global signal integration
in primary visual cortex. J Neurosci, 22(19), 2002.

[16] M Colonnier, J O’Kusky, et al. [number of neurons and
synapses in the visual cortex of different species]. Revue
canadienne de biologie/editee par l’Universite de Mon-
treal, 40(1), 1981.

[17] D Field, A Hayes, and R Hess. Contour integration by the
human visual system: Evidence for a local ”association
field”. Vision Res, 33:173, 1993.

[18] P Parent and S Zucker. Trace inference, curvature con-
sistency, and curve detection. Pattern Analysis and Ma-
chine Intelligence, IEEE Trans, 11:823, 1989.

[19] V Gintautas, M Ham, B Kunsberg, et al. Model cortical
association fields account for the time course and depen-
dence on target complexity of human contour perception.
PLoS Comp Biol, 7:e1002162, 2011.

[20] J Zweck and L Williams. Euclidean group invariant com-
putation of stochastic completion fields using shiftable-
twistable functions. J Math Imaging Vision, 21(2):135–
154, 2004.

[21] P Bressloff and J Cowan. The functional geometry of
local and horizontal connections in a model of v1. J
Physiol, 97(2):221–236, 2003.

[22] F Wolf and T Geisel. Spontaneous pinwheel annihilation

during visual development. Nature, 395:73, 1998.
[23] F Wolf and T Geisel. Universality in visual cortical pat-

tern formation. J Physiol, 97(2):253–264, 2003.
[24] G DeAngelis, J Robson, I Ohzawa, and R Freeman. Or-

ganization of suppression in receptive fields of neurons in
cat visual cortex. J Neurophysiol, 68:144, 1992.

[25] P de Gennes, J Prost, and R Pelcovits. The physics of
liquid crystals. Phys Today, 48:70, 1995.

[26] C Gilbert and T Wiesel. Columnar specificity of intrinsic
horizontal and corticocortical connections in cat visual
cortex. J Neurosci, 9:2432, 1989.

[27] I Kovacs and B Julesz. A closed curve is much more
than an incomplete one: Effect of closure in figure-ground
segmentation. Proc Natl Acad Sci USA, 90:7495, 1993.

[28] L Jeffress et al. A place theory of sound localization. J
Comp Physiol Psychol, 41:35, 1948.

[29] P Dayan and L Abbott. Theoretical Neuroscience. MIT
Press, 2005.

[30] T Miconi and R VanRullen. The gamma slideshow:
object-based perceptual cycles in a model of the visual
cortex. Front Hum Neurosci, 4:205, 2010.

[31] C Altmann, H Bülthoff, and Z Kourtzi. Perceptual orga-
nization of local elements into global shapes in the human
visual cortex. Current Biology, 13(4):342–349, 2003.


	 Methods
	 Co-circularity Kernel
	 Image generation
	 Simulations

	 References

