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We present an algorithm to estimate the configurational entropy S of a polymer. The algorithm
uses the statistics of coincidences among random samples of configurations and is related to the
catch-tag-release method for estimation of population sizes, and to the classic “birthday paradox”.
Bias in the entropy estimation is decreased by grouping configurations in nearly equiprobable par-
titions based on their energies, and estimating entropies separately within each partition. Whereas
most entropy estimation algorithms require N ∼ 2S samples to achieve small bias, our approach
typically needs only N ∼

√
2S . Thus the algorithm can be applied to estimate protein free energies

with increased accuracy and decreased computational cost.

PACS numbers: 87.15.A-, 89.70.Cf

Computational estimation of protein free-energy differ-
ences (e.g., between ligand-bound and ligand-free states)
is an unsolved problem with broad applications in molec-
ular biology and medicinal chemistry. Present ap-
proaches to the problem may be divided into two classes:
difference methods, in which the difference in free energy
between two states is directly estimated, and end-point
methods, in which absolute free energies are calculated
for the states being compared. Difference methods suf-
fer from slow convergence when there is little overlap
between the states, though it may be possible to over-
come this limitation [1]. In contrast, end-point methods
are independent of the overlap between the states being
compared. They are also trivially more efficient when
pairwise free-energy differences among a large number of
states are required. The main challenge for end-point
methods is overcoming difficulties in estimating configu-
rational entropy, which contributes substantially to pro-
tein free energy [2, 3]. Recent progress has followed sev-
eral threads: calibration against reference potentials for
which the free energy can be exactly calculated [4], selec-
tive sampling about local minima in the energy landscape
[5], hierarchical estimation of chain-elongation transi-
tion probabilities using Monte Carlo simulations [6], and
transforming the degrees of freedom to occupy minimally
coupled subspaces [7]. While the calibration method uses
only randomly sampled configurations and their corre-
sponding energies, the others often require the ability to
calculate the energy of an arbitrary configuration.

Entropy estimation has been recognized as a crucial
problem in other disciplines, such as computational neu-
roscience and cell biology [8, 9]. Properties of entropy
estimators have been studied extensively [10–12]. Bias,
rather than variance, is the dominant problem. For com-
mon estimators, the bias 〈δS〉 is negative and scales as

〈δS〉 ≡ 〈Sest(n)− Strue(p)〉 ∝ −2Strue/N. (1)

Here Strue is the true entropy of the unknown probability

distribution p, dimp = K. Sest is the entropy estimated
from the measured frequencies n,

∑K
i=1 ni = N , and the

averaging 〈. . . 〉 is taken over the random samples. Both
Strue and Sest are measured in bits. In particular, the
Maximum Likelihood (ML) estimator

SML(n) = −
K∑
i=1

ni
N

log2

ni
N
, (2)

which uses the observed frequencies instead of the un-
known probabilities, has bias that scales as in Eq. (1).
This sets the limit on data requirements for traditional
configurational entropy estimation methods.

When the asymptotic bias follows Eq. (1), it can be
subtracted from the estimate, making the latter nearly
unbiased for N � 2Strue [11, 13]. For N < 2Strue , univer-
sally unbiased estimation is impossible [10, 11]. Then a
priori assumptions about the underlying probability dis-
tribution are needed to regularize the inference. One such
Bayesian prior, P(p), is known as the NSB (Nemenman-
Shafee-Bialek) method [14]. It has been useful in neuro-
science, but to our knowledge has not yet been applied to
macromolecular entropy estimation. The approach starts
with noting that seemingly reasonable prior assumptions
P(p) may result in unexpected assumptions P(S). For
example, consider a family of Dirichlet priors over p, in-
dexed by a parameter β,

P(p|β) =
1

Z
δ

(
1−

K∑
i=1

pi

)
K∏
i=1

pβ−1i . (3)

Here the first term normalizes P, and the δ-function
constrains the normalization of the distribution p itself.
The product of pβ−1i ’s introduces biases towards peaked
(β → 0) or uniform (β → ∞) distributions p. Maxi-
mum likelihood inference of p with this prior is equiva-
lent to adding β pseudocounts to every possible outcome
i. Importantly, for large K, these pseudocounts bias the
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resulting Bayesian entropy estimator strongly [14]. The
entropy becomes “known” before any samples are mea-
sured! One sees this by calculating the a priori entropy
expectation S0(β) and its rms error δS0(β) at a fixed β,
and the latter turns out to be very small [14]. One then
uses a new prior over p and β,

PNSB(p, β) =
1

Z
δ

(
1−

K∑
i=1

pi

)
K∏
i=1

pβ−1i

dS0(β)

dβ
. (4)

This is different from Eq. (3) by the Jacobian dS0(β)/dβ,
which ensures that, in the limit of a narrow and mono-
tonic a priori expectation of S0(β), one gets PNSB(S0) =∫
dβdpPNSB(p, β)δ(S0(β)−S(p)) ≈ const. Ref. [14] has

argued that this procedure creates a more uniform P(S)
and reduces the estimation bias.

The NSB estimator is related to the familiar birthday
problem: in a year with K days, one only needs N ∼√
K, but not N ∼ K, individuals in a room to make

it likely that there will be at least one shared birthday.
The same idea is behind the catch-tag-release estimation
of wildlife population sizes: in a pond with K fishes, one
will catch a fish that has been previously caught, tagged,
and released after N ∼

√
K fishes caught. It follows that

one can estimate K by counting how many previously
tagged fishes were caught. If every fish has the same
probability to be caught, then S = log2K, and both S
and K can be estimated with N ∼

√
K, compared to the

usual methods that require N ∼ 2Strue , cf. Eq. (1). Such
estimation of entropies based on coincidence counting is
known as the Ma estimator [15]. No general estimator
can function reliably with fewer samples: if one never
sees a repeat fish, then one only knows the minimum
population size, but nothing about the maximum.

Unfortunately, since logarithms diverge near zero, the
low-probability, poorly sampled tail of p contributes dis-
proportionally to entropy. Thus coincidence counting
cannot transfer easily to non-uniform probability distri-
butions [11]. One needs to use the high-probability events
(i.e., coincidences) and extrapolate to the tail. Then the
prior P(p) may be seen as enforcing a certain shape of
the tail, and NSB assumes that the tail is not too heavy
[14, 16]. When the tail structure has been guessed cor-
rectly, the estimate, SNSB(n), converges to the true en-
tropy in the Ma regime, N ∼ 21/2Strue [17]. For mas-
sive tails, typically there is bias, 〈δSNSB〉 < 0. How-
ever, |〈δSNSB〉| < |〈δSML〉|. To verify if a sample size de-
pendent bias is present, one estimates SNSB(αN), where
0 < α ≤ 1 is the fraction of data used. If the estimates
at different α agree within the posterior error bars, the
bias can be neglected compared to the variance [18].

We wondered whether NSB might improve estima-
tion of configurational entropies of polymer chains. For
this, we generated self avoiding random walks of different
lengths on a 3D lattice [19–21]. We focused largely on chi-
ral walks on a cubic lattice, so that the n’th bond in the

chain is allowed to take, at most, three of the five pos-
sible orientations, depending on the orientations of the
n− 1’st and the n− 2’nd bonds. Such chains weave chi-
ral paths through the lattice, approximating the c-alpha
secondary structure of real proteins [22]. We considered
lattices with bounding cubes up to 4x4x4 (64 total sites)
and homopolymeric chains of length L ≤ 50. With these
constraints, all self avoiding configurations and their en-
ergies can be enumerated on commodity computers. We
then calculated the partition function by direct summa-
tion. This makes further sampling of random configura-
tions trivial and decouples, for presentation purposes, the
entropy estimation problem from the problem of efficient
sampling, which is not the focus of this Letter. To en-
sure sufficient generality of our results, we explored chiral
chains of lengths 16 ≤ L ≤ 50, as well as short non-chiral
chains. The results were similar for these cases. Thus
here we present only chiral polymers with L = 32.

In the spirit of Ref. [23], we evaluated the energy of lat-
tice conformations using energy functions that include
local and long-range contributions: (1) backbone sec-
ondary structure (SS) propensity, measured by a pref-
erence among the 3 chiral local configurations [24]; (2)
an approximation of solvent exposure per residue [25],
measured by the number of vacant sites surrounding each
occupied lattice site in a fold; and (3) pair contact en-
ergy via a Gō-like model for preferred contacts [20]. The
Gō model and SS propensities were derived by simulat-
ing arbitrary chains and then arbitrarily selecting a chain
representative of a good protein fold (high contact order,
low solvent exposure, and low radius of gyration) [20, 26–
29] as a reference model. We then assigned energies to
the other chains in proportion to their distance from the
reference. We quantified contact order as the average
distance in sequence of two residues contacting in a fold.
Contact order is a key statistic predicting folding rate,
with high values indicating that the fold’s nucleation re-
quires distal regions to come into contact, making it de-
pendent on meshing of long range side-chain forces in
addition to local backbone propensities [28]. In the Gō
model, chains with the same secondary structure motifs
(short range potential) or the same pairwise long range
contacts (not necessarily with the same neighbors) as the
reference model have the lowest energy. Since the rela-
tive importance of the effects represented by the different
energy functions is unknown a priori, we explored each
energy function independently, arguing that if NSB works
for each function, it will work for their combinations.

The choice of the temperature T for the analysis is
very important. Indeed, for T → 0, the configurational
distribution is dominated by a few highly probable con-
figurations. The entropy is low, and hence it is easy to
estimate, cf. Eq. (1). For T → ∞, all configurations are
equiprobable, and the Ma estimator is unbiased when
N ∼

√
K, where K is now the total number of config-

urations. Intermediate temperatures are the most inter-
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FIG. 1. Configurational entropy estimation for the first en-
ergy function and T = 1 a. u. NSB (thick line) and the
grouping estimator with M = 2 . . . 6 partitions are shown in
comparison to Strue and the ML estimator. We sampled up to
N = 106 ≈ 220 from the Boltzmann distribution. Error bars
correspond to one posterior standard deviation. For NSB and
the grouping estimator, we bounded the number of configura-
tions in each partition and in total as ≈ 2.74L. The bias of ML
can be inferred and subtracted out when log2 N & Strue ≈ 14,
so that N & 104, which corresponds to the bend in the ML
curve [13]. However, both ML and NSB are biased for smaller
N . In contrast, the grouping estimators is unbiased for M = 3
in the Ma regime of log2 N & Strue/2 ≈ 7, or N & 102.

esting. Here entropy is too high for simple methods to
work, while the Ma estimator cannot be used because
configurations are not equiprobable. For our chiral poly-
mers, we estimate numerically K ≈ 2.74L, where 2.74
replaces 3 due to self-avoidance and finite volume. Thus,
for T →∞, Strue ∼ log2 2.74L, which is about 46 bits for
L = 32. We are most interested in entropies substantially
smaller than this, but much larger than 1 bit.

Typical results of applying NSB to samples from the
protein configurational distribution for the first energy
function are illustrated in Fig. 1 at an intermediate tem-
perature T = 1 a. u., when Strue ≈ 13.65 bits. By the
time log2N ∼ Strue/2 ≈ 7, many coincidences have oc-
curred. The estimator is reporting small posterior vari-
ances, but it is biased, though always less than ML. NSB
remains biased even when N ∼ 2Strue . The bias finally
disappears only when even the naive ML estimator is
nearly unbiased, N � 2Strue , that is, many samples per
typical configuration. Similar failures are observed for
different sequence lengths and the other two energy func-
tions. The bias likely stems from the assumptions of NSB
being incompatible with the data.

As the temperature increases above T = 3 a. u. and
the entropy grows beyond Strue ≈ 18 bit, the bias of
SNSB becomes small at log2N > Strue/2 ≈ 9, see Fig. 2.
While the bias is nonzero, it is comparable to the stan-
dard deviation, making the estimator useable. Thus long
tails disappear from the distribution of configurations,
and the estimator works at < 40% of the maximum pos-
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FIG. 2. Configurational entropy estimation for the first en-
ergy function and T = 3 a. u. Same conventions are used
as in Fig. 1. Note that the bias is much less of a prob-
lem for this higher entropy case for NSB. As before, the
grouping estimator can be made unbiased in the Ma regime,
log2 N & Strue/2 ≈ 9, or N & 103.

sible entropy (46 bits) for this polymer! Since no general
entropy estimator can work until log2N & Strue/2, in
this regime, NSB performs nearly optimally.

We can capitalize on the accurate performance of NSB
for near-uniform distributions at high T . In the fish
counting problem, basses, carps, and catfishes may have
different probabilities of being caught, while the proba-
bilities may be closer to uniform within the species. Thus
counting each species separately will improve population
estimates, but at the cost of needing a larger N to ensure
that coincidences (catching a tagged fish) happen for each
species. Similarly, suppose the space of possible protein
configurations is split into partitions νµ, µ = 1, . . . ,M .
Then by the grouping axiom for entropy, [30]

S(p) =

M∑
µ=1

πµS(νµ) + S(π), (5)

where S(νµ) stands for the entropy of the partition νµ,
πµ =

∑
i∈νµ pi is the probability of a particular partition,

and S(π) is the entropy of the partition choice. While the
overall p may be incompatible with NSB, the estimator
may perform better on each of the partitions separately,
resulting in the new grouping estimator [31]:

Sgr(n,M) =

M∑
µ=1

φµSNSB(νµ) + SNSB(φ), (6)

δ2Sgr(n,M) =

M∑
µ=1

[
δ2φµSNSB(νµ) + φµδ

2SNSB(νµ)
]

+ δ2SNSB(φ)

≈
M∑
µ=1

φµδ
2SNSB(νµ) + δ2SNSB(φ). (7)
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Here φµ =
∑
i∈νµ ni are the empirical frequencies of each

partition, and δ2 is the posterior variance. For Sgr(M)
to be unbiased, the partitions should be chosen such
that either (i) distributions of configurations within each
partition are more uniform (allowing Ma’s arguments to
work), or (ii) structure of tails within each partition is
compatible with NSB. If a non-NSB estimator is used in
the r. h. s. of Eq. (6), partitions should be chosen instead
to make that estimator unbiased.

Since each polymer configuration has an energy value
that is known, and configurations with similar energies
are nearly equiprobable, a natural partitioning exists in
this context. We expect reduction in bias if one assigns a
configuration with energy E to the partition µ, for which
Emin + (Emax −Emin)(µ− 1)/M ≤ E < Emin + (Emax −
Emin)µ/M , where Emin and Emax are the minimum and
the maximum energy in a given sample.

However, such partitioning comes at a cost. First, each
of the terms in Eq. (5) has statistical errors. The er-
rors add in quadratures, so that the estimator variance,
〈δ2Sgr〉, typically grows with M . Second, when M → K,
S(π) approaches Strue and becomes equally hard to esti-
mate. Third, for M > 1, one needs coincidences in each
partition. This requires more data, and would lead to
〈δSgr〉 > 0 if some of the partitions have no coincidences.
Finally, one doesn’t know the maximum possible number
of configurations Kν in each partition, and has to take
Kν = K. Larger K results in a larger SNSB, though the
dependence is weak [17]. Thus 〈δSgr〉 > 0 for M � 1.
Combined, these concerns indicate that success of the
grouping estimator in polymer problems is uncertain.

We tested the performance of the grouping estimator
for different L, T , and energy functions. The results were
consistent with the expectations and similar for all cases.
As seen in Fig. 1, increasing the number of partitions first
decreases the bias. 〈δSgr〉 is insignificant for M ∼ 2 . . . 4.
For M so small, each partition is sampled well, and Sgr

works in the Ma regime. However, as M grows, the bias
changes sign and increases again. Similar results hold for
higher temperatures, Fig. 2. Here the bias is small for all
M , and it is dramatically smaller than the ML bias.

These results suggest a straight-forward algorithm for
estimation of polymer configurational entropies. For a
given sample of configurations and their energies, one
computes Sgr(αN,M) using Eq. (7) and δ2Sgr(αN,M)
for M = 1 using Eq. (7), while varying the fraction
of the data used for the estimation, 0 < α ≤ 1. One
looks for the sample size dependent bias by verifying if
Sgr(αN, 1) drifts by more than the standard deviation as
α increases. If the bias is positive, the algorithm cannot
be applied (this has never happened in our tests). If the

bias is insignificant, then Sgr(N, 1) ±
(
δ2Sgr(N, 1)

)1/2
is

the entropy estimate. If the bias is negative, then one
increments M → M + 1, and repeats the estimation for
various α. One increments M until it reaches M∗, such

that δSgr(N,M
∗) > 0. The best estimate, the bias, and

the variance are then the means of the corresponding
quantities for Sgr(N,M

∗−1) and Sgr(N,M
∗). Crucially,

unless M∗ � 1, coincidences are present in all partitions.
Thus the proposed estimator will work in the Ma regime,
log2N ∼ Strue/2, providing a square root data require-
ment reduction compared to simpler approaches. Since
coincidences are required for any estimator to work, it is
unlikely that other general purpose estimators will sub-
stantially outperform the NSB-based grouping algorithm.

For off-lattice polymers, the entropy can be computed
by enumerating local minima in the energy landscape
and additionally estimating the entropy within each such
basin of attraction [32]. For the latter, there are good
methods for entropy estimation based on kernel smooth-
ing or nearest neighbor techniques [33, 34]; we expect
that these also will be improved by grouping. Alterna-
tively, the entropy in a local basin may be estimated ana-
lytically using the normal modes approximation [32]. We
expect the present version of the NSB algorithm with
grouping to be especially useful for the former, that is
for calculating contributions to entropy from many sim-
ilar local minima, which are observed for rugged energy
landscapes that are characteristic of real proteins [35].

In summary, in this Letter, we have verified that the
grouping generalization of the NSB algorithm can be used
to produce reliable estimates of configurational entropies
of polymer chains in the severely undersampled regime
N ∼

√
2Strue , using only random samples of configura-

tions and their corresponding energies. The estimator is
available from http://nsb-entropy.sourceforge.net

as a C++ and Matlab/Octave code. The estimation
is rapid on modern computers. For lattice polymers
of length ∼ 30, it requires only ∼ 1000 configuration
samples. Thus the square-root scaling suggests that the
method will be able to work with sequences of previously
unaccessible lengths.
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