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Abstract 

Motivation: A critical task in systems biology is the identification of genes that 

interact to control cellular processes by transcriptional activation of a set of target 

genes. Many methods have been developed to use statistical correlations in high-

throughput datasets to infer such interactions. However, cellular pathways are highly 

cooperative, often requiring the joint effect of many molecules, and few methods 

have been proposed to explicitly identify such higher-order interactions, partially due 

to the fact that the notion of multivariate statistical dependency itself remains 

imprecisely defined. 

Results: We define the concept of dependence among multiple variables using 

maximum entropy techniques and introduce computational tests for their 

identification. Synthetic network results reveal that this procedure uncovers 

dependencies even in undersampled regimes, when the joint probability distribution 



cannot be reliably estimated. Analysis of microarray data from human B cells reveals 

that third-order statistics, but not second-order ones, uncover relationships between 

genes that interact in a pathway to cooperatively regulate a common set of targets.  

Contact: margolin@broadinstitute.org, ilya.nemenman@emory.edu   

 



1. Introduction 

Reverse engineering molecular interaction networks is a critical challenge in modern 

systems biology [1]. High-throughput technologies allow simultaneous 

measurements of the concentrations of thousands of molecular species in a 

biological system, such as mRNA [2], microRNA [3], proteins [4] and metabolites [5]. 

Each such experiment may be treated as an observation from a joint probability 

distribution (JPD), and it is believed that statistical dependencies in this JPD provide 

clues about biochemical interactions among the species [6]. Thus identifying 

dependencies in JPDs is an essential task for network reverse engineering, and this 

problem also is ubiquitous in other branches of systems biology [7-9], as well as in 

many other applications. 

It is clearly understood [10] that statistical dependencies can be characterized 

by their order (that is, by the number of variables—molecular species—participating 

in them). Until recently, most network reverse engineering work focused on second-

order (pairwise) dependencies. Their identification from data is now a common 

exercise. In particular, direct (irreducible) interactions can be disambiguated from 

indirect ones (e.g., two biochemical species correlated due to a common regulator) 

[11, 12]. However, combinatorial regulation, where multiple effectors combine to 

regulate a target gene, is prevalent in higher eukaryotes [13]. Correspondingly, 

recent years have seen a surge in the use of high-throughput data to identify these 

higher-order structures [6, 14-19]. However, as described below, there has been little 

work to rigorously define the mathematical basis of the identified multivariate 

statistical dependencies and the structure of uncovered interactions (e.g., 

cooperative versus independent regulation). For example, consider two transcription 

factors, TF1 and TF2, that may regulate the expression of a target gene, T, in 



different ways, including, but not limited to (note that we use Roman characters to 

denote gene names and italic ones for gene expressions):  

  (1.1) 

  (1.2) 

Here ’s are single-effector activation terms, such as Hill functions, and  is the 

first-order degradation. The first of these equations describes independent activation 

of the target. In the second equation, both transcription factors act synergistically, for 

example, due to formation of a transcriptional complex (this type of dependency also 

applies in the case of a signaling molecule that post-translationally modifies a 

transcription factor, influencing its ability to regulate the target). We expect  to be 

statistically dependent on  and  in both cases; however, clearly, there is a 

difference, since for Eq. (1.2) the effects of  and  on  cannot be studied in 

isolation from each other, forming a third-order dependency among the variables. 

With Eqs. (1.1), (1.2) infused with the usual Gaussian noise with variance , the 

resulting steady state equations are 

  (1.3) 

  (1.4) 

Thus joint regulation involves a term that couples all three variables in the exponent 

of the JPD. A reasonable tool for statistical analysis of multivariate interaction 

patterns should distinguish such high-order structures from additive pairwise 

interactions, as in Eq. (1.1). 

This is a nontrivial task since, even now, there is no consensus definition of 

an interaction in the multivariate setting. For example, standard statistical methods 



[20, 21] introduce many specialized dependence concepts applicable in restricted 

contexts, such as normal noise, binary, bivariate, or metric data, etc. Alternatively, 

contingency tables literature associates interactions with deviations of the number of 

observed counts from their expectations under various independence assumptions 

[22-24]. Unfortunately, this is limited to categorical data and confounds the definition 

of dependence with sampling issues. In information theory [25, 26], one can treat 

continuous and categorical data uniformly [27, 28] and define dependencies based 

on distributions rather than counts, but none of the information theoretic interaction 

measures [10, 18, 19, 29-34] have become universally accepted either.  

In the context of systems biology, multivariate dependencies have been 

studied traditionally [6] using probabilistic graphical models [35], such as Bayesian 

Networks (BNs) or Markov Networks, also known as Markov Random Fields (MRFs). 

However, these models are generically unable to disambiguate different types of 

regulation, such as in Eqs. (1.1), (1.2) [36]. This limitation arises from relying on the 

notion of conditional (in)dependence rather than providing a precise definition of 

statistical dependency among subsets of variables (see below for more details). That 

is, many different interaction patterns can give rise to the same conditional 

independence structure in a MRF.  

In this work, we build on the definition of connected interactions proposed by 

[10] to rigorously define a multivariate statistical interaction. The approach is initially 

motivated by information theoretic concepts, and it is described in Sec. 2. In Sec. 3 

we describe the method in terms of specially adapted factor graph models that 

generalize BNs and MRFs. We apply the method to a simple synthetic model in Sec. 

4 and to a biological dataset from human B cells in Sec. 5. The synthetic model 

demonstrates the method’s ability to infer interactions even for undersampled 



distributions. For application to biological data, we derive a computationally efficient 

simplification of the formula for third-order dependencies, and hint at the ability to 

disambiguate between independent and cooperative regulation. 



2. Definition of Multivariate Dependence 

For two variables,  and , independence is well defined via decomposition of the 

bivariate JPD, , and mutual information 

 is the unique measure of 

dependence [26]. Similarly, the total interaction (that is, the deviation from 

independence) in a multivariate JPD, , can be measured by the 

multi-information [33]  

  (1.5) 

which assigns a specific number of bits to the union of all interactions among the 

studied variables. Here  is the Kullback-Leibler (KL) divergence [37] between the 

full JPD, , and its approximation under the independence assumption, 

. In order to define multivariate statistical dependence, 

we seek to partition the total deviation from independence into contributions from 

interactions among various variable subsets (specific pairs, triplets, etc.), and a 

nonzero contribution from a subset would indicate an interaction among its 

members.  

We first note that  is the maximum entropy (MaxEnt) distribution [38, 39] 

that has the same marginals as  but introduces no statistical dependencies among 

the variables [10, 32, 40]. Thus the multi-information is the KL divergence between 

the JPD and its MaxEnt approximation with marginal constraints, and it measures 

the gain in information by knowing the complete JPD versus assuming total 

independence. Similarly, MaxEnt distributions consistent with various multivariate 

marginals of the JPD introduce no statistical interactions beyond those in the said 



marginals. Thus by comparing the JPD to its MaxEnt approximations under various 

marginal constraints, one can separate dependencies included in the low-order 

statistics from those not present in them [32, 40-43]. 

Specifically, one can define connected interactions of a given order, i.e., the 

interactions that need, at least, the full set of marginals of this order to be captured. 

Following [10], suppose that we have a network of  variables and we know a set of 

marginal distributions of all variable subsets of size , so that 

 is specified. One can ask what is the JPD  that 

captures all multivariate interactions prescribed by these marginals, but introduces 

no additional dependencies. That is, one searches for a distribution  with a 

minimum  (or, alternatively, with the maximum entropy—MaxEnt— ) such 

that the constraints  are satisfied.1 

This is given by the MaxEnt, or minimum multi-information, problem [10, 38, 40]: 

  (1.6) 

where ’s are sets of constrained variables, such as , and 

. Further, ’s are the Lagrange multipliers that enforce the marginal 

                                            

1All JPDs constrained by the same marginals are said to form a Fréchet class 21.

 Joe, H., Multivariate models and dependence concepts. 1997, Boca Raton: 

Chapman and Hall.. For metric variables and simple constraints, these classes are 

well studied. We know parametric forms for some of them, can check if the 

constraints are compatible, and if they determine the JPD uniquely. 



constraints. They are matrices of the same dimensionality as the constraints they 

enforce, but we do not write out the indices of JPDs and ’s explicitly.  

The solution of a MaxEnt problem with marginal constraints has the form of a 

product of terms dependent on the constrained variables [44]. In particular, for 

Eq. (1.6),  

  (1.7) 

where  is the normalization and each  is a different function, known as a 

potential, which is determined implicitly by the marginal constraints. In general, no 

analytical solution for the ’s exists. However, an algorithm called the iterative 

proportional fitting procedure (IPFP) [45], which iteratively adjusts a trial solution to 

satisfy each of the constraints in turn, converges to the true solution [44]. The 

connected information of order  is then  

  (1.8) 

This characterizes the increase in information by knowing all marginals of order , 

as opposed to all marginals of order . Note that the multi-information can be 

decomposed into a series of connected informations, .  

While appealing, the connected interaction construction assigns interaction 

bits to a particular interaction order. We need to refine the approach to instead 

assign the bits to a particular combination of variables within this order, which has 

not yet been done.  

To localize (connected) interactions to particular sets of covariates, we note 

that mutual, multi, and connected information are special cases of a general principle 

of evaluating the KL divergence between the MaxEnt distributions constrained by a 

set of marginals and a subset of these marginals (or, alternatively, the difference of 



entropies of these two MaxEnt distributions, or the negative difference of the multi-

informations). If the divergence is positive, then the extra marginal constraints 

correspond to a nonzero interaction. Thus to determine if interactions within a 

particular set  of variables contributes to , we may check if enforcing the 

corresponding constraint  recovers any additional dependencies not already 

contained in a reference MaxEnt distribution, , constrained by some set of other 

marginal constraints in . That is, we define the interaction information  

  (1.9) 

Here, similar to Eq. (1.6),  is the MaxEnt distribution satisfying all constraints in 

 [44], as in 

  (1.10) 

By positivity of the Kullback–Leibler divergence, . Thus if , accounting 

for the constraint  recovers more information, and we say that the variables in  

interact with respect to .  

Note that  is -dependent, and to test for dependencies we must first 

select the reference set of constrained variables . To define an irreducible 

interaction among variables in , we choose  that minimizes the interaction 

information,  

  (1.11) 

  (1.12) 



This guarantees that interactions are defined only if they cannot be explained away 

by confounding effects of other statistical dependencies in the network. Then, in 

particular,  

  (1.13) 

where  is the power set (the set of all subset) of the analyzed 

variables. 

Conjecture 1.  Let  be sets of noncontradictory marginal constraints, and 

 and  be the corresponding MaxEnt distributions. Let  be an additional 

marginal constraint, possibly a subset of either  or . Then  

  (1.14) 

Intuitively, this says that interaction informations depend on the order in which the 

interactions are considered. Dependency bits will be accounted for by the first 

marginal able to explain them, attributing less bits to later constraints. We have 

extensively tested this conjecture numerically (not shown), but the proof is not yet 

available.  

According to the Conjecture, the reference set of constraints  to test for the 

existence of irreducible interactions within  is  

  (1.15) 

Thus  preserves all marginals of the original JPD except those that involve all 

covariates in  simultaneously. This is similar to the Type III Sum of Squares 

ANOVA for testing significance of predictors. In fact, since  is equal to  

asymptotically, the similarity is not accidental. Dependence defined by this choice of 

 is a generalization of conditional dependence with the rest of the network as a 



condition. This extends the analysis of [10] and defines an interaction among a 

particular set of variables, rather than within all variable subsets of the same 

cardinality.  

While this formulation gives a precise definition of multivariate statistical 

dependence, computational issues arise in applying it to large networks. First, 

searching through the space of all possible multivariate dependencies is exponential 

in the number of variables as, for  variables, there are  possible subsets of the 

variables. Moreover, each test for an irreducible interaction  

  (1.16) 

requires computing two large MaxEnt distributions, which is not trivial, especially 

since empirical distributions computed for large-dimensional marginals will be 

severely undersampled. Finally, in many cases, some of the variables in the network 

will be unmeasurable (hidden), influencing the interaction structure derivable from 

the visible variables [10, 46]; this is clearly prevalent in systems biology applications, 

where we are still far from measuring concentrations of all chemical species in a cell. 

We will address these issues partially in Sec. 3.  

Complications aside, the MaxEnt formulation resolves the problem of 

disambiguating dynamics arising from different dependency structures, such as in 

Eqs. (1.1), (1.2). Indeed, independent regulation, as in Eq. (1.1), produces a JPD 

with only pairwise potentials, while joint regulation requires a third-order potential 

and will, therefore, result in a third-order interaction. 

 



 

Figure 1 Examples of Markov Networks and corresponding factor graphs for three-variable 

networks. In the factor graphs, variable nodes are represented by blue circles and factor 

nodes are represented by orange squares. Note that a three-way interaction, three two-way 

interactions, or combinations of the two are represented by the same Markov Network. 

3. Graphical Models 

Graphical models [35] are widely used to provide a visual representation of the 

factorization of a JPD and to motivate efficient inference algorithms based on graph 

theoretic considerations. This framework has been applied often in genetic network 

inference applications [6]. The maximum entropy formulation is strongly related to 

undirected graphical models. In particular, Eq. (1.10) has the form of a Markov 

Network, which is visually represented by associating each variable with a node and 

drawing an edge between each pair of variables that appear together in a potential. 

However, this network representation is insufficient to distinguish between potentials 

that are fully parameterized, or only parameterized by functions on subsets of 

variables, which is a major goal of this work. A more general graphical model, known 

as a factor graph, is able to represent this distinction. The factor graph 

representation of a JPD contains two types of nodes. Each factor (potential)  is 

explicitly represented as a factor node, with an edge connected to each variable in 

, which are represented as variable nodes (Figure 1). However, in traditional factor 

graph literature, the factors cannot be defined uniquely once the JPD is known. For 



example, if a three-variable factor  is present, then any two-variable 

factor , i,j=1,2,3, can be subsumed into it. Put another way, one can set 

 with an arbitrary function , and redefine 

 without changing the JPD or its factor graph 

structure. In particular, setting  will remove the second order factor 

completely. Therefore, traditional factor graphs blur the distinction between columns 

(d) and (e) in Figure 1. Conversely, for the MaxEnt construction of factor graphs, 

each factor is defined uniquely, so that the factor structure of JPDs in columns (d) 

and (e) is materially different. Therefore, one can talk about existence or 

nonexistence of a lower-order factor uniquely and independently of whether the 

higher-order one involving the same variables exists. 

3.1 Examples and Properties 

We consider a few examples of different graphical model representations for 

networks of size  (larger  is analyzed similarly). First, for a regulatory 

cascade, or a Markov chain, , , as 

shown in Figure 1b. Consider the test for  dependence. Following the notation 

of Eq. (1.9), we let  and  be the multi-informations of the distributions used 

to test for dependency on . That is, . Then, we have 

, where the inequality is due to 

the information processing inequality, and the bound is reached only in special 

cases. Thus ,  are (generically) dependent. Similarly, ,  are dependent. 

However, , and ,  are not (even though their marginal mutual 



information, induced by other interactions, is not zero). Checking for the triplet 

interactions, we find , thus no such dependencies 

are present. If instead  regulates  and , one sees that the dependence 

structure is the same. Both networks correspond to the graph in Figure 1b. 

A more interesting case is when ,  regulate  jointly. Here many 

possibilities exist, not all of them realizable in terms of BN or MRF modeling. First, 

consider independent regulation: to predict , one does not need to know the 

values of  and  simultaneously, , e. g., 

 (this corresponds to probabilistic 

analogues of OR and AND gates [10], to the Lac–repressor [13], and to all regulatory 

models based on independent binding of transcription factors to the DNA [8]). If 

, then the dependency structure is again as in Figure 1b. If in 

addition there is a regulation , so that , then , 

and . The dependency graph now has a loop in it, as in Figure 1c. However, 

in the case of joint (e.g., cooperative) regulation,  is nonfactorizable, 

, and the dependence structure is as in Figure 1d or Figure 1e. 

3.2 Local Tests 

While the previous section described precise tests for three variable networks, 

computing irreducible statistical dependencies for large networks is computationally 

intractable. The graphical models framework provides an intuitive interpretation of 

statistical tests performed on subsets of variables. For example, consider a network 

with  nodes and define , and . Evaluation of 

 or  using Eq. (1.16) is unrealistic since it requires computing MaxEnt 



distributions with factors over  and  variables. Instead, one may need to 

marginalize over many , and search for dependencies in the JPD with 3 

variables only. In general, with marginalized (hidden) variables, an irreducible 

dependency cannot be inferred by MaxEnt tests, but it is informative to understand 

the meaning of a difference in MaxEnt entropies even in this case.  

Due to the factor structure of the JPD in Eq. (1.10), marginalizing over a 

variable will couple all of its neighbors (nodes with which it participates in a potential) 

into a single factor. If any of those nodes are marginalized out, its neighbors will 

further be coupled into this factor, and so on. As a consequence, for any three 

variables remaining in a marginalized graph, if, in the full factor graph, there exists a 

factor node such that there is a direct path between it and each of the remaining 

three variables that does not pass through the other two, then marginalization over 

hidden variables will produce an effective third-order interaction among the 

remaining three variables. As discussed in Section 5, this observation has important 

consequences in genetic network inference and indicates that the proposed 

multivariate dependency framework can be used to identify proteins that 

cooperatively interact in a pathway to regulate the expression of a target gene. 



4. Synthetic data 

A major advantage of our definition of statistical dependencies in terms of the 

MaxEnt approximations is that it can be applied even when the underlying 

distributions are undersampled and the corresponding factorizations cannot be 

readily observed. For , the cardinality of the JPD2, larger than the number 

of samples, , we cannot estimate the distributions reliably, but entropic quantities, 

and, therefore, the interactions are inferable3. Some progress is possible even for 

 [48, 49]. To show this, we used Dirichlet priors [49] to generate random 

probability distributions with different interaction structures for , and with 

marginal cardinalities . We generated random samples of different sizes, 

, from these distributions and tested the quality of inference of the 

dependencies as a function of . To measure it, we used the evidence for an 

interaction, , where  is the statistical error of the interaction 

information. If  is large, the dependency is present. According to Figure 2, proper 

recovery is possible for  with few assumptions about the 

distributions.  

                                            

2In genomics, continuous expression levels are routinely discretized. Thus we focus 

on the discrete case in view of its relevance and conceptual simplicity. Measuring 

dependencies for continuous variables follows a similar route 47. Beirlant, J., et 

al., Nonparametric entropy estimation: An overview. Int. J. Math. Stat. Sci., 1997. 

6(1): p. 17--39.. 

3The reader is referred to 47. Ibid. and to menem.com/ilya/pages/NIPS03 for 

overviews. 



 With modern entropy estimation techniques [49], our approach will work even 

for severely undersampled JPDs. The bottleneck is the estimation of the maximum 

entropy consistent with the marginals, which currently requires substantial sampling 

of the marginals, requiring , similarly to the jackknifing 

method used in [50, 51]. This is encouraging, since the marginals may be well 

sampled when the JPD is not. However, it is still essential to develop techniques to 

infer maximum entropies directly. Further, the interaction information is the difference 

of entropies. It may be small when its error, which is a quadratic sum of the entropy 

errors, is large. This leads to uncertainties about dependencies even for reliably 

estimated entropies. Therefore, a method that directly estimates  will be preferred 

over another entropy–based technique.  

 

Figure 2 Inferring regulatory networks from sample size, . We used the NSB [49] method to 

estimate the entropies (with error bars) of the JPD and its marginals directly. The method does 

not work for the entropy of  for . Thus IPFP was 

applied to the counts and the entropy  in the solution was evaluated and extrapolated for 

 following [50, 51] to account for the sample size dependent bias. The statistical error 

for each sample size, , was determined by bootstrapping, and the resulting extrapolation 



error was used for . This approach works since the MaxEnt constraints, like those in 

Eq. (1.6), are linear in the unknown JPD, , making the biases of  and  behave 

similarly. Finally,  was calculated as the differences of the appropriate entropies, and 

 as the sums of squares of the entropy errors. Network models are displayed above 

each plot. (a) Network with . To the left of the vertical dotted line, 

, the sample size corrections are reliable, and all entropies 

are known well. There is evidence only for  and  interactions, just as it should be. 

For smaller , the method of [50] fails, but NSB works until . For pairwise 

interactions, we may replace  by  (denoted by smaller markers on the plot) and, since 

 stays zero nonetheless, and , we still recover the interactions 

correctly. (b) Network with three pairwise interactions. Again, to the left of the line,   s > 2
H

P(Ω ) , 

all entropies are determined reliably, and there is evidence for all three pairwise interaction, 

but not for the triplet interaction. To the right of the line, NSB still works, but now we cannot 

disentangle the loop from the three–way dependence without estimating . (c) Network 

with three pairwise and a third-order interaction. Only the regime   s > 2
H

P(Ω )  is shown. The 

evidence for all three pairwise interactions and for the triplet interaction is barely significant 

for small  but grows fast. 



5. Genetic networks inference 

5.1 Inferring regulatory pathways 

The proposed method for identifying multivariate dependencies has important 

applications for cellular networks inference. Cellular networks are composed of a 

complex system of interacting and diverse molecular species. For example, consider 

the task of inferring genetic regulatory interactions using statistical correlations 

between gene expression array measurements, which measure mRNA 

concentrations. Generically, genes encode mRNAs, which are translated into 

proteins. Some of the latter encode transcription factors, which in turn can bind to 

DNA and influence the expression of other genes. However, mRNA abundance data 

only probes a small percentage of the regulatory network. For example, the 

translation of mRNA into protein is dynamically regulated at many levels, including 

by regulating mRNA stability, nuclear export and cytoplasmic localization, and 

translation initiation. Once translated, proteins engage in a vast network of 

interactions, being regulated, for example, by complex formation as well as a variety 

of post-translational modifications, such as (de)phosphorylation, (de)acetylation, and 

(de)ubiquitination. Finally, the ability of a gene to be transcribed is strongly affected 

by modifications of the DNA, such as methylation, chromatin accessibility (which is 

influenced by histone modifications such as acetylation), as well as other genetic 

factors including mutations, single nucleotide polymorphisms and chromosomal 

alterations. Many of these regulatory processes are carried out by proteins, but there 

is also a critical and ever increasingly appreciated role for other regulatory factors 

such as non-coding RNAs, metabolites, and extra-cellular signals. The combined 

effect of these considerations is to create a vast network of hidden variables, while 

we only probe a small percentage of the system with current technologies. For such 



 

Figure 3 TF regulates a target gene, T. A modulator 

gene, M, influences this interaction, for example by 

forming a complex with TF, by phosphorylating TF, or 

by regulating another protein that interacts with TF. 

When M is abundant, TF strongly regulates T. When M 

is scare, TF only weakly regulates T. 

complicated regulatory systems, it is difficult to understand the effect of the 

unobserved variables and thus to interpret the meaning of statistical dependencies 

between mRNAs.  

Section 3.2 provides some insight into this question and suggests that 

irreducible multivariate statistical dependencies between mRNAs may be used to 

identify genes that interact in a pathway to jointly regulate the expression of a 

downstream target. Consider, for example, a transcription factor, TF, that regulates a 

target gene, T. This 

interaction is influenced by a 

(possibly large) number of 

other proteins, which we call 

modulators [14], denoted by 

M (Figure 3). The modulators 

may interact directly with TF, 

for example via post-

transcriptional modification, 

creating a third-order 

dependency between TF, M, 

and T. However, as discussed, effective third-order dependencies are also created 

between variables that interact indirectly, for example if the modulator regulates 

another gene or protein that subsequently interacts with TF downstream. This type of 

series of interactions in which multiple genes jointly control a cellular process (e.g. 

expression of a target gene) is called a pathway, and is the principle mechanism by 

which a cell regulates gene expression. 



To identify such third-order dependencies we test for a reduction in entropy by 

constraining  as opposed to constraining , , and 

. The MaxEnt distribution constrained by all three pairwise marginals must 

be computed by an iterative algorithm. However, a much more computationally 

efficient procedure can be derived under the simplifying assumption that TF and M 

are not (irreducibly) statistically dependent, which is a common occurrence in biology 

[52]. That is, the factorization of the JPD produced by the MaxEnt formalism does 

not contain the  potential. Note that this is less stringent than requiring 

, and only means that we do not need to constrain (TF, M) in the MaxEnt 

construction. Then the test for the difference in entropy of MaxEnt distributions 

constrained by [(TF,T), (M,T)] versus that constrained by [(TF,T,M)] reveals a 

simplified equation based on conditional mutual information. In particular, the 

MaxEnt distribution constrained by the two pairwise marginals has the form 

 whereas the distribution constrained by the three-way 

interaction has the form . Therefore, letting  denote the 

difference in multi-information of the two distributions, we have  

  

  

  

  (1.17) 

We implemented this form of the equation, considering cases where 

, ensuring that the simplifying assumption of no statistical interaction 

between TF and M holds true. This form of the equation was used in [14, 52], but its 

theoretical basis has not been developed until the current work. This procedure 



relies on computing whether the mutual information between TF and T increases 

when conditioned on M under the  assumption. Since expression data 

are continuous, to overcome the undersampling issue, we use Gaussian kernel 

estimators for estimating conditional informations [12]. Further, following [52], we 

discretize M into  and , representing high and low modulator expressions, and 

test for  as a proxy for Eq. (1.17). Below we consider how 

this simplified version of the general framework can be used to identify cooperative 

regulation, and compare it to using pairwise dependencies only. The main 

contribution of this work is to formalize the concept of multivariate dependency, and 

thus we do not claim to exhaustively test its application to biological networks, but 

rather provide initial evidence of the method’s effectiveness for this purpose. 

5.2 Results for biological networks 

The MYC proto-oncogene is a critical regulator of oncogenic onset and progression, 

and is estimated to be overexpressed in at least one seventh of all human cancers 

[53], including a large percentage of B cell lymphomas. The pluripotent nature of 

MYC’s interactions make it difficult to characterize the critical pathways that are 

affected by aberrant MYC expression, and it is thus important to characterize the 

network of interactions associated with MYC. In addition, MYC provides a convenient 

test case for reverse engineering algorithms due to a public database containing a 

large number of biochemically validated MYC transcriptional targets [54]. Moreover, 

MYC is known to be regulated by the B cell receptor (BCR) pathway in B cells [55], 

and has over sixty known protein-protein interaction (PPI) partners in the Human 

Protein Reference Database [56]. Thus, while far from a perfect test, comparing 

predicted modulators against these two data sources provides a level of validation.  



We have recently taken steps towards characterizing the genetic network 

associated with MYC by analyzing a dataset of 254 microarrays derived from normal 

and tumor-related human B lymphocyte populations [57]. In particular, we have 

developed a method [12, 58, 59] that has been used to accurately identify 

downstream MYC targets [11], and has led to insights into the relationship between 

the part of the cellular interaction network regulated by MYC, and those regulated by 

other proto-oncogenes such as NOTCH1 [60]. Further, we have identified a variety 

of modulators of MYC [14, 52]. In this work we take another, more principled look at 

the identification of the cellular network that works cooperatively with MYC to jointly 

regulate sets of target genes.  

After filtering out all genes from the microarray exhibiting low expression or 

insufficient dynamic range, following [52], we compiled two sets of potential 

modulator genes. The first, which we call signaling molecules (SMs), contains genes 

that are annotated as protein kinase, protein phosphotase, acetyltransferase or 

aceylase in the Gene Ontology database, and may potentially post-translationally 

regulate MYC or another gene that acts in the same pathway as MYC. The second 

group contains genes with the Gene Ontology annotation of transcription factor (TF) 

activity, which may serve as co-transcription factors associated with MYC. We also 

compiled a set of experimentally validated MYC targets from the 

www.myccancergene.org database [54]. In order to apply Eq. (1.17), we removed 

potential modulators that had significant MI with MYC, leaving a total of 1,128 

Affymetrix probe sets as potential modulators (542 SMs and 598 TFs), which were 

tested for their ability to modulate MYC interactions with the 340 probe sets 

associated with MYC targets.  



We applied Eq. (1.17) to all combinations of modulators and target genes, 

with MYC fixed as the TF variable. Statistical significance was assessed using the 

permutation test described in [52]. This creates a matrix of interaction p-values with 

all modulators on the columns and all genes on the rows. Significant interactions 

were defined as those having a Bonferroni corrected p-value less than .05.  

We sought to test two specific claims made in the preceding papers [14, 52]. 

First, that third-order statistics can be used to identify genes that interact in a 

pathway to indirectly or directly cooperate with a transcription factor to control a set 

of target genes. Second, that such interactions may be identified by third-order 

statistics, but not by second-order ones. To this end, we considered all significant 

third-order interactions and analyzed the number of associated modulators either 

annotated as belonging to the BCR pathway, or as a protein-protein interaction (PPI) 

partners with MYC. We call genes meeting these criteria putative modulators. 

Overall, there were 3,586 and 4,343 significant interactions for the SM and TF 

datasets, respectively. As shown in Table 1, modulators associated with inferred 

three-way interactions were significantly enriched with putative modulators4. 

                                            

4We note that p-values are may be overestimated because samples are not 

independent 



  Putative  Total  Pct  p-value   

All Genes  12,580  74,800  16.8%   

Inferred (three-way) 1,015  3,586  28.3%   SMs 

Inferred (pairwise) 432 3,586 12.1%  

All Genes  9,520  87,040  10.9%   

Inferred (three-way) 771  4,343  17.8%   TFs 

Inferred (pairwise) 380 4,343 8.8%  

Table 1 Putative modulators were defined as those contained in the BCR pathway or 

participating in a PPI with MYC. We considered the percent of putative modulators 

associated with significant three-way interactions against a background of all tested triplets, 

as well as triplets with the highest total MI, . We considered separate 

statistics for SMs and TFs. Because pairwise statistics identified a lower percent of putative 

modulators than background, we assessed statistical significance of the third-order 

interactions against the background. As shown, third-order, but not pairwise, statistics 

effectively identified putative modulators. 

To test against the hypothesis that modulators can be identified by second-

order statistics alone, for each dataset we ranked each interaction based on the total 

pairwise mutual information, , and, to compare with third-order 

tests, considered the top-ranking 3,586 and 4,343 triplets for SMs and TFs, 

respectively. Only 432 (12.1%) SMs and 380 (8.8%) TFs were putative modulators, 

indicating that modulators could not be identified using pairwise statistics alone. In 

fact, the top-ranked interactions based on MI contained a slightly lower percent of 

putative modulators than the background, likely because the activity of a modulator 

affects the strength of coupling between the TF and target, diluting the MI. Thus 

gene triplets with high MI are likely to preferentially not include third-order 

interactions.  



Next, reasoning that important modulators may affect MYC’s interaction with a 

large number of target genes, we tested whether putative modulators could be 

identified by ranking them based on the number of MYC interactions that they affect. 

Using this procedure, we can simultaneously identify the modulators of MYC and the 

lists of target genes that they modulate. ROC analysis (Figure 4a) showed that the 

top-ranking genes by this procedure were significantly enriched for putative 

modulators. The top-ranking gene, casein kinase 2 alpha 1 (CSNK2A), showed a 

clear and strong pattern of positive modulation of MYC (Figure 4b,c), and has been 

experimentally validated in vivo to directly phosphorylate MYC and positively 

modulate its DNA binding kinetics [61, 62]. Finally, the binding sites for the top-

ranking TF modulators were significantly enriched in the promoters of inferred target 

genes (Figure 4d), providing evidence that these co-transcription factors cooperate 

with MYC by binding to the promoters of common targets. Together, these results 

indicated that this procedure could effectively identify genes that interact in a cellular 

pathway of interest.  



 

Figure 4 (a) A set of 75 putative modulators was compiled, including probe sets from BCR 

pathway genes and known PPI partners of MYC, together with 450 negative instances, 

including those not in the positive set and not correlated with any probe sets in the positive 

set. Each probe set was ranked based on the number of MYC interactions that it modulated. By 

varying this number as the threshold, a Receiver Operating Characteristic (ROC) curve was 

produced. The area under the curve was calculated to be 0.74. (b) Example scatter plot of an 

interaction modulated by CSNK2A1, a bona-fide positive modulator of MYC. Expression levels 

(in log) of MYC and SLC7A1 (a known MYC target) were plotted on the X and Y-axes, 

respectively. Data was partitioned into the 35% of samples with the highest CSNK2A1 

expression and the 35% of samples with the lowest CSNK2A1 expression (circles and crosses, 

respectively), and a line was fitted to the data points in each subset. As shown, when 



CSNK2A1 was highly expressed, MYC strongly regulated SLC7A1, whereas this interaction 

was not apparent at low CSNK2A1 expression levels. (c) MYC target gene expression 

modulated by CSNK2A1. Two microarray images (modulated MYC target genes on rows and 

samples on columns) are shown for each subset of high and low CSNK2A1 expression. 

Samples in each subset were sorted by MYC expression and expression values of target 

genes were rank transformed, scaled between -1 and 1, and displayed using the color scheme 

indicated by the colorbar shown at the bottom of the plot. At high CSNK2A1 expression, MYC 

was highly correlated with these targets, but not at low CSNK2A1 expression. (d) TF binding 

site enrichment analysis for MYC modulators functioning as potential co-transcription factors. 

For each modulator with an available scoring matrix in the TRANSFAC database [63], its 

binding sites were searched for in the promoter regions (2K upstream and 2K downstream 

from transcription start site) of each modulated MYC target gene. Binding site enrichment for 

each modulator was assessed using Fisher’s exact test and comparing to 13,000 random 

human promoters. M#: number of modulated MYC targets; M+/-: number of MYC targets 

positively/negatively affected by the modulators; PBS: p-value of the binding site enrichment 

test. Twelve of the top fifteen inferred co-transcription factor modulators that had available 

scoring matrices in TRANSFAC displayed statistically significant enrichment of their DNA 

binding site in the promoters of the inferred target genes.  

 



6. Conclusions 

In this article, we have revisited the concept of multivariate dependence using 

information theoretic, maximum-entropy based techniques. We have provided a 

definition of a higher-order statistical interaction that is able to measure the 

interaction strength, in bits, and to assign it to a specific set of statistical co-variates. 

This extended earlier results of Schneidman et al. [10], which allowed for 

identification of the existence of a higher-order interaction, but could not identify 

which specific variables participated in it. 

As with every definition, ours is useful only to the extent that it can be applied in 

practical situations. To verify this, we explored how identification of multivariate 

dependencies is affected by undersampling that is typical of real-life problems. 

Further, we argued that the definition allows us to take a new, principled look at 

reverse-engineering of transcriptional regulatory networks, in particular on 

identification of combinatorially regulated pathways in transcriptional data. To 

promote the suitability of the method, we designed a proxy test that well-

approximates our definition of multivariate dependence in typical transcriptional 

regulation data. The test allowed for clear interpretation of synthetic gene expression 

data, and it made specific, verifiable, and literature-supported predictions about 

regulatory cofactors, also called modulators, operating together with MYC to regulate 

its targets. 

Clearly, the method is still in the early stages of development. To complete the 

definition, the Conjecture that allowed us to define the interaction information 

uniquely needs to be proved. Further, for applications, development of techniques for 

dealing with undersampling for identification of higher-order dependencies is likely 

the largest obstacle to a wide adoption of the method. Finally, additional testing is 



required to validate the applicability of the approximate test to various biological 

data. We will return to all of these questions in future work. However, in its present 

form, we believe that the definition of multivariate dependence introduced in this 

work provides an important theoretical advance in the field of statistical inference, 

with applications to systems biology and related disciplines. 
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