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Abstract  

We investigate the ability of algorithms developed for reverse engineering of 

transcriptional regulatory networks to reconstruct metabolic networks from high- 

throughput metabolite profiling data. For this, we generate synthetic metabolic profiles 

for benchmarking purposes based on a well-established model for red blood cell 

metabolism. A variety of data sets is generated, accounting for different properties of real 

metabolic networks, such as experimental noise, metabolite correlations, and temporal 

dynamics. These data sets are made available online. We apply ARACNE, a mainstream 

transcriptional networks reverse engineering algorithm, to these data sets and observe 

performance comparable to that obtained in the transcriptional domain, for which the 

algorithm was originally designed. 

1. Introduction: The need for Benchmark Data 

In the recent years, high-throughput (HTP) microarray profiling has generated large data 

sets that characterize the simultaneous activities of, essentially, all genes in a cell. These 

data sets have been used successfully to reverse engineer (RE) cellular transcriptional 

regulatory networks (see, for example, [1-3] for a collection of references). Similar 

experimental progress is expected in the emerging field of metabolomics, where sensitive 

HTP measurements of (relative or absolute) concentrations of many metabolites in a 

sample of cells are now possible in different preparations under various experimental 



interventions, and/or steady state growth conditions [4-6]. Anticipating the resulting data 

sets, there is a strong interest in development of computational tools that, unlike more 

traditional approaches based on sequence information [7] or chemical reactivity and 

conservation laws [8, 9], would use the relevant HTP data to expand our knowledge of 

metabolic networks, which, as extensive as it is, is still incomplete. Because metabolic 

networks share features with transcriptional regulatory networks, it is tempting to transfer 

successful methods developed in the context of transcriptional networks, such as those in 

[1-3, 10], to inference of metabolic networks. 

 

An obvious advantage of transferring these methods is that only minimal modifications 

are required to the very extensive RE code base. On the other hand, it is not obvious that 

the existing methods will perform well on metabolic networks. Indeed, despite the 

superficial similarity, metabolic and transcriptional networks are quite different. In the 

transcriptional case, a transcription factor (TF), a parent, causes a change in the 

expression of its target gene, a child, without any direct effects on its own activity. This 

leads to correlations among expressions of TFs and their targets, and these can be readily 

discovered by various statistical techniques. Conversely, in metabolism, a substrate (a 

parent) is transformed into a product (a child). Thus, an increase in the child’s abundance 

comes at the cost of decreasing the abundance of the parent. We therefore expect that the 

statistical associations in metabolic data will differ from those in gene expression data 

sets in unknown ways. Furthermore, the experimental noise has a tendency to mask 

interactions of low-mean or low-variance species. This has been a problem even in 

transcriptional analysis (e.g., spurious interactions in the ribosomal complex in [1]), 

where the expression levels and the involved characteristic time scales of reaching steady 

states are largely uniform across all genes. On the other hand, kinetic rates in a metabolic 

network can vary over many orders of magnitude for different species. Thus the time 

required for an organism to achieve a metabolic steady state can vary from milliseconds 

to hundreds of hours [11]. Furthermore, many metabolites are short-lived and low-

abundance, and a “fully expressed” metabolite can mean anywhere from a few molecules 

to a few million molecules per cell, making consideration of the measurement noise very 

important.  

 

Because of these differences between transcription and metabolism, the fidelity of 

standard transcriptional RE algorithms for metabolic networks cannot be assumed. It is 

therefore useful to test these methods on benchmark data that resemble real metabolic 

measurements, and for which the ground truth structure of the network is known. We are 

unaware of the existence of experimental data sets of this kind, and therefore we turn to 

numerical simulations. However, existing synthetic data sets have focused on realistic 

modeling of transcriptional regulation [12], and they may not represent metabolism well. 

Therefore, in this work, we undertake the task of generating synthetic benchmark 

metabolic data by using a well-established kinetic model of red blood cell (RBC) 

metabolism [11], which involves 39 metabolites connected by 44 individual reactions. 

These data have been made publicly available at 

http://www.menem.com/~ilya/wiki/index.php/RBC_Metabolic_Network. We then use 

ARACNE, a modern transcriptional network RE algorithm, which was developed and 

validated for gene expression analysis [10], to infer metabolic interactions from these 



synthetic metabolic data, and we argue that its performance is comparable to that in the 

transcriptional case. This outcome suggests that other transcriptional HTP-based RE 

algorithms might be transferred to the domain of metabolism with minimal changes as 

well. 

 

2. The RBC Metabolic Benchmark Data 

In generating synthetic benchmark data, our goal is not to accurately simulate a real 

system. Rather, our goal is to exercise transcriptional RE algorithms by generating data 

that are complex enough to incorporate different features of metabolism (dynamic ranges, 

temporal properties, correlations among chemical species, noises, etc.), but are still 

simple enough to analyze in detail. Specifically, we generated four data sets to account 

for ever more complex scenarios of realistic profiling of RBC metabolism (see below). 

As the majority of transcriptional RE methods take steady-state abundance data as inputs, 

we focused on steady state metabolic profiling in three of these synthetic datasets, and 

studied dynamics only in the fourth one. 

 

To generate the simulated data, we modified a publicly available Mathematica workbook 

implementation of the RBC model [11]. The model has 5 parameters that can be 

controlled externally:  the Donnan ratio, R, (which determines the difference in the pH 

inside and outside of the cell); glucose concentration, G; total intracellular magnesium 

concentration, both free and bound, Mg; intracellular inorganic phosphorus concentration, 

Pi; and extracellular (plasma) sodium concentration, Na. For the first three data sets, 

these external control parameters were sampled at random 1000 times from specified 

probability distributions, representing different experimental setups, and the steady state 

values of the metabolic network were found by using the methods in the RBC workbook. 

In a significant number of situations (up to 30% or more depending on the data set), the 

randomly selected parameters did not lead to steady state solutions. These samples were 

removed from the data set. 

 

Data set 1 (chemostat): This data set simulates RBC steady-state measurements from 

chemostat culture experiments. All the parameters are uncorrelated, uniformly distributed 

variables, with the ranges indicated below (the numbers in parentheses are the values of 

the parameters assumed in the RBC workbook model [11]). The ranges were established 

by a literature search for conditions of various culture experiments that did not lead to an 

immediate cell death. We emphasize again that our aim is not to accurately model 

specific biochemical experiments—instead, our aim is to provide test data with realistic 

features. Hence the crude specification of the parameter ranges below.  

1. R = 0.2…1.6 (0.6). The natural value of R seems to be hard to pinpoint [13, 14] (see 

also discussion of Data set 2), but experiments on prepared/perturbed cultures achieve R 

as high as 1.6 [13, 15]. The lowest value of 0.69 comes from [13], which is higher than 

the value of 0.6, used in [11]. However, [16] suggests that the internal-to-external Pi 

concentration ratio (which is closely related to R) can go down to 0.2 for pH near 8.0. We 

chose this value as the lower limit on R, even though it is probably too low in the context 

of the RBC (pH=7.4). For R > 0.8 , the RBC dynamical system often does not have 

accessible steady-state solutions (depending on the other control parameters).  



2. G = 2.0…30.0 mM (5.0) [17]. 

3. Mg = 0.1…20 mM (2.7) [15].  For larger values of Mg, steady states are hard to find, 

and we do not include such parameter combinations in the data set. 

4. Pi = 0.6…1.8 mM (1.2) [16]. 

5. Na = 100…200 mM (140). Identifying this parameter from culture experiments is 

difficult, since most data are about internal, rather than plasma sodium. However, Refs. 

[18, 19] note clinical cases with Na down to ~110 and up to ~180, in which the patient 

still survived. In view of this, the range of 100-200 mM for culture experiments seems 

reasonable. 

Additionally, we observed that an external pH of 7.55 is normal for culture conditions, 

and values down to pH=7.0 [15] and up to 8.0 [16] have been recorded. 

 

Data set 2 (natural): This data set represents the variability of RBC metabolite 

concentrations in blood samples from healthy humans. The control parameters are taken 

as uncorrelated normal variables with means μi  and standard deviations i  (indicated as 

μi ± i  below), where  i = 1…5  denotes the identity of the parameter. We take 

physiologically allowable intervals found in the literature as ±2  around the mean.  

1. R = 0.75 ± 0.1.  Ref. [14] gives .825 for normal human. The RBC model [11] uses 0.6, 

citing [13], which suggests  R=0.69. At the normal pH=7.4, [15] suggests that the 

internal-to-external Pi ratio (and hence R) is between 0.4 and 1.0, with the median about 

0.8. Given cell preparations for all of these analyses, neither of the values may be 

anatomically relevant, and the real value is likely unknown for in vivo conditions. Hence 

we’ve chosen the distribution for which the mean is roughly the average of the reported 

human data, and the range of the normal data is about ±2  around the mean.  

2. G = 5 ± 0.6 mM [20, 21]. 

3. Mg = 3.3 ± 0.2 mM [15, 22].  

4. Pi = 0.9 ± 0.15 mM. This estimate is based on Pi values between 0.6 and 1.2 [16], 

obtained for an external pH of 7.4 (the default value of the RBC model). Values reported 

in alternative sources (1.0 in [23], 0.8 in [24], and 0.98 in [25]) differ from these by less 

than 2 . It is important to realize that the RBC model uses intracellular concentration as 

the control parameter, while most references, such as [20, 22], focus on plasma 

concentrations, leading to large discrepancies.  

5. Na = 140 ± 2.5 mM [20, 22]. Values reported in alternative sources differ from these 

by less than 2 . 

Additionally, the following information was collected: normal external pH of 7.24 [15] or 

7.4 [16] for an unperturbed cell. 

 

Data set 3 (correlated): This data set attempts to model the in vivo metabolite 

concentrations more faithfully by incorporating physiological correlations among the 

controls. Using this data set, one may study effects of the correlations (and thus reduction 

of the dynamic ranges of the response variables) on the performance of RE algorithms. 

For most of the parameters, we were unable to find quantitative measurements of the 

correlation coefficients in the literature, and instead only trends were reported. We 

summarized the trends into correlation coefficients ij  of 0 (no trend, or no data 

available), ± 0.3 (weak correlation), and ± 0.5 (strong correlation). Then the data set was 



generated by sampling the control parameters from multivariate normal distributions with 

means and variances as in Data Set 2, and with the correlation coefficients summarized in 

Table 1.  

1. Pi-R and Mg-R: The Pi-pH and R-pH correlation coefficients are -0.85 and -0.6…-0.76 

(for different species) respectively [16]. Thus, it is reasonable to assume that the Pi-R 

correlation is positive and large (+0.5 in our notation). Also notice that the Donnan ratio 

should have similar correlations with all internal ionic concentrations (modulo the sign of 

the charge). An agreement with the Mg-R value [15] is encouraging. 

2. Na-R: Recall that Na is an extracellular concentration and the correlation with R is not 

obvious. Nonetheless, [26], eq. 2, suggests a negative correlation. This, however, may be 

affected by fluctuations of the total sodium level and of cell volumes.  Therefore, we 

choose a value of -0.3 for this correlation. 

3. Na-G: A small positive correlation is reported in [26]. 

4. G-R: While we found no explicit data relevant for estimating this correlation, G is 

positively correlated with Mg and Na ions, which are, in turn, negatively correlated with 

R (see above). Thus, a small negative value for the G-R correlation is assumed. 

5. Na-Pi: Ref. [25] suggests strong positive pair-wise correlations between the internal 

Na and Na efflux, between the internal Pi and the inverse of the Na efflux, and between 

the external and internal Na. Overall, we deduce a weak negative correlation between 

external Na and internal Pi; this correlation is further supported by the opposite sign 

charges of these particles.  

6. G-Pi: Significant negative correlation is reported in [27]. 

7. Na-Mg: Weak competitive behavior between these species is reported in [28]. 

 

Data set 4 (evolving parameters): The RBC model takes up to 100 hours or more to reach 

a steady state [11]. However, in a natural environment, the control parameters fluctuate 

on time scales less than an hour. In fact, it takes only tens of seconds for blood to 

circulate. Further, the same drop of blood visits the liver every 20 minutes or so, and this 

may completely change the concentration of various ions in the cells and around them. 

While we found no explicit data about the temporal variability of the five control 

parameters in humans, we believe it is reasonable to model each of them as correlated 

Ornstein-Uhlenbeck processes with the means, the standard deviations, and the species-

species correlations as in Data set 3, and the correlation time = 20  min for each 

process. This data set required the most extensive changes to the RBC model, enabling 

dynamic variation of the control parameters during the temporal evolution of the system. 

The resulting time series data represent 20 hours of evolution of the RBC model, sampled 

every 10 seconds (for a total of 7201 samples); researchers may subsample the series 

and/or shorten it to better match the sampling scheme of an actual experiment. This data 

set is designed to test the application of network reconstruction in the presence of non-

equilibrated, time-series data. 

 

Table 1. Correlation coefficients of the five control parameters of the RBC model. 

References used to set the values are listed as well. 

 R G Mg Pi Na 

R  -0.3 (see text) -0.5 [15] +0.5 [15, 16] -0.3 [26] 

G   +0.3 [29] -0.5 [27] +0.3 [26] 



Mg    0 -0.3 [28] 

Pi     -0.3 [25] 

Na      

  

Noise: We simulate experimental errors in each metabolite concentration by adding 

Gaussian zero-mean random noise to the output of RBC model. The noise variance is 

given by A2 + B2x2 , where x  is the abundance, and A  and B  describe the contribution 

of the absolute and the relative noise components. Each of the four simulated data sets is 

available from our web site with a multitude of A  and B  values. This model is a good 

noise model for transcriptional data [30], and we expect it to be relevant for metabolism 

as well. However, specialized noise studies will have to be performed on real 

experimental data, once available, to verify this model. Notice, in particular, that this 

model does not take into the account errors that may emerge due to the overlap of peaks 

in mass-spectrometry based metabolite profiling. 

3. Reverse Engineering of Metabolic networks with ARACNE 
algorithm 

With availability of the data secured, we tested whether transcriptional RE tools, 

exemplified by the ARACNE algorithm [10], can be used with minimal modifications for 

analysis of metabolic networks. 

 

Like many other network reconstruction methods, ARACNE models dependencies 

among activity variables (e.g., gene expressions or metabolite concentrations), {gi} , as 

probabilistic, defined by an unknown probability distribution P {gi}( ) . A probabilistic 

description reflects the effects of unobserved molecular species and of experimental 

noise. A bona fide biological interaction corresponds to a nonzero statistical dependency 

between activity profiles, measured by the mutual information I (gi ,gj ) =  

logP(gi ,gj ) / P(gi )P(gj ) . Evaluating the mutual information and identifying its value 

above a certain threshold with an interaction is the basis of the Relevance Networks (RN) 

method [31]. However, in a major problem for most RE algorithms, as signals propagate 

through the networks, many non-interacting species also become correlated and result in 

a positive I  (e.g., two non-interacting targets of the same transcription factor may be 

highly statistically dependent). To isolate statistical interactions that have the highest 

chance to correspond to real biological interactions, ARACNE then uses the data 

processing inequality (DPI) [10] after statistically significant values of the mutual 

information have been identified. The DPI states that, if stochastic variables g1  and g3  

interact only through a third one, g2 , then 
  
I g

1
,g

3( ) min I g
1
,g

2( ); I g
2
,g

3( ) . Thus 

ARACNE analyzes each gene triplet and designates the link with the lowest MI value as 

indirect. To minimize the effect of incorrect estimations of the MI, this designation is 

made only when a link is at least % below the second weakest one.  For   5…15% , 

the method has been validated in synthetic [10] and in vitro [1] transcriptional networks. 

 

To establish a metric for the fidelity of a reconstruction, we note that the RBC interaction 

network is specified by a system of first-order differential equations 



dxi / dt = f ({x j Ne(i )}) , where Ne(i)  is a set of neighbors of the node i , including all 

immediate parents, children, and modulators (effectors) of the reactions. Thus, the steady 

state probability distribution is P(i | rest of network) = P(i | Ne(i)) , which corresponds to 

linking metabolites in the interaction graph to all of their neighbors [10]. This results in a 

“gold standard” adjacency matrix with 107 pairwise interactions among metabolites, to 

which the ARACNE reconstruction is to be compared.  

 

As a first check, we reconstructed the RBC metabolic network using just 19 conditions 

from Data Set 1 with  = 0  and with no modifications of ARACNE’s parameters from 

their transcription-tuned values, and using the algorithm implementation reported in Ref. 

[32]. A total of 14 interactions are predicted, 11 of which are substantiated by the model; 

this is a recall of 10% (14 out of 107) at a precision of 78%. (11 out of 14)). We then 

performed a systematic study using Data Set 1 with added measurement noises of 

different levels, modeling real experiments. Since the noise properties are different from 

those in the transcriptional case, we expended a substantial effort to fine-tune the internal 

ARACNE parameter essential for estimation of mutual information, the kernel width [10, 

32], for each run. When an observed metabolite variance across different steady states 

becomes smaller than the associated experimental noise variance, establishing its 

interactions is impossible by any statistical method, thus we remove such metabolites 

from the network, and all indirect interactions mediated by them are considered direct for 

the validation purposes. For a small and dense network, like the RBC one, where 14% 

percent of all metabolite pairs are connected by interactions, the node removal sets a limit 

on realistic values of the noise: at high noise variance, the network becomes a small and 

almost fully connected cluster, making precision of the algorithm artificially high.  

 

Precision vs. Recall Curves (PRCs) for noisy and noiseless data and for two different DPI 

tolerance values corresponding to the Relevance Networks and the ARACNE algorithms 

are shown in Figure 1. These curves are generated by adjusting the significance threshold 

for mutual information estimation so that metabolite pairs with a mutual information 

below the threshold are not allowed to participate in an interaction. Higher thresholds 

decrease the number of putative interactions, which eliminates most of the false positives, 

thus increasing the precision. Lower thresholds admit more pairs for consideration, and 

lead to higher recalls. For small, dense, and loopy RBC network, we expect the precision 

to drop fairly fast as the recall increases, and this is clearly seen in the Figure. Further, 

since precisions of 15-20% correspond to a “by chance” performance, only the top left 

corner of the Figure shows any improvement over the random assignment of interaction 

edges. Still, the most significant feature in this figure is that, for both noise levels, and for 

both ARACNE and RNs, there is always a range with a non-negligible recall and with 

precision ~1. Thus the algorithms can be tuned to produce a (small) number of 

predictions that are highly likely to be true. Furthermore, in the relevant region of high 

precision, the low tolerance (ARACNE) lines are substantially higher than the high 

tolerance (RN) ones. Just like in the case of transcription [10], this indicates an 

improvement from using ARACNE over RNs on metabolic data. Thus, a minimally 

modified ARACNE algorithm can be used to accurately predict metabolic interactions.  

 



In Figure 2, we compare how the change in the dynamic range of responses due to 

smaller variability and correlations in the external control parameters affects the validity 

of the reconstruction. These effects can be observed only for large noises, which are 

larger than the signal for some metabolites. Hence we used the noise setting such that the 

effective number of nodes in the chemostat dataset is 19. Surprisingly, while this number 

is smaller in the natural dataset, corresponding to the smaller response variability, it is 

larger gain in the correlated dataset. This holds true for other noise levels and means 

that parameter correlations are synergistic in their effect on variability of responses.  The 

natural dataset PRC seems to indicate the best performance. However,  comparison to the 

other PRCs is not fair since the effective network is smaller and the “by chance” 

precision (35%) is higher in this case. On the other hand, the chemostat network has a 

smaller chance precision (32%) than the correlated one (34%), yet its PRC is higher. This 

indicates that the decreased response variance and/or spurious correlations among 

metabolites introduced by correlations among control parameters indeed decrease the 

quality of the reconstruction.  

 

Finally, in Figure 3 we examine applicability of ARACNE to time-dependent metabolic 

data. Specifically, we would like to understand how temporal correlations among 

subsequent samples affect reconstruction. In order not to confound dynamics with the 

data set size, here we always reconstruct the network from 400 samples. However, in 

different runs, these samples are spaced every 10, 40, and 160 seconds apart, with the 

temporal correlations among subsequent samples dropping in proportion to the dilution. 

For comparison, we also plot reconstruction based on 400 independently sampled steady 

states from Data Set 3. We clearly see that, while reconstruction with temporally-

correlated data is possible, the corresponding PRCs are generally lower than for the 

steady-state case and drop dramatically faster. This indicates that methods that explicitly 

consider temporal structure [3, 33] should be used instead of steady-state methods, like 

ARACNE. Surprisingly, the steady-state PRC is lower than its counterparts for some of 

the temporal data for very large precision values. While this may be an insignificant 

artifact, it can also mean that weak, yet fast, metabolite interactions unobservable in 

steady state may become evident in a dynamic setting, when their effect is not masked by 

strong, slow interactions. Finally, a low starting point of the 10 s sampling curve may be 

a result of the noise masking small abundance changes between subsequent samples at 

fine temporal discretization. 

 

4. Conclusions 

We have generated benchmark synthetic metabolic data sets and analyzed them with 

ARACNE, a representative transcriptional networks reverse engineering algorithm. The 

performance of the algorithm for metabolic networks is comparable to that for 

transcriptional ones. This finding may be considered as a basis for an optimistic view that 

transcriptional networks RE algorithms may be transferred en mass with relatively few 

modifications to metabolic applications. However, this ease of transfer must be verified 

on a case-by-case basis. Importantly, we now have synthetic benchmarking data sets, 

which can aid in this verification. The most important limitation of the data sets is the 

relatively small size of the RBC metabolic network, which limits the ability to ascertain 



statistical significance of many findings. For example, due to this problem, we cannot 

verify whether the MINDY algorithm [34], which is an extension of ARACNE capable of 

elucidating interactions that are statistically insignificant overall, but become apparent in 

subsets of data, provides an advantage over ARACNE proper when applied to this 

metabolic data. 

 

The steady-state values in data sets 1-3 are ideal for application of ARACNE, RN and 

other steady-state algorithms. However, because it may take many hours for a controlled 

culture to equilibrate, time-resolved assays might enable more rapid inference of 

metabolic interactions. Data set 4 provides a means for testing metabolic network 

inference using such experiments, and can potentially aid in the design of efficient 

sampling schemes that minimize the cost of reconstructing metabolic networks. 

 

Finally, we notice that performance of transcriptional RE algorithms on metabolic data 

can be substantially improved beyond that observed in Figs. 1-3. Indeed, not every 

biochemical reaction is possible in nature. For example, metabolic reactions conserve 

mass, and, unlike in transcription, this places strict limits on which species can be 

metabolically coupled. Similarly, atomic species are also conserved by metabolism, 

which places even more constraints on allowable reactions, akin to [8]. Metabolic 

profiling almost always involves detailed determination of metabolite masses, and 

frequently provides information about the chemical structure of the compounds using 

isotopic labeling. It is, therefore, essential to incorporate these constraints into HTP 

profiling-based methods, such as ARACNE, in the future.  
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Figures 

 

Figure 1.   

 

 
Precision vs. Recall curves for different noise levels (blue – no noise, green – 

A = 0.001, B = 0 ), indexed by the number of nodes with the variance above the 

experimental noise (39 and 29 respectively). Dashed lines were constructed with the DPI 

tolerance of 100% (no DPI applied, equivalent to the Relevance Networks algorithm), 

and solid lines have 0% DPI tolerance (pure ARACNE algorithm). Curves corresponding 

to other values of the tolerance generally fall between these two extremes. At recall of 

1.0, the precision is 14% and 22% for blue/green lines, respectively, and it corresponds to 

107/88 true positives out of 741/406 possible metabolite pairs, all indexed as putative 

interactions if no DPI is applied, and if all mutual information values are treated as 

significant. 



Figure 2. 

Precision vs. recall curves for data sets with different distributions of the control 

parameters and the same noise ( A = 0.01, B = 0 ). For the three data sets, the number of 

true interactions (chance precision) is 32%, 35%, and 34% of the total number of possible 

metabolite pairs. Note unconventional scaling of the axes. 



Figure 3. 

Precision vs. recall curves for dynamical data using 400 samples sampled at different 

intervals. Steady state reconstruction with the same number of samples is shown for 

comparison. For these plots, the effective number of nodes is 37, 38, 38, and 38 

respectively. Note unconventional scaling of the axes. 


