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Diffusion-Driven Mechanisms of Protein Translocation on Nucleic 
Acids. 1 .  Models and Theory? 
Otto G. Berg,$ Robert B. Winter,# and Peter H. von Hippel* 

ABSTRACT: Genome regulatory proteins (e&, repressors or 
polymerases) that function by binding to specific chromosomal 
target base pair sequences (e.g., operators or promoters) can 
appear to arrive at their targets at faster than diffusion-con- 
trolled rates. These proteins also exhibit appreciable affinity 
for nonspecific DNA, and thus this apparently facilitated 
binding rate must be interpreted in terms of a two-step binding 
mechanism. The first step involves free diffusion to any 
nonspecific binding site on the DNA, and the second step 
comprises a series of protein translocation events that are also 
driven by thermal fluctuations. Because of nonspecific binding, 
the search process in the second step is of reduced dimen- 
sionality (or volume); this results in an accelerated apparent 
rate of target location. In this paper we define four types of 
processes that may be involved in these protein translocation 
events between DNA sites. These are (i) “macroscopic” 
dissociation-reassociation processes within the domain of the 
DNA molecule, (ii) “microscopic” dissociation-reassociation 
events between closely spaced sites in the DNA molecule, (iii) 

1. Introduction 
It is clear that in discharging many of their physiological 

functions (e.g., the processes of replication, transcription, 
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“intersegment transfer’’ (via “ring-closure”) processes between 
different segments of the DNA molecule, and (iv) “sliding” 
along the DNA molecule. We present mathematical and 
physical descriptions of each of these processes, and the con- 
sequences of each for the overall rate of target location are 
worked out as a function of both the nonspecific binding af- 
finity between protein and DNA and the length of the DNA 
molecule containing the target sequence. The theory is de- 
veloped in terms of the Escherichia coli lac repressor-operator 
interaction since data for testing these approaches are available 
for this system [Barkley, M. (1981) Biochemistry 20, 3833; 
Winter, R. B., & von Hippel, P. H. (1981) Biochemistry 
(second paper of three in this issue); Winter, R. B., Berg, 0. 
G., & von Hippel, P. H. (1981) Biochemistry (third paper of 
three in this issue)]. However, we emphasize that this ap- 
proach is general for the analysis of mechanisms of biological 
target location involving facilitated transfer processes via 
nonspecific binding to the general system of which the target 
forms a small part. 

translation, recombination, and repair) the proteins or protein 
complexes involved in various aspects of regulation of genome 
expression must translocate (move) along DNA or RNA 
molecules. Such translocation is generally unidirectional, 
proceeds at fairly well-defined rates, and requires the con- 
version of chemical to mechanical energy [for a recent sum- 
mary, see Kornberg (1 980)]. 

Simple protein-nucleic acid binding interactions are of two 
general types, and each may also involve various protein 
translocation mechanisms, though these are driven by diffusion 
processes (i.e., thermal fluctuations) only. These interactions 
include (i) the binding of regulatory proteins to one or a few 
specific target sites on the DNA genome (for example, the 
binding of repressors to specific operator sequences and the 
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timate of this rate constant for a diffusion-controlled reaction 
may be made: 

(1.1) 

where K is a (unitless) steric interaction factor, felcc is a (un- 
itless) electrostatic (attractive or repulsive) factor, b is the 
interaction radius (in cm), DR and Do are the free-volume 
diffusion constants for R and 0 (in cm*/s) and No is Ava- 
gadro’s number. (As written, the units of k, are M-I s-’,) 
Using reasonable estimates of the above parameters [e.g., see 
von Hippel (1979); a further discussion of these factors is 
presented in Winter et al. (1981)], we calculate that k, for 
a one-step diffusion-controlled interaction of repressor (R) 
with operator (0) 

k, = h ~ f l , b ( D ~  + Do)No/lOOO 

R + O & R O  kd (1.2) 

should not exceed - lo7 to - IO8 M-I s-’* i , .e., the calculated 
maximum value of k, is 100-1000-fold smaller than the ex- 
perimentally measured rate constant. 

Since it is manifestly impossible for a process to be faster 
than diffusion controlled, this can only mean that the reaction 
is not properly represented by eq 1.2 and that a binding process 
involving at least two sequential steps must be invoked. This 
can be written (see section 2) 

initial binding of RNA polymerases to closed promoters) and 
(ii) the (strandedness-specific, but sequence-nonspecific) 
binding of proteins to nucleic acid lattices at saturating, or 
close to saturating, levels (for example, the cooperative binding 
of helix-destabilizing proteins (HDP) to the single-stranded 
DNA structures involved as intermediates in DNA replication 
or recombination or of histones to double-stranded DNA after 
replication as a final step in chromatin formation). 

The possible role of diffusion-based translocation mecha- 
nisms in establishing equilibrium protein arrangements on 
DNA lattices in binding processes of type ii is just beginning 
to be considered [e.g., see Epstein (1979); Kowalczykowski 
et al., 1980; Lohman, 1980; Lohman & Kowalczykowski, 
19811. In this and the following papers in this issue (Winter 
& von Hippel, 1981; Winter et al., 1981), we focus on the 
kinetics and equilibria of interactions of type i. 

Proteins that function by binding to specific DNA target 
sites, such as Escherichia coli lac repressor binding to operator, 
can (in principle) reach their targets by simple three-dimen- 
sional diffusion. Two features of these systems suggest that 
the situation may be more complex. First, the concentration 
of target sites is often very low, for example, the lac operator 
occurs only once per E. coli chromosome, corresponding to 
an in vivo operator concentration of -2 X M. And 
second, the specific target sequences are buried among many 
non-target sites (- 107/genome) that share many of the 
structural features of the target and for which, as a conse- 
quence, genome binding proteins often display an appreciable 
non-base-pair sequence-specific affinity. 

These two features conspire to make target location by direct 
(trial-and-error) three-dimensional diffusion very slow. 
Binding to the target sequence must be precise; in principle, 
even binding to an operator one base-pair out of register would 
result in a totally nonspecific (and physiologically ineffective) 
interaction. In addition nonspecific binding (and the subse- 
quent multiple series of dissociations from nonspecific sites 
required to reach the target site) would slow the reaction still 
further. 

In principle, as early appreciated by Adam & Delbriick 
(1968) and Richter & Eigen (1 974), this nonspecific binding 
affinity can be converted from a kinetic liability to a kinetic 
asset if a two- (or more) step binding process is invoked. The 
first step must involve a diffusional encounter with an 
“extended” target, Le., with the macromolecule (or organelle) 
of which the target sequence forms a part. The second (and 
subsequent) step must comprise some sort of transfer events 
in which nonspecific binding to the extended target holds the 
ligand to the target-containing structure and serves to reduce 
the dimensionality of (and thus speed up) the search process. 
Clearly this principle applies equally well to a protein searching 
(basically in one dimension; see below) for a target sequence 
along (within) a DNA molecule and to a membrane-adhering 
ligand searching in two dimensions on a membrane surface 
for a protein receptor site. What is required is some non- 
specific affinity of the ligand for the general macromolecular 
structure within which the target is located plus a mechanism 
of facilitated transfer of the ligand while bound to this 
structure. 

The problem first came to light experimentally at the 
quantitative molecular level when Riggs et al. (1970) showed, 
using filter binding methods at very low component concen- 
trations ( N M), that the observed second-order rate 
constant (k,) for the binding of E. coli lac repressor to a lac 
operator site inserted into X DNA was - 1 O * O  M-’ s-l. When 
the Debye-Smoluchowski equation is used, a theoretical es- 

k 
R + D + O + R D  + O & R O  + D (1.3) k-I k-2 

where D represents any nonspecific (nonoperator) DNA 
binding site for repressor. The first step of eq 1.3 then r e p  
resents a three-dimensional diffusion of repressor to any site 
on the DNA molecule, and the second step@) represents 
(represent) a diffusion process of reduced dimensionality 
(and/or volume); the measured or calculated rate constants 
for the individual steps must then be such as to result in an 
overall transfer of repressor to operator (eq 1.2) with an o b  
served second-order rate constant (k,) that exceeds the value 
calculated by eq 1.1 by 2-3 orders of magnitude. 

In this paper we address the general problem of such fa- 
cilitated transfer processes by first defining discrete molecular 
models for the various ways in which proteins can (in principle) 
bind to and diffusionally translocate on a nucleic acid lattice. 
Then we write out the mathematical theory for the way in 
which each of these molecular processes, substituted for the 
second step of the two-step reaction scheme 1.3, might be 
expected to affect the overall observed association and disso- 
ciation rate constants for the repressor-operator complex as 
a function of the major experimental variables accessible in 
this system. These variables include primarily salt concen- 
tration (and salt type), size of the DNA fragment containing 
the operator (Le., ratio of nonspecific to specific binding sites), 
and the number (per DNA fragment) and overall affinity for 
repressor of the operator binding site@). In the second paper 
(Winter & von Hippel, 1981), we report the experimental 
measurement of equilibrium parameters for repressor binding 
to operator as a function of the above variables, and in the third 
paper (Winter et al., 1981), we summarize our kinetic mea- 
surements on the system as a function of the above variables, 
compare the experimental results with the predictions of the 
theory presented here, and consider in vivo implications. 

2. Molecular Models for Translocation Mechanisms 
Dissociation-Reassociation. As indicated above, the central 

problem for the protein is to identify a specific target sequence 
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among a vast excess of structurally similar nonspecific binding 
sites. In a random search, the protein would have to “test”, 
on the average, a large fraction of all the nonspecific sites 
before the target site is located. This requires a large number 
of nonspecific dissociation-reassociation events. In the simplest 
representation, each such dissociation-reassociation event in- 
volves a full (macroscopic) dissociation of the protein from 
the nucleic acid, followed by random reassociation to a totally 
uncorrelated site (a fully random diffusional search). We note, 
however, that the linear arrangement of nonspecific sites in 
the DNA makes a correlated search possible. Thus we define 
a microscopic dissociation event which releases the protein to 
a point at which, though free to move, it is still very near the 
original site and can, with high probability and within a very 
short time, reassociate with the same or a nearby site. The 
theory of diffusion-controlled processes requires that the 
number of such microscopic (release from the chain) disso- 
ciations per macroscopic (release and transport away from the 
chain) dissociations be very large (Berg, 1978). This correlated 
search can be envisioned as a sort of “hopping” process and 
leads to the fact that during the time that a protein remains 
macroscopically bound it can actually test several nearby sites 
on the chain through repeated microscopic dissociations. 

This definition of a microscopic dissociation event requires 
a precise distinction between bound and unbound states. The 
nonspecific binding of lac repressor to DNA is entirely elec- 
trostatic [Le., it depends on chargecharge interactions between 
DNA phosphates and basic residues of the protein; see de- 
Haseth et al. (1977); Revzin & von Hippel, 1977; Winter & 
von Hippel, 1981)]. Thus, in terms of the approach of Record 
and Manning and their co-workers (Record et al., 1976, 1978; 
Manning, 1978), this association is entirely driven by the 
release of condensed counterions from the DNA. In these 
terms, a microscopic dissociation event can be defined as one 
in which the protein is removed just far enough from the DNA 
to permit counterion recondensation. 

These protein dissociation-reassociation events comprise 
translocation modes that must exist in general and as a nec- 
essary consequence of the molecular structure of the system. 
They are depicted schematically in the upper two branches 
of Figure 1. 

Intersegment Transfer. In addition to these fundamental 
translocation modes, additional facilitating mechanisms can 
also be envisioned. In branch 3 of Figure 1, we depict in- 
tersegment transfer-or direct transfer between DNA seg- 
ments as proposed by von Hippel et al. (1975)-which pos- 
tulates that the protein can be transiently “doubly bound” 
between two DNA segments of the same chain via a “ring- 
closure” event. This could occur as a consequence of random 
spatial fluctuations in the DNA chain that bring a second 
segment close enough to an already bound protein to establish 
such a doubly bound complex. When the segments again 
separate, the protein either stays on its original site or is carried 
off by the other segment. It can be assumed that the doubly 
bound complex is unfavorable and that when this complex 
dissociates the protein will, with equal probability, remain 
bound to either of the two segments. Such a scheme circum- 
vents dissociation barriers and provides a potentially fast 
pathway for the sampling of different DNA sites. 

We note that this process (branch 3 of Figure 1) comprises 
a random search which is totally analogous, in its conse- 
quences, to the uncorrelated dissociation-reassociation process 
(branch 1) described above (except that in the intersegment 
transfer process, because of the stiffness of the DNA, one-step 
transfer events between two sites that are close together along 
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FIGURE 1: Possible processes contributing to the effective transfer 
rate constant (kd. Starting from the center picture where the protein 
is bound to one nonspecific site, it can be transferred to another 
nonspecific site in the following four ways: Branches 1 and 2 represent 
the intradomain dissociation-reassociation reactions which are always 
present; thus branch 1 shows the uncorrelated (macroscopic) transfer 
reaction and branch 2 the correlated (microscopic) process (hopping). 
Branch 3 represents the intersegment transfer mechanism, which is 
driven by the spatial fluctuations of the DNA chain and requires a 
doubly bound intermediate. Branch 4 models the sliding mechanism, 
which requires that the protein slides linearly across nonspecific sites 
without intervening dissociation. 
the DNA are discriminated against). Thus this translocation 
mechanism will be quantitatively effective only if it results in 
faster protein translocation than does the macroscopic disso- 
ciation-reassociation process. This intersegment transfer rate 
must ultimately be limited by the rate with which two segments 
approach each other, Le., by the rate of segmental diffusion 
of the DNA chain (Berg, 1979). 

The second DNA binding site that this model presupposes 
has recently been experimentally observed by O’Gorman et 
al. (1980) for lac repressor binding to short operator fragments; 
in the molecular model suggested by these workers, the op 
erator fragments are envisioned as binding in parallel to op- 
posite sides of the repressor. For larger fragments such double 
binding has not been observed [see‘winter & von Hippel 
(1981)l. This could indicate that the doubly bound complex 
between longer chain segments (if it exists) is strongly de- 
stabilized, perhaps by steric or electrostatic repulsion between 
the portions of the DNA segments that protrude beyond the 
repressor. Obviously such a destabilization is required to 
facilitate the proposed intersegment transfer mechanism since 
a stable doubly bound complex would only serve as an effective 
trap to further slow the search for the specific target site. 

Sliding. The other mechanism that has been proposed for 
facilitated translocation of genome-binding proteins on DNA 
is “sliding” (Riggs et al., 1970; Richter & Eigen, 1974; Berg 
& Blomberg, 1976). By this we mean transfer (during a 
nonspecific binding event) of the protein along the contour 
length of the DNA. In this process (as opposed to macroscopic 
dissociation and intersegment transfer by ring closure), the 
protein will sample strongly correlated sites since transfer is 
only between linearly contiguous binding positions on the DNA 
lattice. In contrast to “hopping”, which also proceeds between 
strongly correlated sites, sliding occurs while the protein re- 
mains nonspecifically bound (compare branches 2 and 4 of 
Figure 1). The basic assumption is that the protein can slide 
along the DNA in a onedimensional random walk while bound 
[for a mechanistic discussion of this process, see Winter et al. 
(1981)l. This sliding “search pattern” is then interrupted 
either by location of (and binding to) the specific target site 
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Table I: Glossary of Symbols Used Recurrently in the Main Text or by dissociation of the protein from the DNA molecule. 
Schurr (1 979) has calculated a theoretical upper limit for 

the sliding rate of the lac repressor based on purely hydro- 
dynamic considerations. This upper limit turns out to be a 
one-dimensional diffusion rate of -4.5 X cm2 s-* (cor- 
responding to a random walk rate along the DNA of -4 X 
lo6 base pairs/s), which is substantially slower than the free 
diffusion rate of protein ( - 5  X lo-’ cm2 s-’) primarily because 
the protein is viewed as “spiraling” along the DNA double 
helix, always “facing” the same way toward the sugar- 
phosphate backbone. This requires that the protein make a 
full rotation about the double helix for each 10 base pairs 
translocated, and the main solvent resistance opposing sliding 
turns out to be that directed against this rotational motion. 

Since the nonspecific affinity of repressor for DNA is 
electrostatic in origin, resistance to motion could also develop 
due to local variations (along the DNA) of the electrostatic 
binding potential. Because the phosphates occur at specific 
sites on the DNA, rather than being uniformly “smeared” over 
the cylindrical molecule, there will exist potential barriers to 
sliding due to the discrete positioning of these groups. How- 
ever, these “bumps” or barriers opposing sliding can be ef- 
fectively diminished if the positive charges on the protein are 
placed somewhat “out-of-register” with the negative DNA 
phosphates. In principle, sliding could also be inhibited by 
local fluctuations in the counterion concentrations along the 
DNA. We note, on the average, that no net displacement of 
counterions is required for sliding, since those displaced from 
the DNA in “front” of the protein are replaced “behind”. 
Furthermore, relative to the rate of sliding, these counterion 
rearrangements should be fast. Thus it is not inconceivable 
that the sliding rate will, in fact, be close to the upper limit 
calculated from solvent resistance alone. This point is con- 
sidered further in Winter et al. (1981). 

3. Two-step Reaction Scheme 
A protein that has some affinity for nonspecific DNA in 

addition to its affinity for the specific (target) site will almost 
certainly bind nonspecifically at first, due simply to the vast 
excess of nonspecific sites over specific ones. Thus, regardless 
of the existence of any facilitating transfer mechanism, the 
specific association process (eq 1.2) must be viewed as a 
two-step process (eq 1.3) with a nonspecific complex as in- 
termediate. As developed in section 1 ,  if we let R represent 
the protein component (repressor), D the nonspecific DNA 
sites, and 0 the specific (operator) site(s), we obtain the global 
reaction scheme 

k k 

k-I k-2 
R + D + o 1, RD + o -i. RO + D (3.1) 

As this reaction is written, the rate constants k,, k2, and k-2 
are treated as bimolecular (although the second step is actually 
an intramolecular transfer and thus essentially monomolecu- 
lar), and therefore kz and k-2 will be concentration dependent.’ 
k2 is the effective rate constant for transfer from nonspecific 
sites to the specific one(s). No particular facilitating mech- 
anism is implied in eq 3.1, and as written, the transfer process 
could simply involve macroscopic dissociation-reassociation 
events (Table I). Since nonspecific sites are in large excess, 
their free concentration [D] is constant and equal to the total 

All the symbols used recurrently in the main text are summarized 
alphabetically in Table I to facilitate cross reference and avoid confusion. 
The table also includes the number of the equation in which these sym- 
bols are first introduced or defined. 

symbol definition eq 
persistence length of DNA 
reaction radius for nonspecific binding 
free repressor concentration 
free diffusion constant for the protein 
diffusion constant for the o n e  

local DNA concentration (base pairs) 

total DNA concentration (base pairs) 

nonspecific association rate constant 
nonspecific dissociation rate constant 
effective forward transfer rate constant 
effective backward transfer rate 

total association rate constant to 

total association rate constant to 

total dissociation rate constant from 

total dissociation rate constant from 

microscopic nonspecific association 

intradomain nonspecific association 

nonspecific binding constant 
specific binding constant 
length of a base pair 
half of the contour length of the 

contour length between specific sites 
total number of sites per DNA chain 
number of specific sites per DNA chain 
number of base pairs between specific 

total concentration of DNA chains 
probability that a DNA chain has one or 

more proteins specifically bound 
intradomain reassociation probability 
radius of gyration of DNA chain 
average intersegment distance in the 

total protein concentration 
ratio of nonspecific and specific 

geometric factor for domain association 
fractional saturation of primary 

fractional saturation of secondary 

microscopic nonspecific dissociation 

intradomain nonspecific dissociation 

ratio of total protein and DNA chain 

intersegment transfer rate constant 
microscopic reassociation probability 

dimensional sliding 

inside a domain 

in solution 

constant 

specific site 

secondary site 

specific site 

secondary site 

rate constant 

rate constant 

DNA chain 

sites 

DNA domain 

binding constants 

binding site 

binding site 

rate constant 

rate constant 

concentrations 

4.5 
4.2 
4.11 
4.2 
5.17 

4.10 

3.2 

3.1, 4.19 
3.1,4.18 
3.1, B.10 
3.1 

3.5 

6.3 

3.6 

6.3 

4.1 

4.6 

3.2 
3.3 
4.2 
4.4 

6.19 
3.5 
6.1 
6.19 

3.5 
6.5 

4.9,4.17 
4.5 
4.4 

3.2 
3.7 

4.15 
6.4 

6.4 

4.1 

4.3 

6.4 

5.9 
4.2 

a Number of the equation in which the symbol is first introduced 
or defined. 

concentration, DT, of such sites. Hence, at equilibrium, we 
have 

(3.2) 

which defines the nonspecific binding constant Km. Similarly, 
the specific binding constant KRO is defined as 

(3.3) 
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is dominant), the dissociation rate becomes 
kd = KRO-l[(Mkl)-’ + ( k & K ~ ~ ) - l ] - l  (3.9) 

This situation applies in all the experiments described in the 
following papers in this issue (Winter & von Hippel, 1981; 
Winter et al., 1981). 

4. Kinetics of Nonspecific Binding Events within and 
between DNA Domains 

Microscopic Dissociations and Reassociations. Let us first 
consider an equilibrium situation with nonspecific DNA (of 
total concentration DT) and protein molecules (of total con- 
centration RT) in solution. For simplicity we assume (as is 
generally experimentally true) that nonspecific binding sites 
are in great excess over protein, & >> RP As pointed out by 
von Hippel et al. (1973, in the usual experimental situation 
the DNA chains exist in solution well separated into small 
“domains” containing one chain each, with most of the in- 
tervening solution “empty” of DNA. However, at equilibrium, 
the concentration offree protein [R] must be homogeneous 
throughout the solution, including the “insides” of the DNA 
domains. Consequently at equilibrium it is totally immaterial 
that the DNA distribution is inhomogeneous, and we can 
define a microscopic association rate constant (k i )  as well as 
a microscopic dissociation rate constant (A) such that ki[R]& 
equals the association flux at equilibrium and X[RD] is equal 
to the dissociation flux at equilibrium [cf. Berg (1978) for a 
more thorough discussion of these microscopic rates). Detailed 
balance requires these fluxes to be equal, and the nonspecific 
binding constant (eq 3.2) can also be expressed as 

Since rates are commonly measured by disturbing the equi- 
librium, these microscopic rates will not be observed unless 
they are so small that the diffusion effects are infinitely faster, 
in which case the distribution of protein remains homogeneous 
throughout the experiment. This is the so-called reaction- 
controlled case, which is probably not relevant for real pro- 
tein-DNA association reactions, but is included as a possible 
limit on the results to follow. 

As defined above, the microscopic dissociation rate constant 
X describes a dissociation that merely releases the protein from 
the chain but leaves it directly adjacent to its former binding 
site. This definition of X requires a precise distinction between 
the bound and unbound states. One possibility, utilized in 
section 2 to describe “hopping”, is to let A define a dissociation 
event that has only proceeded far enough to allow the coun- 
terions to recondense on the DNA chain. In this way the 
microscopic association rate constant (k i )  will contain essen- 
tially all of the activation free energy for the removal of the 
counterions on binding of the protein ligand. However, as long 
as nonspecific association is diffusion limited, the observed 
rates will be independent of the precise definition of the mi- 
croscopic ones. 

Most microscopic dissociations will be very short-lived and 
will be followed by almost immediate reassociation of the 
protein to the same binding site. Thus no observable change 
will have taken place. However, some of these dissociations 
will be sufficiently long-lived to allow some free diffusion and 
reassociation to a neighboring binding site on the chain. The 
nature and effects of such strongly correlated reassociation 
processes will be considered further in section 5. 

In a small fraction of the microscopic dissociation events, 
diffusion will transport the protein to a point where it loses 
its correlation with the binding site (and chain segment) it has 
just left. However, the protein remains within the domain of 

KRD = ki/A (4.1) 

However, what is generally measured [see Winter et al. 
(1981)] is the concentration of repressor molecules bound to 
operator sites relative to the total concentration of those not 
bound there. That is 

The effective specific association rate can be calculated from 
eq 3.1 by means of standard steady-state analysis or by cal- 
culating the dominant relaxation time in a kinetic analysis. 
If it is assumed that the specific complex is stable (Le., is 
formed irreversibly on the time scale of the association, with 
k-2 = 0), both approaches show that 

k,  = - - k2DTKRD 
1 + DTKRD + k z O ~ / k - i  

[ ( M k  1 )  - l +  ( k2DTKRD ) - l ] - l  (3.5) 
1 + DTKRD 

Here 0, is the total concentration of specific sites and M (= 
DT/OT) is the number of nonspecific sites per (one operator 
containing) DNA chain, such that Mk,  is the association rate 
per chain. The second term in the square brackets is simply 
the preequilibrium result, i.e., the association rate one would 
obtain if the first Step of eq 3.1 is always at equilibrium. 

The whole reaction scheme (eq 3.1) breaks down when k-l 
becomes much smaller than k2&. In this case the repressors 
are confined to the first DNA chain they encounter. That is, 
on the time scale of the total association reaction, there is no 
exchange of proteins between chains, as tacitly assumed in the 
original reaction scheme. Instead it becomes appropriate to 
consider each DNA chain as a closed system. Then both 
backward rates (corresponding to k-l and k-2 of the two-step 
scheme) are negligible, and the full time course of the total 
association reaction is readily calculated. 

The dissociation process can be analyzed in a similar 
manner. The case where kl  = 0 in reaction scheme 3.1 is 
relevant to the experimental situation. This situation implies 
that when a protein has dissociated from a DNA chain or, 
more exactly, has departed from the “domain” of the chain 
(see below), it will be lost in solution, either by dilution or by 
adsorption onto the large excess of “cold” operator-containing 
DNA that can be added to prevent reassociation [see Winter 
et al. (1981)l. The equation for the observed specific disso- 
ciation rate constant is then 

- - k-2DT 
1 + k2OT/k-l + k - ~ D ~ / k - l  k,j = 

[ (k-2&)-’ + ( &;;r::;KRD)’]-l (3.6) 

which has the same simple form as eq 3.5. 
The specific binding constant can be, related to the non- 

specific one via eq 3.3. We introduce a molecular parameter 
y which is always less than unity and which represents the 
stability of the nonspecific complex relative to that of the 
specific one; i.e. 

Y P KRD/KRO k-2/k2 (3.7) 

Then the total dissociation rate (from eq 3.6) is 

When y M  << 1 (Le., when MKm << KRo and specific binding 



6934 B IOC H E M I s T R  Y B E R G ,  W I N T E R ,  A N D  V O N  H I P P E L  

4 
2xLR; = Txr: (4.4) 

where 2L is the chain length and rg is the radius of the DNA 
domain, taken here to be the radius of gyration of the DNA 
coil. For a long DNA chain consisting of many persistence 
lengths, rg is determined by 

rg2 = 2La/3 ( 4 . 5 )  
where a is the persistence length. Thus 

2 
3 

R, = -(rga)lI2 N O . ~ O ( L U ~ ) ' / ~  

In this way, R, is defined as the average distance to the 
midpoint between one DNA segment and the closest uncor- 
related neighboring segment. Consequently A as defined by 
eq 4.3 is the intradomain dissociation rate constant. 

This result is consistent with the association rate constant 
per binding site, k ,  for a homogeneous segment distribution 
of the same density (Berg & Blomberg, 1976, 1977): 

\ 
\ 

k. 

FIGURE 2: Schematic representation of the heirarchy of nonspecific 
dissociation rates. X represents a microscopic dissociation event that 
releases the protein from the DNA chain to a distance just beyond 
the counterion atmosphere. A represents an intrudomuin dissociation 
event that &es the protein away from the original segment but leaves 
it within the domain. represents an interdomain dissociation event 
resulting in the loss of the protein from the domain altogether. 

the same DNA chain, and consequently this is called an in- 
tradomain dissociation. Finally some fraction of these in- 
tradomain dissociations will take the protein out of the domain 
altogether. These are the interdomain dissociations given by 
the macroscopic rate k-, in the general two-step scheme of 
section 3 .  Thus, on purely geometric grounds, one can dis- 
tinguish three levels of nonspecific dissociations-microscopic, 
intradomain, and interdomain-as depicted schematically in 
Figure 2.  Each of these will enter at an appropriate level in 
the total association scheme. Below we proceed by defining 
each set of corresponding rate constants. 

Intradomain Dissociations and Reassociations. The oc- 
currence of dissociation events that result in transfer of the 
protein between different segments of the same chain is con- 
trolled by the segment density within the DNA random coil 
and the microscopic dissociation rate constant, A. In principle, 
such intradomain dissociation events will take the protein to 
a point at which it loses its spatial correlation with the binding 
site it has just left and is now afforded an equal probability 
of reassociating at any binding site on the same chain. Thus, 
it is appropriate to count as dissociated those proteins that 
reach an approximate midpoint between nearby, but uncor- 
related, segments. [As used here, the term uncorrelated means 
that the segments are far apart as measured along the DNA 
contour but may be (transiently) spatially close.] Using 
cylindrical coordinates, one can calculate the Probability \1, that 
the protein, once it has dissociated, does not reach the distance 
Rc without reassociation (Berg & Blomberg, 1977): 

1n (RClb) 
(4.2) * = In ( R , / b )  + 2xDI/ki 

where b is the reaction radius (here taken as the radius of the 
DNA double helix), D is the free diffusion constant for the 
protein, and I is the distance between binding sites (here taken 
as the length of a base pair). The dissociation rate A to 
distance R,  is the product of the microscopic rate X and the 
probability of reaching this distance: 

A( 2xDl/ki)  
A = X ( l  - +) = ( 4 . 3 )  In ( R J b )  + 2xDl /k i  

R,, which is a measure of the segment density in the DNA 
coil, can be defined by 

2x01 
(cm3 s- l )  (4.6) 

kasm = In ( R , / b )  + 2xDl /k i  

Thus the equilibrium constant from (4.1) can also be expressed 
as K R D  = k,,/h. If ki >> 2 ~ 0 1 ,  k,,, is dependent only on 
geometry and the free diffusion constant D. This is the so- 
called diffusion-controlled limit. In the reaction-controlled 
limit, ki << 2xD1, and k,,,, from (4.6) becomes equal to the 
microscopic rate ki.  Note that, for simplicity of notation, all 
bimolecular rate constants are given in units of cm3 s-l, so that 
the ratio 2xDl/ki is dimensionless. 

The need to consider a dissociation distance at all arises from 
the essentially two-dimensional character of the diffusion 
described in cylindrical coordinates when the coordinate along 
the chain is immaterial. In three dimensions and spherical 
symmetry, the probability that a dissociating particle reaches 
a distance R without reassociation rapidly approaches a lim- 
iting value with increasing R ,  such that 

(4.7) 
4xbD 

4xbD + k 

where b is the reaction radius and k is a microscopic reaction 
rate. Hence, the common procedure of using an infinite 
dissociation distance in three dimensions is justified. As is 
obvious from eq 4.2, there is no such limiting value for the 
escape probability in two dimensions: 

and it is essential to define a dissociation event properly. 
Interdomain Dissociations and Reassociations. At large 

distances from the chain, the entire DNA coil serves as an 
essentially spherical target. Escape from this entire DNA 
domain can be defined as a third level of dissociation (see 
Figure 2) .  Obviously the corresponding rate constant, kVl, can 
be expressed as the product of A and the escape probability 
from the domain: 

k-1 = A(1 - P,) ( s - ' )  (4.9) 

where P, is the probability that the protein will reassociate to 
the chain rather than leave the domain altogether. We can 
express the equivalent reassociation rate for a protein starting 
free somewhere inside the domain and binding onto the chain 
inside the domain as 



P R O T E I N  T R A N S L O C A T I O N  O N  D N A :  T H E O R Y  V O L .  2 0 ,  N O .  2 4 ,  1 9 8 1  6935 

2D/R: 
In ( R , / b )  + 2aDl/ki 

( s - l )  (4.10) kaSsocDc = 

where D, = l/nR:1 is the local concentration of base pairs 
or nonspecific binding sites within the domain. For simplicity, 
the segment density is assumed homogeneous. This results 
in the diffusion equations 

ac 
at 
- = DV2c - kassocDcc 0 I r < rB 

(4.1 1 )  
ac 
at 
- = DV2c r > r ,  

where c(r,t) is the free repressor concentration at the distance 
r from the center of the domain. 

The initial condition is defined as one repressor molecule 
placed somewhere within the domain. Assuming a homoge- 
neous probability distribution, we have 

c(r,O) = co = (47rrB3/3)-' 0 I r < rB 
(4.12) 

c(r,O) = 0 r > rB 

To calculate the reassociation probability, it is sufficient to 
consider the time-integrated form of the diffusion equations: 

(4.13) 
-co = DV2Z - kasSwDg 0 I r I rB 

0 = DV2Z r >  rg 

where Z;(r) &'c(r,t) dt. 
Note that this is equivalent to considering a stationary state 

or a Laplace transform in the limit where the Laplace variable 
is zero. With the appropriate continuity conditions at r = rB, 
the solution is 

Q I r < r ,  (4.14) 

where M = Dc/co is the number of nonspecific sites per chain 
and q is defined by 

(4.15) 
3L/r ,  

(qrg)2 = In ( R , / b )  + 2aDl/ki 

The total reassociation probability is 

P, = k , s&lc~rgZ; ( r )4ar2  dr (4.16) 

which gives the escape probability 

Thus from eq 4.9 the dissociation rate constant is 

where the nonspecific binding constant KRD has been intro- 
duced from eq 4.1,4.3, and 4.6. The bimolecular association 
rate constant onto any binding site in the domain is given by 
(Berg & Blomberg, 1977) 

4?rDr, tanh (qrg) 
kl = -[ M 1 - qr, ] (cm3 s-') (4.19) 

The expression in square brackets is simply the probability that 
a protein that has reached the domain will also bind nonspe- 
cifically to the chain. Consequently, the nonspecific binding 
constant as originally defined in eq 3.2 is consistently given 
by the ratio of association and dissociation rate constants at 
all three levels: 

KRD = ki/X = kassoc/A = k , / k - ,  

5 .  Predicted Association Rates 
General Considerations. The effective transfer rate constant 

(k2)  remains to be determined before the expected association 
rate constant, k,  (from eq 3 . 9 ,  can be calculated. In Figure 
1 we have sketched the different transfer processes that may 
contribute to the overall rate. In the following sections, the 
effects of these transfer processes on the overall rate are 
considered individually; in Appendix A, we derive the full 
solution which applies when all these processes contribute 
simultaneously. 

We assume throughout that the nonspecific binding con- 
stant, KRD, is a known quantity. For most DNA binding 
proteins, KRD has a strong electrostatic component; Le., the 
overall binding affinity is very salt concentration dependent. 
For lac repressor, nonspecific binding appears to be almost 
exclusively electrostatic (deHaseth et al., 1977; Revzin & von 
Hippel, 1977) in that log KRD extrapolated to 1 M salt is 
negative. In eq 4.1, KRD (E ki/X) is expressed as a ratio of 
microscopic rate constants. In the diffusion-controlled limit 
(ki  >> 2?rD1), only this ratio appears in the final equations. 
Thus, the actual choice of ki and X is immaterial, and the 
experimental values of KRD can be used together with the 
known geometries and the free diffusion constant (D) to predict 
the specific association rate. In the numerical predictions 
below (Figures 3 - 3 ,  we shall assume that the diffusion-con- 
trolled limit is applicable; otherwise ki and X would have to 
be known separately. However, unless stated otherwise, this 
assumption has not been used in the theoretical expressions 
which follow. 

From eq 3.5 we have 

k,  = [ (Mk1)-' + ( k2DTKRd )']' (5.1) 
1 + DTKRD 

The first term ( M k , )  given by eq 4.19 is the rate of the first 
nonspecific association. It is essentially constant, is determined 
only by the size of the DNA chain, and will serve as an upper 
limit to k,. Keeping this in mind, it suffices to consider the 
preequilibrium result: 

The upper limit in eq 5.2 is valid at high salt (weak nonspecific 
binding) and the lower limit at low salt (strong nonspecific 
binding). Only when this estimate approaches or exceeds Mk, 
is it necessary to invoke the upper limit for k, as given by eq 
4.19: 

tanh ( V g )  
k, N Mk, = 4xDrg[ 1 - qr, ] (5.3) 

Association without Facilitating Mechanisms. In the ab- 
sence of any facilitating mechanism, the transfer rate between 
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nonspecific sites, k$T, can be interpreted simply as the rate 
of exchange of bound repressor between different segments 
of the DNA by macroscopic dissociation-reassociation events. 
Initially this neglects the possibility of intersite transfer by 
microscopic dissociation-reassociation processes, an effect 
which is always present and is of particular importance when 
there are no other facilitating mechanisms. In this approxi- 
mation, the specific association rate can easily be calculated 
without recourse to the details of the two-step scheme. The 
mean time 71 for the first nonspecific association is r1 [ = 
l/(kl&)]. Dissociation takes place after a mean time, Tdiss 

(= l /A) .  The mean time, T ~ ~ ,  which must pass before the 
next nonspecific association (onto the same chain or another) 
for a protein starting within the domain, can be calculated by 
using the methods of section 4. We find T,, = l/(k&). 

In this random search, the protein will test nonspecific sites 
M times, on the average, before the specific target site is 
found.* Thus, the total mean time before specific association 
is 

B E R G ,  W I N T E R ,  A N D  V O N  H I P P E L  

7 a  = 71 + M(7diss + 7 a s s d  

and the total specific association rate is 

The successive approximations are (i) that the term A/(Mk-l) 
<< 1 is always negligible, (ii) that the case &Km << 1 applies 
when the nonspecific binding is not competitive enough to slow 
down the association, with the result that k, is simply the 
nonspecific association rate constant k,, from eq 4.6, and 
(iii) that in the limit 27rDl/ki << 1, k, represents, finally, the 
diffusion-controlled case. This corresponds to the 
“screening-controlled” case of Lohman et al. (1978), and the 
correspondence becomes more obvious when it is noted that 
a more complete derivation of A (Berg & Blomberg, 1978) 
replaces the logarithmic factor: 

In (Rc/b) - JRcp-’  exp[V(p)/(kBT)] dp (5 .5 )  

and the microscopic reaction rate constant: 
ki -+ ki exp[-J‘b)/(k~T)l (5.6) 

where V(p) is the electrostatic interaction potential at distance 
p from the DNA chain axis. The integral in eq 5 .5  may well 

* The aueruge (mean) number of nonspecific association4ssociation 
events which take place before the target site is located in a random 
search is simply equal to M, the total number of nonspecific sites per 
chain (actually M - 1). Since the probability of hitting the target site 
is 1/M for each binding event, the probability (Pi)  of hitting it on the 
ith try (and not on any of the previous i - 1 tries) is Pi = (l/M)[ 1 - 
(1 /M)I i -I .  Thus the mean number of nonspecific binding events prior 
to target location is 

i= l  

lo9 
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FIGURE 3: Total specific association rate without facilitating mech- 
anisms as a function of the nonspecific binding constant. The solid 
line is calculated by using k, = k-/(l + &Km) (from eq 5.4; 
hopping not included). The dashed line is calculated by using k, = 
1.5rbD/( 1 + &Km) (from eq 5.8; hopping included). The breakpoint 
of the curves occurs at K m  = &-I, and a value of 4 = 5 X lo4 
M has been used throughout. The diffusion-controlled limit (ki >> 
2rDl)  is assumed. 

carry the low salt dependence that Lohman et al. (1978) 
predict from thermodynamic considerations. Obviously, one 
needs a much more detailed knowledge of the potential to 
corroborate this. The full expression for k,, eq 5.4, allows 
corrections. At low salt concentrations, the competition effect 
can contribute (Le., &KRD > l),  and at high salt, the mn- 
specific association may become reaction controlled, if ki < 
2aDl. 

Equation 5.4, which also has been derived more rigorously 
in Appendix A, is identical with eq 3.5 when the effective 
transfer rate between nonspecific sites is taken as 

k& = (5.7) 
Some of the very short-lived microscopic dissociations may 

return the protein to a neighboring site instead of to the one 
it left. In contrast to “sliding” (Figure l), where the protein 
remains bound, this process is envisioned as a “hopping” 
mechanism. Thus the protein dissociates from the chain but 
remains close and reassociates in a very short time. However, 
during this short time, it acquires an increased mobility and 
has a certain probability of reassociating with a neighboring 
site. 

This type of (microscopic) dissociation-reassociation event 
takes the protein between strongly correlated sites. It has been 
separated from the uncorrelated dissociation-reassociation 
discussed above primarily for emphasis and mathematical 
convenience. It needs to be considered only because of the 
linear arrangement of nonspecific binding sites. In the more 
common binding situation with independent sites, each located 
on a different molecule, microscopic dissociation events will 
not contribute and are not normally discussed. 

In Appendix A, this hopping has been included as a part 
of the general kinetic description. As long as the nonspecific 
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between two sites which are closer to one another along the 
chain than about one persistence length. Also this assumption 
will not be entirely valid for very densely packed or partially 
ordered DNA (e.g., the native bacterial chromosome) in which 
higher order packing arrangements may be sufficiently stable 
to prevent major rearrangements of the entire DNA chain 
between transfer events [see also discussion in Winter et al. 
(1981)l. 

While it appears difficult to derive an expression for Y in 
terms of molecular parameters, an upper limit can be estimated 
by considering the segmental diffusion of the DNA chain since 
the transfer rate must ultimately be limited by the rate at 
which two segments approach one another. Berg (1979) has 
calculated the correlation function for the mean-square dis- 
placement of a DNA segment in a wormlike chain model. 
Since all segments are connected, the result is not represented 
by a simple diffusion process linear in time, as seen in eq 5.12 
and 5.14 below; instead this result exhibits the more curious 
time dependence: 

( A$), N ( 2 ~ ) ’ / ~ ( D , t ) ~ / ~  (5.10) 

where a is the persistence length and D, is the expected dif- 
fusion constant for a free DNA segment of length a. Equation 
5.10 is actually the first term in a series expansion for short 
times, but it remains valid for sufficiently large times to be 
useful for our purpose here. 

From this segmental diffusion rate we can estimate a col- 
lision time. For a three-dimensional problem with spherical 
symmetry, the “single passage” time, 7, for the initial collision 
of free particles is given by 

607 = R2 In ( R / b )  (5 .1  1 )  

where D is the diffusion constant, R is an average distance 
between particles such that the particle concentration is 
(47rR3/3)-l, and b is the reaction radius. D is also related to 
the mean-square displacement after time t of one particle: 

(A$), = 6Dt (5.12) 

Similarly, for a two-dimensional problem, one has 
407 = R 2 ( R / b )  ( 5 . 1 3 )  

and 
(A$),  = 4Dt (5.14) 

Equation 5.13  is actually identical with eq 4.10 in the diffu- 
sion-controlled limit. We note that the collision between one 
point (where the protein is bound) on a DNA segment and 
any point on an unrelated segment is essentially a problem in 
cylindrical symmetry; i.e., the problem involves two-dimen- 
sional geometry. Consequently, we can estimate the single 
passage time, T ,  for a collision by 

R2 In ( R / B )  = ( A S ) ,  = ( ~ U ) ’ / ~ ( D , T ) ’ / ~  ( 5 . 1 5 )  
in which the mean-square displacement term from eq 5.10 has 
been substituted. For the mean distance R we use R, of eq 
4.4 and 4.5, and for the reaction radius here we use b = 5 X 
lo-’ cm (estimated to be the protein radius). R,  = 1.2 X 
cm for the chain length 2L = 1.7 X cm (A DNA), and 
the persistence length a = 6 X 10-6 cm. The diffusion constant 
D, for a DNA rod of length a can be calculated from the 
rotational diffusion measurements by Hogan et al. (1978), if 
we assume the Broersma theory to be valid for translational 
as well as rotational diffusion (Broersma, 1960a,b). This gives 
D, = 1.7 X lo-’ cm2 s-l, and the collision time from eq 5 . 1 5  
is 7 = 4 X s. The maximum transfer rate then is Y = 
1/(27) N 100 s-I. This is admittedly crude, but the order of 

association is diffusion controlled, the number of different sites 
tested by hopping during the time that the protein remains 
“macroscopically associated” will be determined by geometric 
factors, This number can simply be multiplied by the result 
of eq 5.4 to obtain 

(5 .8 )  
from eq A27 of Appendix A. A simliar result has been derived 
in a standard steady-state analysis (0. G. Berg and M. Eh- 
renberg, unpublished results), thus confirming that the hopping 
is indeed a fundamental part of the diffusion process. 

In Figure 3 we have plotted the estimated specific associ- 
ation rate as a function of the strength of the nonspecific 
binding, both with and without the inclusion of the microscopic 
hopping process. Hopping does not change the shape of the 
curve; it is simply elevated on the graph. The absolute levels 
should not be taken as more than order-of-magnitude esti- 
mates. Also, the plateaus may not be completely level due to 
counterion screening effects as defined by eq 5 . 5 .  

It should be noted that hopping is a purely geometric effect 
that follows straightforwardly from the diffusion equations. 
Consequently, it is not a facilitating mechanism as such since 
it is always present. However, the results above have been 
derived under some very idealized assumptions. First, the 
protein has been taken to be completely free, even in the 
immediate neighborhood of the chain where both hydrody- 
namic and electrostatic interactions should influence its motion. 
In addition, no steric factors have been included. Some of these 
neglected factors may cancel one another. It should also be 
remembered that over such short distances as the length of 
one base pair the motion of a DNA segment may actually be 
more rapid than is the free diffusion of the protein. To model 
this “hopping” process accurately, we would have to know the 
electrostatic potential, the charge distribution on the protein, 
the hydrodynamic interaction between the protein and the 
DNA, etc. At the present, such complete modeling is not 
feasible, and it suffices to point out here that the idealized 
“geometric” results above provide a first estimate of the im- 
portance of the microscopic dissociations. Equation 5.8 is a 
very reasonable representation of such a purely geometric 
effect since it gives an ordinary diffusion-controlled result. In 
effect, the target is extended from something smaller than a 
base pair [ - , / [ 2  In (RJb) ] ]  to a size comparable to the radius 
of the chain. Thus this mechanism serves primarily to make 
the steric constraints on the initial binding event less de- 
manding. 

Intersegment (Ring Closure) Transfer. We now consider 
the facilitating effects of the proposed direct intersegment 
transfer process on the overall rate of protein transfer to the 
specific site. 

Let us assume that this proposed transfer takes place, on 
the average, Y times per second. Since it moves the protein 
to an uncorrelated segment, this transfer has exactly the same 
physical consequences as transfer via the macroscopic disso- 
ciation-reassociation process discussed above. Thus, again 
neglecting hopping, we can identify the total transfer rate 
between nonspecific sites, by analogy with eq 5.7, as 

(5.9) 
(A more rigorous derivation in Appendix A gives the same 
result.) This approach clearly assumes that there is no 
“memory” in the transfer, Le., that the protein quickly loses 
its correlation with the segment from which it is transferred. 
When the diffusion distances involved are considered, this is 
a very reasonable assumption, although it does neglect the 
negative correlation that transfer cannot take place directly 

k, e 1 . 5 ~ b D / ( l  + DTKRD) 

kzDT = A + v (s-’) 
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FIGURE 4: Total specific association rate constant as a function of 
the nonspecific binding constant for afixed intersegment transfer rate, 
v. For curve a, v = lo2 s-l. For curve b, v = lo3 s-l. The dashed 
portions of the curves are with hopping included, from eq A24. The 
upper break in the curves occurs at KRD = &-I, and a value of DT 
= 5 X IO” M has been used throughout. The djffusion-controlled 
limit (ki >> 2 ~ 0 1 )  is assumed. 

magnitude should be correct as an estimate of the largest 
possible rate. 

The assumptions made tend to maximize the contribution 
of this transfer mechanism to the rate of the overall process: 
thus, (i) eq 5.10 overestimates the rate of the segmental motion 
at longer times; (ii) the average segment density is actually 
lower than that assumed since for a Gaussian chain only about 
two-thirds of the chain is really inside the volume defined by 
the radius of gyration; and (iii) no effects of steric hindrance 
on the transfer rate have been included. This relatively slow 
transfer rate also justifies the randomization assumption that 
underlies eq 5.9 since total chain relaxation (loss of spatial 
correlations between different segments) will occur on the same 
time scale as the transfer (Berg, 1979). 

As long as the nonspecific association process (eq. 5.3) is 
not rate limiting, eq 5.2 and 5.9 yield 

As shown in Figure 4, this contribution to the overall rate is 
maximal when nonspecific binding is strong, in contrast to the 
unfacilitated result of Figure 3. In this limit, k, becomes 
concentration dependent and consequently pseudo first order. 
Intersegment transfer is very inefficient for weak nonspecific 
binding; here transfer by nonspecific dissociation is faster. In 
Figure 4, we also plot the result (dashed curves) when the 
hopping process is included as defined by eq A24 of Appendix 
A. These curves are essentially the same as those one obtains 
when k-/(  1 + DTKRD) in eq 5.16 is replaced by k,  of eq 
5.8; that is, hopping and intersegment transfer are independent 
and additive. 

The result is chain length dependent primarily through the 
estimate of v, which depends on the segment density in the 
coil. However, for very short chains-of the order of one 
persistence length or less-intersegment transfer as discussed 
here becomes impossible, and only the unfacilitated transfer 
mechanisms of eq 5.4 or 5.8 remain. Of course, for short 
chains at very high concentrations, one could observe transfer 
of the intersegment type between different chains instead. 
However, under these conditions, the overall rate of transfer 
would become very DNA concentration dependent. 

Transfer by Sliding. The sliding model has been worked 
out in great detail. Richter & Eigen (1974) assumed that this 
mechanism could increase the association rate by increasing 
the target size to the DNA length over which the protein could 
slide without dissociating. Berg & Blomberg (1976, 1977) 
extended the sliding model by explicitly incorporating the 
coupling between free three-dimensional diffusion and one- 
dimensional diffusion along the chain. In this way they also 
included the competitive effect of the nonspecific sites as well 
as the time course of the sliding motion. As it turns out, these 
effects can totally dominate the lac repressor association at 
low salt concentrations when nonspecific binding is very tight. 
Schranner & Richter (1978) considered the effects of varying 
chain length, particularly for short chains. The effects of 
varying the ionic strength were described by Berg & Blomberg 
(1978),3 and from the results of this paper we can identify 

(s-l) (5.17) A 
( L ~ L ~ / D , ) ’ / ~  coth (AL2/D1)ll* - 1 

k2OT 

as the effective transfer rate to the specific site relevant for 
the general two-step scheme of section 3. D1 is the proposed 
onedimensional diffusion constant for the protein sliding along 
the chain. Equation 5.17 has also been calculated in Appendix 
A as the limiting case of a detailed model incorporating all 
of the suggested mechanisms. 

This result was derived without considering microscopic 
dissociation processes. However, it can be shown that hopping 
has only a very marginal effect on the sliding result (cf. Ap- 
pendix A or Berg & Blomberg, 1978). This is because 
sliding-when present-provides a much more efficient way 
of reaching nearby sites that may contain the specific target 
than do dissociation-reassociation processes. 

The effective transfer rate defined in eq 5.17 incorporates 
both the effective target extension of the specific site and the 
time delay inherent in the sliding motion; it is simply the 
inverse of the total time required for nonspecific binding before 
the specific site is located (see eq A10). It is also strongly 
dependent on the nonspecific binding constant-through the 
dissociation rate constant A-as well as on the length of the 
DNA chains. There are two simple limits to this transfer rate: 

(AD,/L~)I/~ ( A L ~ / D , ) ~ / ~  >> 1 (5.18) 
3Dl/L2 (AL2/D1)‘I2 << 1 k 2 0 ~  

The lower limit is valid at low salt (strong nonspecific binding) 
and represents the case where the protein cannot dissociate 
but has to traverse the entire DNA chain by sliding in order 
to find the target site. Using eq 5.17, one can obtain the total 
association rate from eq 5.2 as long as the upper estimate 
provided by eq 5.3 is not exceeded. 

Some misprints in this paper have been corrected in Berg & Blom- 
berg (1979). 
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k. = IO", 

I =  M 1 1 : ~ K R D )  [ (AL2/D1) ' /2  coth (AL2/D1)'/' - 1 

2k,[D1/(A12)]1/Z when D T K ~  << 1 and 
( L ~ L ~ / D ~ ) ' / ~  >> 1 (5.19a) 

[ k , - D l / ( p D ~ ) ] ' / ~  = kam" when DTKRD = 
1 and (ALz/D1) ' / z  >> 1 (5.19b) 

2 ( A D 1 / p ) 1 / 2 / D ~  when DTKRD >> 1 and (AL2/D1)1 /2  >> 1 
(5.19~) 

3D1/(L2&) when DTKRD >> 1 and (AL2/D1)1 /2  << 1 
(5.19d) 

km/(l + DTKRD) is the unfacilitated limit from eq 5.4. 
Consequently, the factor M/[ (ALz /D1) ' /2  coth ( L ~ L ~ / D ~ ) ' / ~  
- 11 represents the enhancement due to sliding. The upper 
limit (eq 5.19a) is valid at high salt (weak nonspecific binding), 
which is also the limit at which our result agrees with that of 
Richter & Eigen (1974). Here the association rate constant 
is given by the unfacilitated rate, k,, as in eq 5.4 times the 
effectiue target extension [Dl / (A l z ) ]  1/2, which is simply the 
number of base pairs over which the protein can slide without 
dissociating. k, of eq 5.19 then increases with increasing 
nonspecific binding affinity (k ,  a Km'12) and eventually goes 
through a maximum for DTKRD = 1, where k, = 
[ k - J 1 1 / ( p D T ) ] 1 / 2  (eq 5.19b). In the limit of eq 5.19c, k, 
decreases with increasing nonspecific binding ( k ,  0: KRD-'l2) 
until it reaches the limit (eq 5.19d), where it becomes inde- 
pendent of Km. Both of these low salt limits (eq 5.19c,d) are 
DNA concentration dependent; Le., k, corresponds to a 
pseudo-first-order reaction in these cases. At sufficiently low 
DNA concentrations k, becomes large, and the first nonspecific 
association event (see eq 5.3) becomes the rate-limiting step. 
For sufficiently high DNA concentrations, the low salt limit 
(eq 5.19d) is strongly length dependent, k, a L-2. Also at 
lower DNA concentrations, where the limit defined by eq 5.3  
is valid, k,  becomes length dependent; thus k, increases with 
increasing chain length, and k, a rg 0: L'I2. In contrast, the 
high salt limit (eq 5.19a) is hardly length dependent at all, 
with only a logarithmic length dependence through the seg- 
ment density which enters the nonspecific association rate 
constant, kw, via eq 4.6. Some representative examples of 
the total association rate as a function of nonspecific binding 
have been plotted in Figure 5. 

For very short rodlike DNA chainsabout  one persistence 
length or shorteythe hierarchy of nonspecific rates described 
in section 3 will collapse. Since there are no domains other 
than those defined by the axial extension of the rod, there is 
no distinction between intradomain and interdomain disso- 
ciation events. These rodlike chains have been described by 
Schranner & Richter (1 978) using spheroidal geometry. Our 
results agree with theirs if the dissociation distance R, is chosen 
to be the chain length, R, = 2L. In these terms, our equations 
would read 

X(2rD1/ ki) 
In ( 2 L / b )  + 27rDl/ki k-1 = A = 

(5.20) 
2rDI 

k1  = kassw = In ( 2 L / b )  + 2rDl /k i  
Furthermore, for the short chains, D T K ~  should always be 
negligible, i.e., DTKRD << 1. Consequently from eq 5.1 and 
5.20 we obtain 

k, = 2k,,,[Dl/(A12)]'/2 tanh (AL2/D1)1/2 (5.21) 

- 
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FIGURE 5: Specific association rate constant as a function of the 
nonspecific binding constant for various DNA chain lengths for the 
sliding model. (Curve a) M = 50000 base pairs; long-chain behavior 
(eq 5.19) is exhibited. (Curve b) M = 6700 base pairs, an intermediiate 
size chain that can still form a domain. The plateau level depends 
on the nonspecific association rate constant; see eq 5.3. (Curve e) 
M = 200 base pairs; this corresponds to a rodlike chain described by 
eq 5.21. The extreme length dependence of the final plateau levels 
at large values of Km is evident. Values of 4 = lo-'* M and D1 
= 9 X 1O-Io emz s-l have been used throughout. The diffusion-con- 
trolled limit (ki >> 2rDl) is assumed. 

In the diffusion-controlled limit (k i  >> 2rDI), this gives the 
explicit length dependence4 
k, = 

At low salt concentrations (strong nonspecific binding, 
( L ~ L ~ / D ~ ) ' / ~  << l),  k, is equal to the nonspecific association 
rate of repressor to the whole chain. That is, k, = M k ,  and 
k, is roughly proportional to the chain length M .  However, 
for very short DNA fragments, the effective diffusion rate (D)  
will be dominated by the diffusion constant of the DNA 
fragment itself, which is roughly inversely proportional to the 
DNA chain length. In this way, k,, can compensate for the 
factor M ,  and k, becomes length independent for very short 
fragments at low salt concentrations. At higher salt concen- 
trations, the whole DNA fragment no longer serves as an 
effective target, and the specific association rate decreases as 
the argument of the hyperbolic function in eq 5.21 becomes 
small. 

In the same way, the expected specific dissociation rate 
constant can be calculated from eq 3.8 and 5.17 for the sliding 
model; thus for rodlike chains, one finds, using also eq 5.20, 
that 

' As it turns out (0. G. Berg and M. Ehrenberg, unpublished results), 
eq 5.22 is a reasonable approximation to the correct expression (including 
hopping), even for very long rods. As expected, deviations appear for very 
short sliding lengths when hopping cannot be neglected. The decrease 
in k, for very large L [proportional to [In (2L/b)]-' /z]  is an artifact in 
this approximation, although the effect is not as pronounced as in the 
result given by Schranner & Richter (1978) where k, goes to zero with 
increasing L in proportion to [In (2Llb)l-I. 
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When hopping is included, the specific sites will still be 
effectively independent unless they are very close together, i.e., 
offset by less than approximately 20 base pairs and thus ef- 
fectively overlapping, since at this or a greater separation they 
cannot be bridged by a hopping process. As long as nonspecific 
association is not rate limiting, the total association rate to 
a chain with N independent specific sites is N-fold larger than 
that to a single site. We note that eq 6.1 actually gives the 
initial slope of the customary bimolecular plot (see case a of 
Figure 6). 

Similarly, the effective specific dissociation rate constant 
(per DNA chain) for N independent sites would be (cf. eq 3.8) 

(5.23) 

Brief Comparison with Previous Theories. Our treatment 
of the sliding, model follows the coupled-diffusion approach 
of Berg & Blomberg (1 976, 1977, 1978). The main difference 
from the original formulation by Richter & Eigen (1974) is 
the explicit diffusion-flux balancing at the chain surface 
through the use of a proper boundary condition. This serves 
as a basis for the definition of the hierarchy of nonspecific 
dissociation rates (Figure 2 )  and also makes it possible to 
include correlated transfer, e.g., hopping, in the description 
of the diffusion process. If our results are to agree in the limit 
of weak nonspecific binding, the unspecified dissociation rate 
used by Richter & Eigen should be identified with our in- 
tradomain dissociation rate constant, A. Schranner & Richter 
(1978) have also used a coupled-diffusion approach with 
particular emphasis on short chains. However, the flux-bal- 
ancing approach employed by these authors still neglects 
correlated events (hopping). Also, the single dissociation rate 
constant used must, in fact, be length dependent. This is the 
reason why our result (eq 5.22) carries a weaker length de- 
pendence than that given by Schranner & Richter. 

Lohman et al. (1978) have formulated a theory to describe 
the effects of salt concentration on a general twestep (transfer) 
scheme like that of eq 1.3, defining the binding parameters 
of the nonspecific transfer complex in terms of the approach 
of Record et al. (1976, 1978). However, they use only the 
weak-binding limit (eq 5.2a) of the preequilibrium result, in 
which k, increases with increasing nonspecific binding affinity 
until the total upper limit (eq 5.3) is reached. Thus they 
neglect the concentration-dependent limit (eq 5.2b) of the 
process. Also, their assumption that the general transfer rate 
constant (k2), is salt concentration independent does not hold. 
As is obvious from eq 5.17, the effective transfer rate in the 
sliding model is strongly salt concentration dependent as a 
consequence of the salt dependence of the nonspecific disso- 
ciation rate constant, A. The intersegment transfer rate can 
also be expected to be salt dependent, though in a less obvious 
way. 

6. More Than One Specific Site per DNA Chain 

Independent Target Sites. The results above need to be 
modified when several specific sites are present on each DNA 
molecule. If the experimental measurements can be inter- 
preted to determine which specific site is occupied, the presence 
of extra sites will appear, in essence, as an extra source of 
binding competition. Here we consider the (real) case in which 
a complex is “counted” (retained on the filter) regardless of 
which of the specific sites is occupied. 

There is, of course, no change in the nonspecific association 
processes described in section 4. The simplest case is that in 
which the specific sites are independent of one another; i.e., 
the probability of hitting any specific site is simply N / M ,  where 
N is the number of specific sites and M >> N is the total 
number of sites-specific and nonspecific-per chain. This 
will be the case for the intersegment transfer mechanism where 
all transfers are assumed uncorrelated. Then the total specific 
association rate constant per chain will be (cf. eq 3.5 and 5.9) 

ka8, kd = 
K R O [ A ~ ~ / ( ~ D ~ ) ] ’ ’ ~  coth (AL2/D1)”2 KRD 

where k2D, = u + A. This is valid in the unfacilitated case 
as well when v = 0 (above). 

As long as the first term is rate limiting, there will be no N 
dependence. Thus, for independent sites, a dependence on N 
appears primarily as a multiplicative factor in the effective 
association rate. 

Two Specific (Independent) Sites. The association to a 
chain with several specific sites cannot be viewed as a proper 
bimolecular reaction. Let us consider in more detail the case 
for a system carrying one extra (secondary) specific site which 
has a weaker binding affinity than the primary one [see Winter 
& von Hippel (1 98 1) and Winter et al. (1 98 1) 1. The extension 
to several sites is obvious. For simplicity, the discussions will 
be confined to the case for which nonspecific association is not 
rate limiting. The kinetics for several independent and equally 
strong sites have also been discussed in this limit, both for 
association (Giacomoni, 1979) and dissociation (Giacomoni, 
1976). 
In the following treatment, we use R to denote the protein, 

0 the primary specific site, and O* the secondary (specific) 
site. If conditions are such that the protein-primary site 
complex is stable on the time scale of the experiment, the total 
association scheme involves two parallel reactions: 

R + O* & RO* 
(6.3) 

kd‘ 

R + O ~ . - R O  

We assume further that the association rate constant to the 
secondary site is the same as that to the primary one; i.e., k,’ 
= k,. Total concentrations of primary and secondary sites 
are the same and are set equal to 0,. We let the fractional 
saturations of the two operators be 0 = [RO]/OT and 8* = 
[RO*]/OT and the ratio of protein molecules to DNA chains 
be p = RT/OT. Then kinetic scheme 6.3 gives 

_ -  t: - k,OT(p - 0 - e* ) ( ]  - e) 

The sites were assumed independent; thus the probability 

P = 1 - (1 - e)(i - e*) (6 .5 )  

The filter is then counted, and the results are calculated as 
if P@ = concentration of bound complexes. The data are then 
plotted in the form of a bimolecular association: 

P that a chain has at least one site occupied is 
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FIGURE 6: Effective association rate, kaW&t (calculated from eq . 
6.6 as a function of the rate of association to the primary site, k&), 
for various values of the rate constant for dissociation from the 
secondary site (kd’). RT/& = 2 is assumed throughout. (Curve a) 
For k,,‘ = 0 from eq 6.8; (curve b) for k,,‘ = k,&; (curve c) for k,,‘ 
=: 2 k a 4 ;  (curve d) for kd = 5k,4; (curve e) for kd = 20k,4. 
The dashed curve represents the “ideal” situation for k,”bd = 2k,; 
the dotted curve represents this situation for k,”bsd = k,. 

which defines the observed association rate constant, k,oW. 
If a repressor bound to the secondary site is stable on the 

time scale of the experiment, Le., k i  < kaOT, we can set kd’ 
= 0. The kinetic equations are then easily solved to give 

and the usual limit when binding sites and protein are equi- 
molar is 

Inserting eq 6.5 into eq 6.6 and plotting, we obtain an ap- 
proximately straight line with the slope kaM = 2ka (see Figure 
6, curve a). Thus, in this case, the observed association rate 
is twice the rate for each site, as would be expected. However, 
as we shall see below, the requirement that the secondary 
complex be stable on the time scale of the experiment is not 
very restrictive. 

When k i  # 0, the kinetic equations (eq 6.4) can only be 
solved numerically. Such solutions have been carried out for 
p = 2 and various values of k,‘/(k,@). When this latter ratio 
becomes larger, the influence from the secondary site becomes 
smaller. However, as seen in Figure 6, even a rather weak 
site can be important, and this “secondary site” effect will be 
concentration dependent. Such an effect for the lac repressor 
has recently been observed by Pfahl et al. (1979). Thus the 
slower association observed by these workers on deletion of 
the secondary site could be a consequence of the measurement 
process, rather than indicating any real change in primary 
operator affinity as suggested by these authors. 

kdt  

FIGURE 7: Fraction of operator-containing DNA molecules bound 
to the filter as a function of kdt calculated by using eq 6.14 with u 
= 2. The solid line is the result for f i  = 2, which gives close to the 
maximum deviation from a single exponential. The dashed line is 
for @ = 1, which gives a single exponential. The definition of kaW 
from eq 6.15 is also indicated. 

We can calculate the overall dissociation rate constant 
similarly. Let kd be the rate constant for dissociation from 
the primary site. Then in a dissociation experiment 

e(t )  = 80 eXp(-k,jt) 

e*(t) = eo* exp(-kJt) 

where eo and eo* are the fractions of the primary and secondary 
sites, respectively, which are complexed at time t = 0. Thus, 
from eq 6.5, the probability, P(t), that a chain has at least one 
site occupied at time t is given by 

P(t) - -  
P(0) - 

eXp(-kdt) + (&*/eo) eXp(-kd’t) - eo* eXp(-k,jt - k i t )  
1 + (eo*/eo) - eo* 

(6.10) 

If the binding sites are far from saturated initially, then eo, 
eo* << 1 and eq 6.10 can be approximated by 

P(t) exp(-kdt) + (eo*/Oo) exp(-kdt) 
(6.1 1) 

With the assumption that the dissociation process starts from 
equilibrium, the relative degree of saturation of the two sites 
is 

-- 
P(0) - 1 + (eo*/eo) 

e, BO* = ($)( !$)( ”) 1 - eo* ($)( z) (6.12) 

This approximation again is based on the assumption that the 
sites are not initially saturated. Let the ratios of the association 
and dissociation rate constants be 

(Y P k,’/ka P E kd/kd (6.13) 

If both associations are diffusion limited, a will be of the order 
of one. 

Equations 6.1 1-6.13 then give 

This represents a single exponential decay process only for /3 
<< 1 or P = 1. However, it can also appear as an approxi- 
mately straight line in a semilog plot for other situations (cf. 



6942 B I O C H E M I S T R Y  B E R G ,  W I N T E R ,  A N D  V O N  H I P P E L  

specific association rate to the chain is 

kaobsd = k,[l + tanh [ L ~ L , , ~ / ( ~ D , ) ] ' / ~ ]  (6.20) 

where k, is the association rate constant for a single site as 
defined by eq 6.18. 

This two-site result is easily extended to any number of 
specific sites; e.g., for N equally spaced (distance L,, apart) 
sites, we obtain 

k,Ob"d = k,[ 1 + ( N  - 1) tanh [AL,,2/(4D1)]1/2] (6.21) 

When nonspecific binding is weak, [AL,,2/(4D1)]1/2 >> 1, and 
the sites become independent, Le., kaobsd = Nk,. For strong 
nonspecific binding, Le., N[&2/(4Dl)]1/2 << 1, the target sites 
effectively merge and k,"b"d = k,. [Belintsev et al. (1980) have 
also discussed these limiting cases for the binding of RNA 
polymerase to T7 promoters.] 

The effective dissociation rate can also be calculated for such 
situations. For a group of N identical sites with equal intersite 
spacing (distance L,,), we find (Appendix B) that 

P 
FIGURE 8: correction factor f(qj3) from eq 6.15 and 6.16 as a function 
of 8, for a = 1 and a = 2. 

Figure 7). The total dissociation rate, kdo", can be defined 
as the reciprocal of the time for which P(t)/P(O) = l /e ( e  is 
the base of the natural logarithms); Le., from eq 6.14 

A numerical investigation reveals that 
kdobd = kdf((Y,/3) (6.16) 

where f(a,@) is a correction factor given in Figure 8 as a 
function of /3 for a = 1 and a = 2. The value of f(a,/3) is 
always larger than one, and for B/a greater than approxi- 
mately 5, it can be represented by 

f(a,B) N [ I  - In (1 + a/@]-' (6.17) 

Thus the influence of a secondary site on the observed 
dissociation rate constant will be rather small unless the rate 
of association to the secondary site is faster than that to the 
primary one. In contrast, the observed association rate con- 
stant can be strongly perturbed even by a relatively weak 
secondary site. 

Several "Dependent" Target Sites. When sliding is present, 
sites which are far apart can also become "nonindependent" 
if they are close enough together to be "connected" by one 
sliding event. Again, let us consider the case for which non- 
specific association is no? rate limiting. Also, for simplicity, 
we consider only the case for which the sliding distance is much 
smaller than the total chain length; i.e., end effects can be 
neglected. (The general result is given in Appendix A, eq 
A21.) Then the association rate to a single site is 

ka = 2kass,[Dl/(Af2)I"2/(1 + DTKRD) (6.18) 

from eq 5.19a-c. [Dl/(A12)]1/2 is the sliding length or the 
effective target extension, i.e. the distance the protein can slide 
without dissociation. When there are two specific sites located 
no base pairs apart, the effective target length to the lef? of 
the left site and to the right of the right site will extend 
[D1/(A12)]'/2 base pairs in each direction. For a protein 
binding nonspecifically somewhere between the sites, the 
probability Po of association to either specific site without an 
intervening dissociation will be 

Po = 2[D1/(ALo2)]1/2 tanh [AL,,2/(4Dl)]1/2 (6.19) 

where 4 = %f is the distance between the sites. The effective 
target extension between the sites is n g o .  Thus, the total 

kdoM = kd tanh [ALo2/(4D1)]1/2 

1)' (6.22) 
1 - e~p[-N(AL,,~/f l , )~/~]  

{' - ;[ sinh (AL,,2/Dl)1/2 

where kd is the dissociation rate for a single specific site. This 
result is valid in an unsaturated case where initially not more 
than one protein is bound to each chain. 

Equations 6.21 and 6.22 conform only approximately to 

kaob"d/kdObad = Nka / kd (6.23) 

For independent sites eq 6.23 is valid as long as nonspecific 
binding is not rate limiting, and then the dependence on N 
comes in only through kaM; see eq 6.1 and 6.2. The effective 
specific equilibrium binding constant to the chain will not be 
a simple product as in eq 6.23 (C. P. Woodbury and P. H. von 
Hippel, unpublished results). 

When sliding occurs, the effective association and dissoci- 
ation rates as a function of the number of sites per chain will 
be strongly dependent on the distance between the sites and 
on the strength of the nonspecific binding (specifically, on salt 
concentration). This provides another important test for the 
sliding model. Sadler et al. (1980) have interpreted their data 
for lac repressor dissociating from tandem operators as sug- 
gestive of a sliding mechanism. The expressions provided 
above make possible a quantitative interpretation of these data 
[see Winter et al. (1981)l. 

7. Conclusions 
In this paper, we have developed a general theory for the 

kinetics of interaction of genome regulatory proteins with their 
physiologically relevant target sites on the DNA chromosome, 
To facilitate its use, the logical connections and key equations 
which tie together the basic theory are outlined in the form 
of a "flow chart" in Chart I. The theory has been developed 
in terms of the E.  coli lac repressor-operator system, in 
particular, to permit easy comparison with experimental results 
in the following paper (Winter et al., 1981). However, the 
results are quite general for any biological system where the 
search for a target or receptor site can be speeded up by 
utilizing nonspecific binding to reduce the dimensionality (or 
volume) of the search process. [A direct two-dimensional 
analogue to the effectively one-dimensional genome-regulatory 
protein-DNA system can be found in ligand-membrane in- 
teractions, as previously pointed out by Richter & Eigen 
(1 974).] The purely electrostatic nonspecific Ending of lac 
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chart I: “Flow Chart” for the Two-step Association Theory 
Repressor-operator assoc ia t ion  can be viewed as a TWO-STEP process, eq. (1.3). 

i n te rp re ted  as a one-step process [eq. (1.211, and can be re la ted  to two-step p r o c e w s  using eqs. (3.5)-(3.6).  

Measured r a t e  constants are normal ly 

I 
2nd step i s  TRANSFER from nonspeci f ic  b ind ing  t o  the spec i f i c  s i t e .  

I 
1 s t  step i s  NONSPECIFIC assoc ia t ion  anywhere 

1 on the  DNA molecule. 1 

Geom’et ry 

17 
The MACROSCOPIC by eq. (5.20). 
nonspeci f ic  asso- 
c i a t i o n  ra te  con- 
s tan t  k i s  given 
by eq. 14.19). 

1 
k l  i s  def ined from 
an under ly ing  
INTRADOMAIN assoc- 1 c i a t i o n  v ia  eq. I 
(4.15): kass = I e f f e c t i v e  nonspe- I 
c i  f i c  assoc ia t ion  
r a t e  constant f o r  
a p r o t e i n  s t a r t i n g  
w i th  n a domain, l q .  14.6). 1 

1 

For rods, the domain 
i s  the  same as the 
chain extenslon, and 
;t:$o;*kl from eq. 

1 
A t  the MOLECULAR l e v e l :  k l  = e f f e c t l v e  nonspecl f lc  
assoc ia t ion  r a t e  constant f o r  a Dro te ln  s t a r t i n o  

1 1 

Faci 1 i t a t i n g  Mechanisms 
J 

Ordinary 30 Di f fus ion  

Total  ka from eq. 
(5 .4 )  [excl  udlng 
hopping], and frm 
eq. (5.8) C lnc lud ln  
hopping] See Figure 4. and f o r  rods from 

See Figure 3. eq. (5.21) 

t t t 
The d l f f e r e n t  l eve l s  o f  nonspeci f lc  d i ssoc ia t i on  (see Figure 2)  
def ine  d i f f e r e n t  e f f e c t i v e  l i f e t l m e s  o f  the nonspeci f ic  complex which 
w i l l  i n f luence the EFFICIENCY OF TRANSFER (and thereby k2).  The 
The r e s u l t s  are s l g n i f i c a n t l y  s i n p l l f l e d  when “hopping i s  neglected; 
t h i s  i s  also j u s t l f i e d  i n  many cases by the f u l l  theory presented i n  
Appendix A. 

t 

r i g h t  next t o  a DNA segnent. 
The h ie rarch les  o f  nonspeci f lc  assoc ia t ion  and 
d i ssoc ia t l on  are connected through the nonspeci f lc  
b lnd ing  constant:  KRD = k l /A  = kass/A = kl/k-,. 

repressor to DNA, coupled with the Record et al. (1976, 1978) 
approach to the interpretation of such binding, can lead to 
particularly effective protein translocation mechanisms [see 
Winter et al. (1981)l. Such binding interactions are almost 
certainly involved in other genome regulatory systems and may 
well operate in membrane-ligand systems as well, given that 
most of the lipid constituents of the membrane bilayer feature 
highly charged head groups on the membrane surface. The 
electrostatic basis of the binding of protein to nonspecific sites 
within the overall target molecule or structure provides an 
easily manipulated (via salt concentration) experimental 
variable; similar manipulation should be possible in other 
systems. 

Detailed tests of some of the theoretical (and physical) 
models of protein translocation mechanisms developed here, 
as well as further comments on the biological relevance of such 
notions, are included in Winter et al. (1981). 

Added in Proof 
More detailed calculations (0. G. Berg and P. H. von 

Hippel, unpublished results) employing the intrachain reaction 
theory of Wilemshi and Fixman (Wilemshi & Fixman, 1974; 
Doi, 1975) indicate that the diffusion-controlled intrachain 
transfer rate constant (v) could possibly be as large as lo4 s-l 
under some conditions. This result is based on the same 
correlation function (eq 5.10) used above (Berg, 1979), but 
supercedes the crude analogy used to derive eq 5.15. The 
conclusions reached in the companion paper (Winter et al., 
1981) for mechanisms involved in the translocation of lac 
repressor are not affected by this revised estimate. However, 
this result does strengthen our view that intersegment transfer 
could play an important role in other systems [see General 

Discussion, Winter et al. (198 l)]. 

Appendix 
( A )  Derivation of a Complete Description for the Kinetics 

of Repressor-Operator Binding. General Formulation. For 
completeness, we describe here the mathematical model which 
includes all the mechanisms discussed above, Le., intersegment 
transfer, sliding, and local “hopping”. These calculations also 
provide a justification for the intuitive identification of the 
effective transfer rate in eq 5.7 and 5.9. 

Sliding has previously been described as a continuous dif- 
fusion process. When the other effects are included in the 
formalism, it is more convenient to consider the chain as built 
up by discrete binding sites; it can be assumed that each base 
pair constitutes the beginning of a new binding site. For 
simplicity, it is also assumed that the specific site is in the 
middle of the chain. Then the base pairs can be numbered 
with the discrete coordinate j ,  -m I j 5 m, with j = 0 denoting 
the specific site. Thus, the total number of sites is M = 2m 
+ 1 per chain, and we shall be interested in the case M >> 1 
such that end effects are unimportant. 

When a protein is nonspecifically bound at sitej, it can slide 
to a neighboring site 0’ - 1 or j + 1) with a rate constant rl 
(s-l); it can also be translocated directly by intersegment 
transfer with a rate constant v (s-’). (As pointed out above, 
this intersegment transfer mechanism can be treated as totally 
uncorrelated; that is, the probability of going from site j to 
j ’  is independent of the locations of,j and j ’ )  A third possi- 
bility, of course, is that the protein dissociates from si te j  with 
the rate constant X (s-l). As sites j and -j are symmetrical 
with respect to the operator site, they can be considered to- 
gether. Let u,(t) be the probability that the protein is bound 
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at site j (or -j) at time t .  Then the “time evolution” expression 
is determined by 

B E R G ,  W I N T E R ,  A N D  V O N  H I P P E L  

is the mean time of reassociation anywhere for a protein 
dissociating from j’. This must be related to the nonspecific 
binding constant such that 

7 2  = l/(hKRD&) = l/(ki&) (A71 

where ki is the microscopic association rate constant from eq 
4.1. Intuitively, this relation is obvious since a binding constant 
must express the ratio of the mean time the protein is bound 
(h-l) to the mean time (TJ that it is free after a dissociation. 
This has been demonstrated previously in this context (Berg 
& Blomberg, 1976, 1977) and for the more general situation 
(Berg, 1978). Thus 

m 

1 
T = l/(kl&) + ~ 2 ( 1  + DTKRD)CXC~ (A8) 

where 

j‘+ j 
m r  

1/(2m)] - Xuj + C h i F j f ( t  - t?uf(t’) dt’+ G ( t )  (Al)  

This expression is analogous to that for continuous sliding 
(Berg & Blomberg, 1976). 

The terms in eq A1 can be identified as follows: the first 
corresponds to sliding, the second represents intersegment 
transfer to s i te j  from any other site j’, the third corresponds 
to intersegment transfer from si te j  to any other site (except 
-j), and the fourth corresponds to the return to s i te j  at time 
t of a protein that had dissociated from site j’at time t’, with 
F’(t-t’) expressing the probability for such a return. Finally, 
the fifth term, G(t),  represents the rate for t h e j h t  attachment 
to the chain, which should be independent of j .  From section 
4 this is simply 

The factors Fjf carry all the correlations between sites and 
describe the microscopic dissociation events (“hopping”) as 
well as reassociations to segments on the same or a different 
chain. Consequently, as functions of t ,  these factors are 
represented by complicated expressions; however, fortunately, 
only the time-integrated forms are needed to derive the overall 
operator-association rate. 

At the operator site the protein will be absorbed. This can 
be described by the absorbing boundary condition uo(t) = 0 
which gives 

j“ I 

G(t )  = 2 k l 0 ~  eXp(-k&t) (‘42) 

duo m t  
- = rl ul + 2- 2 uf + h C dt 2mi-1 j c  1 

Fof ( t  - t ?ul( t ’) dt ’ + 
klOT exp(-kIDTt) (‘43) 

Summing equations (eq Al)  overj from 1 to m, one finds the 
flux into the operator from (A3): 

klDT exp(-klDTt) (A41 
This expression describes the probability flux into any operator 
site for one protein starting somewhere in a solution of DNA 
chains with total concentration 0, of operator sites and DT 
of nonspecific sites. 

Mean Times. The mean time, T ,  for operator association 
is found to be 

(A51 
Here the condition Cj’Lo.f;Fjf(t) dt = 1 has been used, which 
simply expresses the fact that a dissociated protein will 
eventually reassociate somewhere. Equation A5 demonstrates 
that the total association time is a sum over the residence times 
in the intermediate states. Thus, the first term is the total 
mean residence time for nonspecific binding, the second term 
is the total mean time in solution between dissociation events, 
and the last term is the mean time before thefirst nonspecific 
association. The factor 

f L m t F , f ( f )  dt 7 2  (A@ J=o 

ii. I Jmu,(t) dt  

is the total mean time the protein is bound at site j before the 
final association at the operator. CAEj can be interpreted as 
the mean number of nonspecific dissociations needed before 
the operator is found. Thus, for determination of the mean 
operator association time, only the time-integrated expressions 
are needed. 

From the mean time of association, we can define the as- 
sociation rate constant: 

DTKRD/(OTCiij) 
(‘49) 

1 k I-= 
a TOT 1 + DTKRD + l/(k-lECj) 

The structure of this expression is identical with that of eq 3.6, 
which shows that this detailed model is compatible with the 
more common formulation of the two-step scheme. Thus, we 
can identify the effective transfer rate to the operator: 

k 2 0 ~  = 1/cfij 

This is again a reasonable result, with the transfer rate to the 
specific site being simply the inverse of the total mean time 
for nonspecific binding. 

From (Al) one finds 
V r n  

0 = I’l(iij+l - 2iij + iij-l) + - Cf - ytij[l + 1/(2m)] - mjkl 
m 

j“ 1 
hiij + XCFjfiif + 2 / M  j = 1, ..., m (A1 1) 

Here 

Fjf S m F j f ( t )  0 dt = 2 / M  + 
m 

C #,[4/(n~)] sin (na/M)  cos (2jn?r/M) cos ( 2 j ’ n ~ / W  
n= 1 

is the probability for a return to site j (or -j) if the protein 
had dissociated from site j’. This expression has been calcu- 
lated by considering the free diffusion outside the chain, and 
the Fourier coefficients ($”) are the same complicated func- 
tions of chain geometry as those calculated previously (Berg 
& Blomberg, 1977, 1978): 
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A is as large as, or larger than, the step rate, rl. The ad- 
vantage of (A17) is that k20T levels off at the correct unfa- 
cilitated value, AIM, when v = rl = 0, whereas in eq A19, 
k20T is zero in this limit. 

Also the case for which there are several specific sites on 
each DNA chain can be treated in the same fashion. Consider 
the following arrangement of N specific sites 01, 02, ..., ON: 

01 0 2  ON-1 ON 
' ..... 8 ' mo ' *m1 ' '2mN-l mN 

I 

where mo and mN are distances (in base pairs) to the ends of 
the chain, and 2ml, 2m2, ..., 2mN-1 are distances between the 
specific sites. The total number of sites-specific and 
nonspecific-is 

N 

i= 1 
M = mo + mN + 2Cmi + N 

Then the total mean time of nonspecific binding before one 
of the specific sites is found will be 

Ciij = (A + v) - l { [ (M tanh Q ) / [ f / ,  tanh (2mo + l )Q + M 

1 
N- 1 

i= 1 
C tanh (2mi + 1)Q + y2 tanh (2mN + l)Q]] - 1 )  (A21) 

where Q is the same as in eq A17. The total specific asso- 
ciation rate to the chain is still given by (A9), with 0, iden- 
tified as the concentration of DNA chains. The various limits 
for independent and dependent sites discussed in section 6 then 
follow directly. Also the case of one specific site not placed 
in the middle of the chain is defined by eq A2 1. 

General Solution. The solution for the general expression 
for E' can be derived from eq A12 in the same way. One finds 

where a ?rb/L, and I and K are modified Bessel 
functions. 

Since F;. couples the continuous diffusion in free space with 
the discrete sites on the chain, there is some ambiguity in its 
construction. The expression (eq A12) was calculated for a 
protein that dissociates from the middle of site j ' and reas- 
sociates somewhere within the length 1 of site j .  

Solution without Hopping. A simple solution of (A1 1) can 
be achieved with the approximation 

?rR,/L, p 

Fjf = (2/M)(1 - *) + *6jf (A141 

where S j j  is the Kronecker 6. This means that a fraction $ 
of the total number of proteins dissociated return to the same 
site and that the rest are distributed with equal probability 
to any site. Thus, the fraction # is just the reassociation 
probability defined in eq 4.2, or equivalently, it is the limit 
n = 0 for the Fourier coefficients in eq A13. As discussed in 
section 5,  this approximation disregards the possibility of a 
site change during shortslived microscopic dissociations, but 
this is not important if a sliding or intersegment-transfer 
mechanism dominates the process. Using eq A14, we find 
from eq A1 1 that 

- 4 m  1 - cos (2jn?r/M) 
u j  = --c 

Mn=i4r1 sin2 (n?r/M) + vM/(2m) + X(1 - #) 
(A151 

which satisfies a reflecting boundary condition at the chain 
end, j = m, and the absorbing condition at j = 0 (the specific 
site). Then 

(A161 
2 m m ciij= c 

j = 1  n=i4rl sin2 (n?r/M) + A + v 
where A = X(l - $) has been introduced from eq 4.3, and M 
= 2m + 1 N 2m >> 1 has been assumed. The summation over 
n can be carried (cf. Jolley, 1961, eq 485), giving for the 
effective transfer rate from eq A10 

k2& = (A + v ) [M tanh (Q) coth ( M Q )  - 11-l  (A17) 

where 

In the limit of no sliding, (Fl = 0), this gives 
k20T = (A + v ) / M  (A18) 

as in eq 5.9. If sliding dominates, rl >> A + v, and then 

Q N ( $)1/2 << 1 

A I .. 

With the identification D, = r,12 = r,4L2/A&, this coincides 
with eq 5.17 when intersegment transfer does not contribute 
(v = 0): 

Thus, the discrete sliding model gives the same result as the 
continuous one, except when the nonspecific dissociation rate 

This reduces to eq A16 when all t+bm = $. To get useful results 
from this expression, we have to make certain approximations. 
First, it is noted that the infinite sum over i involves $ factors 
with large subscripts, the smallest one being m. From (A13), 
one finds that in the limit of large subscripts 

1 *' n>m 1 + n?r[4?rDb/(Mki)] 

Then the summation over i can be carried out. Neglecting 
terms of order (2?rDl/ki)' and higher (Le., in the diffusion- 
controlled limit when ki >> 2aDl), one finds 

(A23) *iM-n h + n  

i= 1  n sin (n?r/M) 

Then eq A22 reduces to 
m 
CEj = 

1 

2 5  [ 4 r 1  sin2 (E) + v + X(1- +,,I- sin ( 9 1 - 1  
n = l  n?r 

(A24) 

and from (A10) the effective transfer rate to the specific site, 
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k20T, is the inverse of this expression. 

obtains 
In the limit of no facilitating mechanism, Fl  = v =0, one 

Then, using the Fourier coefficients from eq A1 3 in the dif- 
fusion-controlled limit (ki >> 2aDI), one finds the total asso- 
ciation rate from eq A9, A10, and A25 to be 

A numerical investigation shows that for long chains (L >> 
I and R, >> b), the result is approximately 

k, 1 .5~bD/ (1  + DTKRD) (A271 

The numerical factor ( N 1.5) depends primarily on l/b and 
is essentially independent of R, if R, >> 6. A similar result 
has been derived in a standard steady-state analysis of the rate 
of association of a protein to a specific site on an infinitely long 
cylinder (0. G. Berg and M. Ehrenberg, unpublished results), 
thus demonstrating more clearly that the hopping process is 
an integral part of the diffusion equation. 

As discussed in section 5 ,  this is a highly idealized result; 
however, it does show how the microscopic dissociation process 
can contribute by relieving steric constraints. 

( B )  Complete Derivation for Tandem Operators 
“Connected’ by Sliding. Consider the case where N operators 
are positioned in tandem sequence. In accord with the 
treatment above, the repressor will recognize only its exact 
binding positions. Thus, these specific sites will be separated 
by a stretch of nonspecific sites, the number of which is at least 
the number of base pairs in one operator. Sliding provides 
a means for the repressor to transfer between adjacent oper- 
ators. However, during such a transfer, it will be nonspecif- 
ically bound and consequently more easily lost in solution. To 
calculate the total lifetime for a repressor bound to such a 
group of operators, one must first know the relevant transfer 
and dissociation rates in the gaps between the operators. 

Consider a gap of length & flanked by absorbing barriers 
(the operators), The repressor, while nonspecifically bound 
in the gap, is characterized by a one-dimensional diffusion 
coefficient D1 along the chain and a dissociation rate constant, 
A. Thus, the probability distribution u(x,t) for the repressor 
in the interoperator gap satisfies the relation 

with the absorbing boundary conditions 
u(0,t) = u(L0,t) = 0 (B2) 

If the repressor starts just outside the operator at the left, what 
is the probability, P,, that it crosses the gap and finds the 
operator at the right? What is the probability, Pd, that it 
dissociates from the chain and is lost in solution? The initial 
condition for the diffusion equation is 

u(x,O) = 6(x - I) 033) 
which assumes that at t = 0 the repressor has moved from the 
specific site at x = 0 to the nearest nonspecific site, x = 1. The 
probabilities, P, and Pdr are given by 

where 

C(x) x m u ( x , t )  dt 

satisfies 

with the same boundary conditions as in (B2). The Green’s 
function solution is 

sinh [q(L, - I)] sinh (qx )  
C(X) = (AD1)-1/2 O < X < l  

sinh (qb) 
sinh (ql) sinh [q(& - x)] 

G ( X )  =  AD^)-^/^ I < x < L ,  
sinh (qb) 

where q = (A/D1)lI2 is the inverse of the diffusion distance. 
This gives 

P d  = 1 - cosh (ql) + tanh (qL,/2) sinh (41) (B7) 

P, = sinh (qI)/sinh (q&) (B8) 
The interesting case is that for which ql = (A12/Dl)1/2 << 1; 
i.e., the repressor can slide a distance much longer than 1 base 
pair along the chain without falling off. Then 

Pd = (AP/DI)’/~ tanh [ALJ/(4Dl)]1/2 (B9) 
P, = (A12/Dl)1/2/sinh (AL,,2/Dl)1/2 (B10) 

When L.,, - a, P d  - (AP/Dl)l/2. Thus, the dissociation rate 
constant from a single operator is 

kd = 2(yDl/12)(A12/D1)1/2 = 2y(AD1/12)1/2 

where yD1/12 is the rate for the “elementary” step from the 
operator onto the closest nonspecific site, and the factor 2 takes 
care of the possibility of dissociating both to the left and the 
right. Consequently, we can express the transfer rate from 
one operator to an adjacent one as 

k, = (yDl/12)P, = )/2kd/Sinh (A&2/D1)1/2 ( B l l )  
and the effective dissociation rate via nonspecific binding in 
the gap as 
k, = (rDl/P)Pd = y2kd tanh (AL~/(4Dl)]l /2 

We note that it would be more consistent to consider the 
diffusion along the chain as a discrete random walk over the 
nonspecific sites. Although this problem can be solved in a 
similar manner, the result is represented by the following 
unwieldy sums: 

1 m-1 sin2 (k?r/m)(-l)k” 
mk=ll + A/(2FI)  - cos (k.lr/m) P, = -c 

1 ml sinZ (kr /m)[ l  - (-l)k] 
mk=ll + A/(2r1) - cos (k7r/m) 

P d  = 1 - 

where m - 1 is the number of nonspecific sites in the gap, and 
rl is the rate of the elementary step in going from one of these 
sites to the next. Substituting m = Loll and rl = D1/12, it 
can be shown that these sums are well approximated by eq 
B7 and B8. This is true in particular for large m, and in this 
case, m must be equal to or larger than the number of base 
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pairs in one operator (m > -25), which is sufficient. The 
approximation is not as valid for values of A > -D1/12, but 
this case is not interesting in terms of the sliding model as used 
with the lac system. 

We are now ready to consider the whole group of N oper- 
ators. We label them n = 1, 2, ..., N, and let Pn(t) be the 
probability that the repressor is bound to site n at time t. Then 
the probability distribution is governed by the following master 
equations: 

_ -  - kc(Pn-~ + Pn+l) - 2(kg + kc)Pn n = 
dPn 
dt 

dPN 
dt 

2, 3, ..., N - 1 

0313) 

The repressor bound at site n can be transferred to either site 
n + 1 or site n - 1 with a rate constant k,, or it can be lost 
via dissociation from the interoperator gaps with a rate con- 
stant kr The end operators, n = 0 and n = N, have a different 
dissociation probability at their free sides, Le., 1/2kd, which 
is just one-half the total dissociation rate for a single operator. 

Under the assumption that the repressor is bound some- 
where (homogeneously) within this group of sites at time t = 
0, what is the mean time, rN, before it has dissociated from 
this group altogether? This can be calculated as 

- = k2N-i - (Y2k.j + k, + k,)PN 

N 

where pn .f;P,,(t) dt is the total mean time spent at site n 
before dissociating from the group. Integrating eq B13 with 
Pn(0) = 1 / N  for all n as an initial condition gives 

Summing these equations and using the fact that pN = pl for 
symmetry reasons, we obtain, using eq B14 

with pl still remaining to be determined. This could be ac- 
complished by calculating all p,, values recursively using eq 
B15. As only p ,  is needed, a much simpler way is to use the 
generating function G(z) defined as 

N 

n= I 
G(z) = X Z " - ~ ~ , ,  (B17) 

We multiply each equation n in the set B15 by zkl and sum 
all equations. This gives 

G(z)[(z + t ' ) k ,  - 2(k, + k,)] = 

k,Pl(zN + z-') - (k, + k, - f/Zkd)P1(zN-l.+ 1) (B18) 

This relation is valid for all values of the dummy variable, z. 
In particular, we can choose 
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z = ~1 = (1 + k,/k,) + [(l + kg//Q2 - 1]1/2 (B19) 

which makes the left-hand side of eq B18 equal to zero. Pl 
can then be solved to give (for rN from eq B16) 

r 

I (2/N)(1 - ZlN)/(l - z1) 
1 + ZiN-l + (z1-l - 1 + ZlN - zlN-')kc/(Y2kd - k,) 

(B20) 
With the expression B19 for zl, this gives the mean dissociation 
time for all possible choices of k,, k,, and kd. This result is 
considerably simplified by using eq B11 and B12, which apply 
to the sliding model. Then z1 is simply z1 = exp(A&,2/DI)1/2, 
and rN reduces to 
TN = 71 ~oth.[A&~/(4DI)] ' /~  

1 - ~ X ~ [ - N ( A & ~ / D , ) ~ / ~ ]  

{' - ;[ sinh (A&,2/D1)1/2 

where r i  = kd-l is the dissociation time for a single operator. 
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Diffusion-Driven Mechanisms of Protein Translocation on Nucleic 
Acids. 2. The Escherichia coli Repressor-Operator Interaction: 
Equilibrium Measurements? 

Robert B. Winter* and Peter H.  von Hippel* 

ABSTRACT: In this paper the equilibrium binding of lac re- 
pressor to operator sites has been studied as a function of 
monovalent salt concentration, of length of the DNA molecule 
containing the operator, and (by using various natural lac 
“pseudo”-operators) of operator base pair sequence. The 
nitrocellulose filter assay has been used to obtain values of 
repressor-operator association constants (KRO), both directly 
and as ratios of association to dissociation rate constants 
(k,/kd). Measurements of KRo have been made in the absence 
of MgZf or other divalent ions, allowing a direct estimate 
[Record, M. T., Jr., Lohman, T. M., & deHaseth, P. L. (1976) 
J. Mol. Biol. 107, 1451 of the contribution of electrostatic 
(charge-charge) interactions to the stability of the RO com- 
plexes. Using lac operator containing DNA restriction frag- 
ments of known size, we have shown the following: (i) The 
magnitide of the RO interaction is salt concentration de- 
pendent. A plot of log KRO vs. log [KCl] is linear over the 
0.1-0.2 M KC1 range, and from the slope of this plot, we can 
determine that RO complex formation involves six to seven 
charge-charge interactions. This value is independent of 
operator type and of DNA fragment size for fragments greater 
than -170 base pairs in length. (ii) This number of 
charge-charge interactions is appreciably less than the 11 such 
interactions involved in RD complex formation [deHaseth, P. 
L., Lohman, T. M., & Record, M. T., Jr. (1977) Biochemistry 
16,4783; Revzin, A., & von Hippel, P. H. (1977) Biochemistry 
16,47691, suggesting that repressor binds to operator and to 

I n  the preceding paper (Berg et al., 1981), we described and 
quantitatively formulated theoretical models for mechanisms 
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nonoperator DNA in different conformations. (iii) The RO 
interaction involves a substantial (>5096) nonelectrostatic 
component of the binding free energy, in contrast to the RD 
interaction for which all the binding free energy appears to 
be electrostatic in nature. (iv) The binding constant (KRo2) 
for the secondary (lac2 gene) pseudooperator is 5-fold weaker 
than KRo, for the primary (physiological) operator when both 
are measured on separate pieces of DNA. When both oper- 
ators are on the same piece of DNA, the measured value of 
KRoz is -25-fold smaller than that of KRoI. (v) KRo,, the 
binding constant for the tertiary (I gene) pseudooperator, has 
been estimated at <lolo M-’ at salt concentrations where KRol 
N 1013 M-*, (vi) KRol for repressor binding to short DNA 
fragments is smaller than that for binding to long DNA 
fragments under the same environmental conditions. Several 
of these findings, together with others in the literature, are 
suggestive of “long-range” effects on RO binding constants; 
possible molecular bases for such effects are discussed. These 
measurements provide the equilibrium “underpinnings” of our 
analysis of RO kinetic binding mechanisms [Winter, R. B., 
Berg, 0. G., & von Hippel, P. H. (1981) Biochemistry (fol- 
lowing paper in this issue)] and also allow comparisons of 
repressor binding affinities for operator, pseudooperator, and 
nonoperator DNA. In addition, these results further dem- 
onstrate the importance of the surrounding (nonspecific) DNA 
in controlling the equilibrium stability as well as the rates of 
formation and dissociation of RO complexes. 

of diffusional (thermal fluctuation driven) translocation of 
proteins on nucleic acids. As pointed out in that paper, in order 
to test the applicability of these theories to a real system, one 
must determine the equilibrium and kinetic parameters for the 
binding of the protein to specific target sites and to nonspecific 
sites as a function of salt concentration and of the length of 
the DNA molecules that contain the target sites. In this paper 
we report some relevant equilibrium measurements for the 
Escherichia coli lac repressor-operator system; additional 
equilibrium measurments on this system have also recently 
been presented by Barkley et al. (1981). Equilibrium pa- 
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