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Abstract. The analysis of solutions of gravitational equations for homogenecus isotropic
models in the presence of a gravitating vacuum {cosmological constant x) is given in the frame
of various gauge theories of gravity on the basis of qualitative theory of dynamic systems. The
equation of state of matter is given in the form of a linear dependence of the pressure p on the
energy density p with restriction p > p/3. It is shown that regularization of metric derivatives
takes place in the case of sufficiently high values of ¥, and some are obtained which are regular
in the metrics solutions for superdense gravitating systems,

PACS numbers: 0440N, 0450, 9880H, 9530

1. Introduction

One of the most important consequences of gauge theories of gravity (Poincaré gauge
theory (PGT), metric—affine gauge theory (MAGT) etc) is the conclusion about the important
regularizing role of a gravitating vacuumj. In particular, this conclusion is displayed in
the existence of the vacoum gravitational repuision effect (VGRE) [1,2]. This effect can
take place when the energy density of a gravitating vacuum (cosmological constant ) is
sufficiently high and can play an imporiant role during the early steps of cosmological
expansion in inflationary models and also in the case of gravitating systems at extreme
conditions (extremely high energy densities, pressures, temperatures). For the first time
VGRE was investigated in the case of homogeneous isotropic models in the frame of PGT
based on a sufficiently general gravitational Lagrangian Lg including both a scalar curvature
and terms quadratic in the curvature and torsion tensors'[1]. As was shown in [1], VGRE
follows directly from the generalized cosmological Friedmann equation (GCFE) for the scale
factor in the Robertson—Walker metrics [4, 3]: '
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T We consider a gravitating vacuum as a system with the energy-momentum tensor equal to xgu, (X =
constant, g, is the metric tensor). The other way of introducing a gravitating vacuum in the theory is in
connection with the ordinary cosmological constant x in the gravitational equations,
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where p is the energy density, p is the pressure, fp = 1/16nG (G is Newton's gravitational
constant), 8 = — f/3fZ > 0, f is a certain combination of coefficients f; quadratic in the
curvature terms of Lg. VGRE appears evidently in the case of systems including radiation
{pr = p:/3) in the presence of a gravitating vacuum {(py = x > 0, py = —py). In this
case (1) has the form of an ordinary cosmological Friedmann equation in general relativity
theory (GR) with effective gravitational constant G = G(1 —48x)~1. If x > 1/48 we have
G < 0 which leads to the gravitational repulsion effect. Taking into account VGRE, regular
solutions for superdense gravitating systems having essentially non-Einsteinian properties
were discussed in [2]. These systems possess a lower limit for admissible values of energy
densities in the region of extremely high densities p ~ 87,

VGRE also takes place in MAGT in the case 8 > 0, because GCFE is also valid in MAGT [3].

As the behaviour of solutions of (1) depends essentially on ap equation of state of
matter, we need to know the behaviour of this equation at extreme conditions to investigate
the influence of a gravitating vacuum on the dynamics of gravitating systems. Since we
do not know this equation it is certainly of interest to investigate varions models with
phenomenologically given equations of state. So the influence of a gravitating vacuum
on the dynamics of homogeneous isotropic models was discussed in [5] in the case of an
equation of state

p= ——é—yp ¥ = constant Q)

where the parameter y satisfies the following restriction: ¢ < y < 1. The analysis of
various solutions with all possible values of y was given in [5] on the basis of qualitative
theory. The conclusion about the important regularizing role of a gravitating vacuum in the
case 1/48 < x < 1/y{4—y)f was obtained. However, the restriction p < p/3 used in [5]
may not take place if classical scalar fields make a great contribution to the energy density
of matter. As the relation p; = p; is valid for massless scalar fields in the isotropic case
the following condition for matter: p > p/3 can take placet [6]. In connection with this
the influence of a gravitating vacuum on the dynamics of homogeneous isotropic systems
is investigated in this paper in the case p > p/3. For simplicity we use the equation of
state (2) with ¥ < 0. Using the qualitative theory for dynamic systems we show that the
character of the solutions can vary essentially with varying y.

2. Equations of dynamic systems on the plane {g, '}

From a geometric point of view homogeneous isotropic models are described in PGT by
two functions of time [4]; the scale factor R(?} and torsion function $(2); in MAGT in the
limit to the Weyl-Cartan spacetime we also have the non-metricity function Q(¢)i. Two
curvature functions A and B are determined as follows:
0 E . . 1 2
A___[R 2R(S - 1 )] B=k+[R—2R(S—-ZQ)] &
R R2
where 2 dot denotes differentiation with respect to time. Gravitational equations of PGT and
MAGT lead to the following expressions {3,415:

t Note that energy density and the pressure of scalar Higgs fields in the symmetric state can be written as o5 + oy
and p, -+ py, respectively, for limited time intervals,

} The theory investigated in this paper is invariant under space inversion transformations. Theory without this
invariance contains the second torsion function (see [7]). In the general case in MAGT there are, in addition, two
non-metricity functions.

§ Equations (1) and (3)~(5) are cbtained from the corresponding equations of [3,4] by the substitution p — p+ x
and p— p—x.
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In the frame of PGT we are to put O =0 in (3) and (5), then in the frame of MAGT torsion
vanishes (§ = 0) because of the gravitational equations [3]. Expressions (3) and (4) for
the function B lead to GCFE (1). Expressions (3)~(5) for the function A together with the
conservation law

R
p—3H(p+p)=0 ( =-§) (6)

lead to the following equation:
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Eqﬁations (6) and (7) determine the behaviour of dynamic systems on the plane {p, H} if
the equation of state p = p(p) is given. GCEE is the integral of (7) and equation (6) leads
to the following integral:

_ L dp
R‘e"p( 3fp+p(p))‘ ®

Taking into account (8) the solution of GCFE can be represented in the form [2]
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If the equation of state is given in the form (2) with ¢ < 0 then we obtain the following
relation from (7) and (6) and their integrals (1), (8) and (9) [5]:
H = {[1~ Blyp + 401201 — 4px) + y (2 — y) oI}

1
X{g}; [3v280" + (2~ v +4¥Bx)p —2x (1 — 4B83)] [Blyp + 4x) — 1

+ 22— )82t + (16 — Ty + ¥))(1 — 48x)yBo — 2(1 — 48x)*] HZ}
(10)

p=(y-4pH (11}
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where ¢, is the integration constant. Equation (5) has the following form:

_lyg— Byp
S A= I Bt

(15}

3. Qualitative analysis of solations

Let us analyse solutions given by (14) for the dependence on the value of x on the basis of
the qualitative theory of dynamic systems [8] (as in [5]). The conditions H = p = 0 give
from (10) and (11) the following particular points in physical region (p 2 0, H is the real
value):

(i) points K; and K; (p = 0, H = £./x/6 /o) in the case x > 0 and x s 1/48. These
points are stable and unstable knots, respectively, and correspond to the de Sitter solution
of GR. If x = 0 then K and K3 unite and form a point of complicated equilibrium;

(i) points L; and Ly (p = 0, H = £./17/3foy(y — 2)) if ¥ = 1/48. They correspond
to a complicated equilibrium state and have a structure of stable and unstable knots,
respectively;

(iif) saddle-type point M (p = (1/y* By —2—4yBx+[Q2—y+4yBx Y ——4y*Bx 4Bx -
D12}, H =0) in the case 0 < x < 1/48.

Note that because of (10} the derivative dH /dr diverges at the point

_ 2(4Bx -
v2-v)8

which js in the physical region when ¥ < 1/48.

Putting H = 0 in (12) we find values p = p; (i = 1, 2, 3) limiting the region of varying

of p for phase trajectories. To do this we write (12} in the following form [5]:
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Considering positive values of ¥ (x > 0) note that the point p(o) is always in the
physical region, go is in the physical region if ¥ < 1/48 and points p; and p ©_in the
case ¥ > 1/48. The value of p; is the same for any k = 0 =41, but values of p» and
03 depend on the type of model: pz and p3 coincide with p ) and pmJ in the case of a
flat model (k = 0) and are displaced to the corresponding directions in the case of open
(k = —1) and closed (£ = 1) models.

In figures 14 one can see phase trajectories corresponding to various solutions of
investigated dynamic system. Full curves correspond to fiat models, chain curvcs-uto
closed models and dotted curves—to open models.

Figure 1.

‘f:"

Figure 2.

Figure 3.



Figure 4.

(i) 0 < x < 1/48 (figure 1}. All solutions for flat and open models and some solutions
for close models are singular in the metrics derivatives (H and H) at the point pg, but the
metrics itself is a regular function. Close models are regular in the metrics, its derivatives
and torsion (non-metricity) solutions for some values of ¢, analogously to corresponding
solutions in GR. These solutions are described by a branch to the left from M in figure 1.
There are some ¢, for which solutions singular in H and H for close models do not exist.
Regular transition from compression to expansion takes place in the point p;. In this point
R = Rpyjp > 0 and dR/dt = 0. Torsion {non-metricity) determined according to (15)
vanishes in g2, Ky, K2, M.

(i) x = 1/48 (figure 2). All points p;, p2 and p3 are in physical region and p3 (k = 1) <
P <pmhk=—D<p<pkEk=1)< pém < pp (k = —1). Phase trajectories represent
solutions of two types. The first type corresponds to solutions with the de Sitter asymptotics
(points K, and K3) and describes smooth transition from compression to expansion. These
solutions are regular in the metrics as well as in the torsion (non-metricity). The regularizing
influence of the gravitating vacuum is displayed in the prevention of the metrics derivatives’
singularities that take place for the corresponding solution in figure 1. The second type of
solutions corresponds to superdense systems (closed curves in figure 2). The dynamics
of these systems has the character of oscillation between minimum g and maximum g,
values of the energy density. These solutions are regular in the metrics but in p, torsion
(non-metricity) diverges. Note that torsion (non-metricity) vanishes at the points ps, p3, K1
and K.

(iif) x = O (figure 3). The picture of phase trajectories in this case can be obtained from
figure 1 by tightening of three particular points K, K2, M to point O(p =0, H = 0). The
point O is equilibrium state for the system and it is stable if H > 0 and unstable if # < 0.

{iv) x = 1/48 (figure 4). Points L;, Lo and oz (k = 1) < pz(o) < p (k = —1) are in
a physical region. Solutions are regular in the metrics and in the torsion (non-metricity)
defined in this case by formula § — 1/40Q = (4 — y)H /4, At the point p; torsion (non-
metricity) is equal to zero, but at points L; and L, torsion {non-metricity) is non-zero
though at these points o = 0. When p — 0 (points L; and L,) the scale factor R(t) grows
exponentially like the de Sitter solutions:

R=Roexp(i\/£_t) k=0
a
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R=‘K~I—sh<ﬂ:‘f—lﬂt+cl) k=-1
ab a
Y ab Y a

where @ = (y — 2)/2,b = (6f587)™"; Ro, C; and C; are integration constants. Note that
H(p = 0) = :I:M

Solutions (14) corresponding to negative values of ¥ (x < 0) are similar to solutions
discussed in the case ¥ = 0. In the case 1/8y(4 — ¥) < x < 0 solutions for open and flat
models with any values of ¢, and solutions for closed models with some values of ¢, exist.
In the case x < 1/8y(d — y) there are only solutions for open models.

4. Conclusion

The qualitative analysis carried out above for homogeneous isotropic models with the
equation of state (2) with p > p/3 confirms the conclusion about regularizing the role of a
gravitating vacuum with sufficiently high energy density (x > 1/48) which was obtained
for the first time in [1]. Note that the type of regularization depends essentially on the
equation of state of the matter, While in the case of radiation (p = p/3) we have the
regularization of the metrics because of VGRE [1] and in the case of an equation of state
in the form (2) with p < p/3 torsion is regularized [5], in the discussed case {p > p/3) a
gravitating vacuwm leads to regularization of the metrics’ derivatives, Regular solutions with
the de Sitter asymptotics (x > 1/48) can be used for the construction of regular inflationary
models [9]. Solutions obtained for superdense gravitating systems without phase transitions
‘vacuum <> matter’ (p, = constant) are also of certain interest. Taking into account the
evolution of the equation of state of matter the torsion singularity at the point with minimnum
energy density (p = p)) can probably be avoided. This is connected with the fact that in
the case of the equation of state (2) with p < p/3 a minimum value of the energy density
for superdense systems occurs at the point o, where torsion vanishes [5]. Equally, taking
into consideration the evolution of the equation of state we can try to avoid singularities of
the metrics’ derivatives in solutions with x < 1/48 because corresponding solutions in the
case p < p/3 are regular in the metrics and its derivatives [5]. However, these problems
are to be specially investigated.
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