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Explicit Green’s function of a boundary value problem for a sphere
and trapped flux analysis in Gravity Probe B experiment
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California 94305-4085

(Received 25 January 1999; accepted for publication 1 April 1999

Magnetic flux trapped on the surface of superconducting rotors of the Gravity PraGPH)
experiment produces some signal in the superconducting quantum interference device readout. For
the needs of GP-B error analysis and simulation of data reduction, this signal is calculated and
analyzed in this article. We first solve a magnetostatic problem for a point source on the surface of
a sphere, finding the closed form elementary expression for the corresponding Green’s function.
Second, we calculate the flux through the pick-up loop as a function of the source position. Next,
the time dependence of a source position, caused by rotor motion according to a symmetric top
model, and thus the time signature of its flux are determined, and the spectrum of the trapped flux
signal is analyzed. Finally, a multipurpose program of trapped flux signal generation based on the
above results is described, various examples of the signal obtained by means of this program are
given, and their features are discussed. Signals of up to 100 fluxons, i.e., 100 pairs of positive and
negative point sources, are examined. 1899 American Institute of Physics.
[S0021-897€09)08113-X

I. INTRODUCTION the surface of the superconducting roteee Refs. 7 and)9
They appear in pairs of the opposite polarity called fluxons;
The Gravity Probe BGP-B) satellite is scheduled to fly the sources constituting the pair are connected by a magnetic
in the year 2000. It contains a set of gyroscopes intended t@ortex line going through the whole body of the supercon-
test the predictions of general relativity that a gyroscope in &luctor(see Fig. 1 The fluxons produce additional magnetic
low (altitude~650 km) circular polar orbit will precess, rela- flux through the pick-up loop called trapped flux; its time
tive to a distant star, about 6.6 arcsec/year in the orbital plansignature will be present in the SQUID output. The low fre-
(DesSitter, or geodetic, precessjoand about 42 marcsec/ quency part of this signal, although comparatively small un-
year perpendicular to the orbital plaeense—Thirring, or  der the GP-B conditions, might corrupt the accuracy of the
frame-dragging, precessipnTo provide the desired mea- London moment readout. On the other hand, its high fre-
surement accuracil part in 16 for the geodetic effesta  quency part can provide additional information that is sig-
magnetic London moment readout using a superconductingificant for the experimental results. To make sure the
quantum interference devidSQUID) has been chosen, so trapped flux does not affect the measurement precision, as
that the experiment will be carried out at low temperaturewell as to extract useful information from it, one has to ana-
(~2.5 K), and the gyrorotors will be superconductif@ee lyze the trapped flux signal and develop the code generating
Refs. 1, 2, and 3 for the design and status of the experimenit for the use in simulations of the GP-B error analysis and
the history of GP-B development is found in Ref. 4, and adata reduction. This is the primary goal of the present article;
survey of space relativity tests is in Rej. Ghe direction of we also hope that our analysis may be of use for other ap-
the magnetic London moment developed in a rotating supemplications as well. Note that the first work on the analysis of
conductor coincides with the direction of the rotati@pin)  the trapped flux from a GP-B rotor was done by Wai in his
axi (for basic superconductor physics see Ref. 7; the dethesisl®
scription of gyromagnetic effects can be found in Ref. 8 In Sec. Il we give a closed form solution to a magneto-
The corresponding magnetic flux through the pick-up loop ofstatic problem of a point field souraémagnetic charge,”
the SQUID is proportional to the sine of the angle between‘half-fluxon” ) on the surface of the gyroscope. In Sec. Il
the London moment vector and the pick-up loop plane, sahe solution is used to find the trapped flux signal in the
the change of this angle, and thus the drift of the gyroscopgick-up loop as a function of the half-fluxon’s position. The
axis, can be detected from the SQUID signal at the roll freclosed form expression for the trapped flux appears to be not
quency of the spacecraft which will be deliberately rotated.very useful for further applications, so various exact and ap-
However, along with the London moment dipole, thereproximate formulas are also obtained. In Sec. IV we inves-
will also be quantum-size sources of magnetic field pinned taigate the motion of fluxons with respect to the pick-up loop,
thus finding the time signature of the trapped flux signal; we

apermanent address: Department of Physics, Princeton University, Prindl€n go on '[.O analyz_e .itS frequency spectrum. Se(?tion \
eton, NJ 08544; electronic mail: nemenman@princeton.edu contains a brief description of the program used to simulate

0021-8979/99/86(1)/614/11/$15.00 614 © 1999 American Institute of Physics

Downloaded 30 Jan 2001 to 128.112.128.42. Redistribution subject to AIP copyright, see http://ojps.aip.org/japo/japcpyrts.html.



J. Appl. Phys., Vol. 86, No. 1, 1 July 1999 I. M. Nemenman and A. S. Silbergleit 615

o

|
Dy
M, cosm

rotor

V(N=P(r,,¢)=

pick-up loop MANES!
+N,msinm<,o)(?g) P"(cosd),

(4)
with the coefficients given by
M. — 21+1 (|—m)|Pm N
M= T4 S (17 1) (1Tt 1 (COSY)cosme..,
6)

_ 2141 (I—m)!
NIm_(|+1)(|+m)!

outside field lines

P(cosd, )sinme, .

FIG. 1. Rotor with a fluxon.

As it turns out, this series may be summed to give the
closed form solution fol. To determine it, we first intro-
trapped flux for the GP-B data processing routines. Pictureguce Eq.(5) into Eq. (4) to obtain
of the high frequency signal, its low frequency envelope, and
1+1
_ g
\P(r)_477rg “h1+1 \r )
Il. THE GREEN'S FUNCTION OF THE |

various Fourier spectra are presented and discussed. (ON 21+1
MAGNETOSTATIC PROBLEM +2 E le(cosﬁ) P{“(cosﬁ+)cosn(<p— el
m=0

P,(cos9)P,(cosv )

The GP-B experiment will be conducted at low tempera-

tures, so the fluxons can be treated as statielded to the  Then, by applying the addition theorem for Legendre func-

rotor's surfacg and noninteracting ones. In such a case thgjons[see Ref. 1110.11, (47)], we convert the latter into
total fluxon field is a superposition of the fields of individual

fluxons, each consisting of contributions from its positive 2|+1

I+1
and negative magnetic charges. In addition, the rate of \If(r)— 47rr Tg) Pi(cosy)

change of this field due to the rotor's motion is negligible, 9f

hence the magnetostatic approach should be used. Thus we @ SRS

consider a singl¢positive) source of the field whose charac- -0 {22 _9> P,(cosy)

teristic size is on the order of 76 cm? due to a macro- dmrg =0\ T

scopic size of the gyroscopd.91 cm radiug this can be = [t

treated as a point source of magnetic field with the coordi- S _9) P,(cosy) |, (6)
nate angles¥, , ¢ on the surface =r4 of the rotor. The =ol+1\r

spherical coordinates, ¥, ¢ here correspond to a Cartesian
frame{x,y,z} fastened to the pick-up loop so that the origin
coincides with the loop center and thexis is perpendicular
to the loop plane; the real relative motion of the fluxon and
the loop, i.e., the dependence of the position angles ¢,
on time, will be incorporated and examined in Sec. IV. The first of the series in the above expression¥ois

In these settings, the boundary value problem for theybviously the generating function for Legendre polynomials
magnetic potentiat? (r) of the fluxon outside the rotor is [see Ref. 1410.10, (39)], the second one is just an integral

wherevy is the angle between the directions to the fluxon and
to the observer

cosy=cosd cost, +sindsind, cofo—¢ ). (7)

formulated as of it, namely,
AV (r)=0, r>rq, 06 ,<m, Os¢,<2m, (1) o w
1 e K |
- P, 2 7 R = | A PRi()
- —5(19 9. )0(e—¢4), 2
Il resing,
[*]
where®,=h/2e is the magnetic flux quantum, and the mag- - J; m
netic field is
+\V1-2¢9+ 7
B=-VV. @3) ¢ - gén T

Evidently, up to a factoby, ¥ is the Green’s function of

the external Neumann boundary value problem for a spheréJsing these results in E¢), we can now write the magnetic
A standard separation of variables leads to the followingpotential in its final form as a finite combination of elemen-

series representation of the solution to Eds.and (2): tary functions,
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V(r)=d,G(r,ry) with the help of the known relations of the theory of Leg-
) endre polynomial$see Ref. 1110.10, (14), (2), (4)]:
Dy 1 1 rg=reretrgr—ry|
T Zalr] 2" - ® Pl.1(8) = Pi_y(s)
mllr—ry  2rg Mrg—r-ry P(s)= T . P(1)=1;

where G(r,r,) is the Green function mentioned and
={rq, 9., ¢} is the position vector of the source. The first
term here, as one would expect, is a half of the potential of a
point charge, and the addition to it describes the contribution
of the curved boundary. I,k=0,1,...;

Since, surprisingly enough, we were not able to find thislﬂ(g) is the Euler gamma function. Then, after inserting the

explicit formula in the literature, it seems reasonable to give\/aluesM from Eq. (5), we arrive at the following expres-
here a closed form expression for the Green function of thg .. 0 o

corresponding Dirichlet problemQy), in which boundary
condition (2) is replaced by

(—D*T(k+1/2)

Kk

Pa+1(0)=0; Px(0)=

D
®, (cost, )= —=Fscosd,);

2
S(I—9)8(o— ). (9) .
F5<s>=k20 (1= 8)2%" 1Py 1(S)[P2k(0) — Py 2(0)]

Dy
lIr|':’g= r,sind
g +

The result then is

®o r?-rg 2 & k+3/4
W(N)=®oGo(r,r4)=5— <. (10 == (mDf—I(k+1/2
=B Sl )= g e 7 TV e k2
Note that the Green'’s funct_ions for the corresponding inter- X (1= 8)2F 1Py 1(S). (11)
nal problems can be obtained from Ed8) and (10) by ) i i
means of inversion. Here 6 denotes the dimensionless gap between the pick-up

loop and the rotor, & 6=(R—r4)/R<1.
From the point of view of signal processings(s) is a

IIl. TRAPPED FLUX AS A FUNCTION OF A MAGNETIC transfer function which converts the “input” half-fluxon po-
CHARGE POSITION sition signalS;,(t) =cosd,(t) (the position is changing with

Magnetic flux measured by the pick-up loop of a GP-Btime as the rotor moves relative to the pick-up loop; see Sec.
SQUID is the flux through the circle of the radi&sin the 1V), into an “output” trapped flux signal Sy(t)
plane z=0, or, equivalently, the flux through theippey  =0.5PoF [ Si(t)] which is present in the GP-B readout.
hemisphere. The dependence of the trapped flux on the halfince the total contribution to the flux of any number of
fluxon position turns out to be rather complicated, especiallyluxons scattered in any way over the rotor’s surface is given
for the GP-B design, when the gap between the rotor and they the sum of the values of the same functiep taken at
loop is very small as compared to the pick-up loop radtus proper different values of its argument, it was called “uni-
For that reason we give here a number of different represeryersal curve” in Ref. 10. Clearlyf (s) is an odd function
tations of the trapped flux as a function of the fluxon posi-of s; in particular,F 5(0)=0 means that a source sitting ex-
tion; each of them has its own merits and drawbacks and igctly in the pick-up loop plane does not, of course, register

thus used for different purposes pertinent to our investigaany flux.
tion. By setting5=0 in Eq. (11) (the loop on the surface of

. _ the rotoy, we immediately find
A. Trapped flux in terms of a series of Legendre

polynomials 2 § . k+3/4
Fo(s)=— -1 I'k+1/2)P S
The simplest way to calculate the trapped flux is to in- o(S) Jr k=0 (=) (k+1)! ( )Paicr1(S)
tegrate over the hemisphere the series expression for the ra- i _
dial component of the magnetic field obtained from Egs. 1 if 0<s<1;
(3)—(5): _!l0 if s=0; (12)
-1 if —1=<s<0
(I) += f BI’ r=R dA
hemispherer(=R) . . . . .
(the last equality here is proved by expanding its right-hand
B av side in the orthogonal series of Legendre polynonials
 J hemispherer=R) ar dA This result obtained by WH} has a clear physical mean-
r=R ing: when the pick-up loop lies on the rotor’s surface, the
* rg ' 1 same as the point source of field always does, the flux
=<I>o|_20 (1+1) ﬁ) MIOJ’O Pi(s) ds; through the loop remains unchangett @ /2, half of the

total) while the half-fluxon stays in either of the hemispheres
all spherical harmonics wittn#0 here have averaged out separated by the plane of the loop, and changes its sign by a
over the azimuthal angle. The last integral is calculated jump when the half-fluxon crosses this plane. However, Eq.
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' ' ' ' ' ' ' ' ' Representatior{13) is very convenient for precise nu-

L 8=0.025 i merical calculationand, in fact, is used for this purpose in
----------------- ;";u";e'n;l;;;r;‘;;"'“'""' our code; see Sec.)Vbecause the integrand in Eq43) is
----- adjusted arctangent approximation an algebraic one, and the weak singularity at the upper limit
08 T Z!Z‘;":’-SZLEEL’;???;?:?W 1 can be taken care of rather easily. The plot of the transfer
function computed from Egg13) is given in Fig. 2, along
e 1 s || with graphs of its various approximations that are described
% 08 R QS in Sec. Il C. The relative error of the numerical computation
o p—— has been kept within 1C.
04 Z/J,;O'G et 1]
w P z
02 02 1 C. Elementary approximations of the trapped flux
of 0z i Py o3 , From the described behavior &fs(s) for small it is
. . . . . . g . . clear that to effectively approximate it one needs the value of
o of 0z 03 04 05 06 07 08 09 its gradient as=0 and the “saturation” valué 4(1) in the
first place. Fortunately, it is possible to compute these quan-
FIG. 2. Universal curve (s). tities exactly, and they are
1 26— 62
fé‘EF(g(l): 1-
(12) also demonstrates the difficulties in using expression 1-9 Vi+(1-96)2
(11) for GP-B, wheres=0.025 is very small: for any>0 )
the series of Eq(11) has an absolutely converging majorant, - 1_(‘/5_ 1)5+0(5%); (14
S0 its sumF 4(s) is an analytical function o§, but it has a IF &) 2[1+(1—6)2
jump discontinuity as=0 whené=0. Therefore the series Ko=—"g - sz(l— 6)—K(1- 5)}
of Eqg. (11) converges worse and worse with the separafion s=0

becoming smaller and smaller, which makes 84d) practi- 201
cally unacceptable for accurate numerical calculations at the =—|=-+2+ O(&Iogb‘l)}, 6—0;
required value of separation. It also turns findegniform )

in s asymptotic expansion df s(s) for 6—0 into a rather (19
difficult mathematical problem. The effect is that for small here K (k), E(k) are complete elliptic integrals of the first
positive values of5 the transfer function has the shape of aand second kind, respectivelgee Ref. 14 for their defini-
very steep “kink” [recall thatF 4(s) is odd]: it is almost  tions and asymptotic behavior &t—1—0). The formulas
constant outside a small vicinity{A 5, A 5) of the origin,  are derived from Eq(11) by direct summation of the corre-
with A;=0(6) as shown below, and is equal to zerosat sponding series of Legendre polynomials carried out in the
=0 with a huge gradient- O(1/6) there(see Fig. 2 Thatis  Appendix.

why we are deriving three more representationsHg(s) in The simplest approximation of the transfer function for
the text that follows. 60— +0 is evidently a piecewise-linear one,

1, if Ag<s<1;
B. Integral representation of the trapped flux Fys)~{ KoS if |s|<As (16)

An integral expression foF 4(s) is obtained by replac- —1, if —1ss<-A,

ing the Legendre polynomials in E¢l1) by their integral _ _ _
representatiofisee Ref. 11(10.10, (43)] with A s defined in a natural way as
19+ exdi(2k+1+1/2)]d s T
Paa(cosd.)=— [ AL Jav koBi=ts, Ag=l=2.5+0(5). an
m) -9, \2(cosy—cosd,) Ks

Changing then the order of summation and integration, wet turns out that this approximation gives the right qualitative
arrive at a sum of two hypergeometric series which argdicture of the signal and is even not too bad quantitatively,

readily summed up to result in providing, for all valuegs|<1, the error within 1/3 for both
_ 6=0.3 and6=0.025. This accuracy, however, is not enough
F (coS0., )= ®q \/Ejf’+ dyexpliy/2) for the GP-B simulations; moreover, the largest error, asso-
° 7 Jo \Jcosy—cosd. ciated with the jump of the derivative of functio{l6) at

s==*Ag, occurs in a very sensitive transition region where
\ J1+A%2 1 the fast growth ofF 4(s) is replaced by its almost constant
X i 2 ol (13 pehavior.
A much more attractive approximation is given by the
A=(1-d)expiy). function
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®orgycosd 1
Bz|z=O:_ 2 3
™ X(p, )
p—TrgSind, cose
2r3pX(p,@) Y+ (@) Y_(¢)
sind, cos
T s . (20
2rgpYi(@)Y_(¢) 2rgpY_(¢)
where
X(p,@)=\r5—2rypsind, cose+p?,
Y.(@)=1xsind, cose. (21
0.63 : L L L L L L L L
¢ e 020304 05 08 07 08 09 Now we need to integrate Eq20) over the area of the

pick-up loop. First we calculate the simple, although rather
cumbersome, algebraic integral of the field, E20), times
pdp over the polar radius from 0 tB (if instead, one first
integrates ovelp, elliptic integrals of a complicated argu-
ment appear in the result that make the closed form radial
), 6—+0. (19 integration very difficult. As we are then to integrate over
the period of cog, the termsodd in cose can be omitted,

The parameters here are arranged in such a way that yd we obtain

slope ats=0 is exactlyxs and, in the spirit of asymptotic d, Dor g COSY
methods, the true saturation value is achieved whgn — ®+(COS¥.)=—-F,(Cosd,)=———F——
=oo [note that another “simple and natural” approximating

FIG. 3. Dependence d&s on §.

a K(ss

2
Fs(s)~ ;f(sarctarég T,

function, the hyperbolic tangent, is not acceptable, because (2 Rz—rs R
the rate of approach df; by F 4s) is a power rather than X f ® - . (22
P s oy i) s &® 202X(R9) Yo(9) Y_(¢) 212Y ()

exponential ong The performance of the approximation
(18) exceeds all expectations, giving, over the whole rangen view of Egs.(21), this integration is also rather straight-
of s, a maximum error of 20% fof= 0.3, and only 1.8% for forward and leads to the desired result,

6=0.025. The accuracy is mostly lost outside the transition

zone (A, A,) due to the fact that , is achieved only at ©+(C0S?+)

infinity. This can be dealt with by redefining the parameters b cosd [ 1 25— 52

to have both the exact slope &0 and the right value at -0 i

s=1, which produces 2 1-6 |lcosd | x2(1—6)(1+sind,)+ 62

(v, k) (v k)

K oS Ks _ X : : (23)
Fs(s)=Asarctanm—, Asarctan—=fs, 6—+0. (19 1+sind.  1-sind. ||’
As As + +
This "adjusted” arctan gives the maximum error within where
0.3% for 6=0.025; even for as large a separation &s o 2sind
=0.3 the error is still about 0.6%. Like in Eq4.6) and(18), ve(dy)== 1+sing,’
the dependence, EL9), is shown in Fig. 2. CoefficienA (24)

is plotted versus in Fig. 3; note the relative flatness of the 4(1-6)sind,
function. k(9 ,0)= _ : 2’
2(1-9)(1+sind,)+ 6

and II(»,k) is the complete elliptical integral of the third
kind (see Ref. 11 As a consistency check, one may calcu-
late the saturation value and the derivative at zero of the
The explicit formula for the trapped flux can also be transfer function, Eq(23), to see that they are indeed equal
obtained, although not that easily, from Ef1); however, a to the previously obtained values, Eq§4) and(15).
direct way to get it is to integrate the closed form expression  The first term in Eq(23) evidently has a jump disconti-
for the magnetic field through the pick-up loop plane0.  nuity ats=cosd,=0. Therefore, for all finites, the second
For this planed= /2, r=p (the polar radiug in addition, term must contain the discontinuity of the opposite sign to
we can redefiner by settinge, =0. Then Eqgs(8) and (3) make the sum of two analytical B Hence for small positive
provide the needed component of the magnetic field in theS in the transition zone we are dealing with a small differ-
form ence of two large quantities, which is always a problem.

D. Closed form expression of the trapped flux
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4 4 Zr

/ A
/ Yr s
pick-up loop By
2
A {
ol /p
y ’
" 0 T / Yr
~~~~~~~ ¥4 o
~~~~ YL
b
X X, =X
\‘x,
FIG. 5. Mutual orientation of roll and angular momentum coordinates.
FIG. 4. Mutual orientation of roll and loop coordinates.
Also, the first term in Eq(23) coincides exactly with expres- The dynamics of a symmetric rotor are well known and

sion(12) for §=0, hence the second one should disappear ifielatively simple(see Refs. 12 and 13Its motion in theL

this limit, which it necessarily does in a very nonuniform coordinates is a precession abautwith the spin frequency

way. Evidently, such an expression cannot be effectively L

used for both numerical and analytical purposes whes ws=—, (26)

small enough, which is our case. I
and rotation about the rotor symmetry azis with the fre-

IV. FLUXON KINEMATICS AND SPECTRAL quency

DECOMPOSITION OF THE TRAPPED FLUX SIGNAL

L Al
Now we need to determine the time signatire(t) of a @rot= A COSYB= ws( 1= ~|cosys; 27
half-fluxon polar angle in the pick-up loop frame to complete .
investigation of the trapped flux signal. O=<yg=m is the angle between andz.

In doing that we use four Cartesian coordinate systems. For the signal of the trapped field we need, however, the
The first one{x, y, z} has been introduced in Sec. I; it is time dependence of the position of a source in the inertial
fastened to the pick-up loop, azds the unit vector normal coordinates, ~ hence we need  expressions  of
to the loop plane(Fig. 1). The second coordinate system Xa(t), Ya(t), zg(t) in terms ofx_ , y,, z_ . The latter is found
{X.Yr .z} is associated with the roll axis of the spacecraft,with the help of the Euler anglésee, for instance, Ref. 12
o, =z, (Fig. 4. The roll axis is almost in the pick-up loop N the form
plane, that is, the roll axis—pick-up loop plane misalignment  z,(t)=z cosyg+x, sinyg cosfs+y, sinyg sinfs,
a<10"° is very small. The third set of coordinates
{x_,yL,z} is related to the angular momentum vedtoin ye(t)=—2_sinygcosé,

a way thatz, =L/|L|. Both ther andL coordinates are fixed

in inertial space, since the roll axis is pointed to the Guide
Star, and we can so far neglect the pointing errors, as well as +YyL(cosyg sin 65 cosb,+ cosbssing,)
the relativistic drift ofL. We choose axeg, andy, in the
plane containing botl, andz , so then the perpendicular to
this plane axex, andx, coincides(Fig. 5, and the follow- +X_(COSyg COSHs SiN 6, + sin 65 cOsb,,)
ing relations are true:

+ X, (C0Syg COSHs COSH,—Ssin b sin b))

Xg(t)=—2 sinygsiné,

. +y,(cosygsinfsinf,—cosh;cosh,). (28)
Z -7, =Y -Y;=C0SPg, Z Y, = —YL Z=SInPBy, _ - . : P s P
Here the spin and polhode phases are

X+ Zr =X ZL =X Yy =Xy =0. (25) 0 0 0
. . . Os(t)=ost+ 05, Op(t)=wpt+6,, 65,=const,
Here B, is the roll axis—angular momentum misalignment ’ (29)
which is required to be<5x 107 ° rad in the GP-B experi- ]
ment. andw,, is a polhode frequency,
A symmetric top with the moment of inertiat- Al rela- L |Al Al
tive to the body symmetry axis and slightly different value wp=— ——CO0SYg= ws——COSYp (30

for the moments of inertia about the other two axes is a very

good model for the GP-B rotoriote that| Al|/I<107° for  (in the body-fixed frame the instant angular velocity vector
them). Therefore, we choose the fourth Cartesian coordinateotates around the rotor's symmetry axis with the polhode
system{xg, Yg, zg} fixed in the rotor's body withzg di- frequency. Using this, we obtain the following expression
rected along the rotor’'s symmetry axis. for the unit vectore, in the direction of a half-fluxori.e., in
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the direction of an arbitrary fixed point of the rotor surface atcosine of the anglé, (t) betweere, (t) and the normaz(t)
some polar, & <1, and azimuthal, & <2, angles in  to the pick-up loop plane to study the trapped field signal;

the body-fixed spherical coordinates together with the loopz(t) rotates abouts, with frequency
w, (see Fig. &

€, =2g(t) cosg+ (Xg(t) cosy+yp(t) siny)sing z(t)=cog 72— a) w, + Sin( /12— a)(cos6, X, +sinb, y,)

=t te Uy test)z, =sina z,+cosa (cos, X, +sinb, y,) ,

_ _ _ 32
e;(t) =sin&[cosyg cosby(t) sin(f,(t) + 7) 6r= 6:(t)= o t=roll phase. (32
By means of this, Eq€31), and formulag25) relating ther

+sinfy(t) cog Op(1) + )] andL coordinates to the first order in the misalignmegts

+COSE sinyg cosby(t) , and @ we obtain(quadratic and higher order terms are sev-
(31) eral orders below the required GP-B accupacy
e,(t)=sin&[cosyg sin (1) sin(6,(t) + 7) cosd, (t)=as—sin®s_ +a(Bosiné, +a),
+cosé(t) cosiep(t)+ 7] O () =(ws—o)t+0s—; O (t)=w,t. (33

For a perfectly spherical rotdxl =0 and the amplitudes and
initial phase here are true constants whose values depend
only on the position of a fluxon relative to the symmetry

+cosé sinyg sin f4(t)

e3(t) = —sing sinyg sin( f(t) + 77) +cosé cosyg . axis, as_,=siné, qs_,= 5, a=cosé. If, on the other hand,
Al #0, they start to vary slowly with time at the polhode
According to the results of Sec. Ill, we only need the frequency according to

as_r(wpt) = V[ COSE Sinyg+SiN& COY wyt + 65 + 1) |2+ Sir? £ coS yg Sin(wpt+ 6p+ 77),

sin& cosyg sin(wpt+ 65+ 7)

tangs_ (wpt) = (34)

COSE sinyg+siné cog wyt + 63+ 7)

a(wpt) =COSE COSyg—SiNE SN yg SIN(wpt + 65+ 7).

Note that under the conditions of the GP-B experiment 2 m
the spin frequency is always much larger than the roll and ~ Ax(wpt)= mﬁ) cog2k+1) ¢ cosy
polhode onesw,~5X10 *ws, w,~10 >ws. Since gener-

ally the second term in the first equation of E(3) is about XF s (wpt)sing) dy+0(B3);
five orders of magnitude smaller than the first one, the input

signal for the trapped flux output & (1) _ 2 m
=(Dy/2)F J cost, (t)] is a single carrier harmonics of the Bi(wpt) = m(1+ 8ko) Jo cos Xy

(high) spin minus roll frequency®;_,), slowly modulated
in the phase and amplitude at polhode frequency, added to by XF (@5 (wpt)sing) dy+O(B5);
a small dc offset §a) and a small low frequency harmonics
(6,), both modulated ab,. Therefore it is natural and con-

venient to represenb , (t) as a Fourier series of spin minus
roll harmonics with the amplitudes modulated by low fre-
guencies, namely,

here the prime denotes the derivativeFof(s) in s.

As readily seen, the amplitudes ofid harmonics of
O, . (Ay) are generally of the order of unity and decrease as
O(k™?) for a large enough numbée In contrast with that,
the amplitudes otvenharmonics, which are linear in the
misalignments, are at least four orders of magnitude smaller
o but decrease only a®(k™ 1), k—. In addition, the even
¢ ()= Fs(cosd. (1)) harmonics are modulated also by the roll frequengy so
that, along with the harmonick®,_(t), k=0,1,. .., with

®, - amplitudesa a,(w,t) By(wpt), harmonics RO, (t) + w,t
=5 | as—r(wpt) kzo Aw(wpt) are present, whose amplitudes differ only by the misalign-
ment involved, 0.B, instead ofa.
Xsin(2k+1)04_ (1) +a(wpt) (Bosinw t+ @) With all this in mind, one can easily understand that the
© full spectrum of the trapped flux signal consists of the fol-
x Bi(wpt) cosK®_ (1) |; (35) lowing series of frequencies: k2Z-1)(ws— ;) Xmop,,
k=0 2k(ws— o) Totmo, and X(ws—o;))Eme,, mk
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FIG. 6. Simulated readout signals.

15 —5 pairs — =15 pairs — 100 pairs —0min — -15min

10 - i [}
A a
l‘\,‘ N, !"‘.r\

l oy 1 Y
t AN NS
OWMW

47 L2 . 3

R f\ ! i o~ }\l h
| Y oy

\ al ’

_10 & v Hy

+ = 24 min

0 0.01 0.02
Time, sec

0.03 0

0.01
Time, sec

=0,1,.... The highest peaks are atk(21)(w;— w,), and
those at X(ws— w,)* w, and X(ws— w,) are four to five
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V. CODE AND SIGNAL ANALYSIS

For the GP-B error analysis and data reduction one

an appropriately scaled forest of side bands separated beeds to simulate the trapped flux signal as expected in the

imwp.

SQUID output. To do that, the results obtained earlier were

The only remaining thing is to discuss briefly the total utilized for writing a program that is able to be fast enough

flux ® produced byall fluxons. There are always sonie

to generate, store, and analyze the high-frequency signal.

fluxons present on the rotor’s surface after cooling the rotoiThe code, written in the MATLAB V.5.0 to ensure compat-
down below the transition temperature. Experiments havébility with other GP-B software, is available from the au-

indicated that the expected number of the pairs is ardund

~100, at most. We denote any values related to either posi-

tive or negative half-luxons by indexes and —, respec-
tively, numbering them with the index=1,2,...N; for in-
stance, their body coordinates will bgér 7', and &9,
the input signalsS, (t) =cos¥, (t), S_(t)=cos¥'_(t), etc.

thors.

The program is very versatile, allowing many options
and many different tasks. For instance, there may be a dif-
ferent number of fluxonsand theirpositionsmay be read
either from a prewritten file or generated at random accord-
ing to different probability distributionsTransfer function

The general expression for the total trapped field flux ismay be calculated by means of several different expressions

given by

N
<I><t>=i§0 [ (t)+ D' ()]

Dy _
=72 s(cosd, (1)) —F 5(cosd_(t))]; (36)

obviously, the full spectral representation ®{t) is just a
scaled up version ob , (t) given in Egs.(35).

Since for smalls the transfer functiork 4(s) is close to
+Fs1)==1 everywhere except within a small vicinity of
the origin (see Sec. ), expressiong36) and (35 demon-
strate that the maximum value @&f(t) is distributed accord-

introduced in Sec. lll. Generation of thegh frequency sig-
nal and/or its slow varyindg-ourier amplitudesEqs.(35) and
(36), is possible. In addition, all gyroscope and pick-up loop
parametergradii, rotor asphericity, misalignments, gtcas
well as the discretization frequency, time intervals, and all
angular velocities may be specified in an arbitrary way.

A lot of attention in the program’s realization has been
paid to the fact that tracing positions of as much as 100
fluxons for long enough periods of time with high discreti-
zation frequency easily becomes too memory consuming.
The program has thus been optimized in several directions,
SO as to not cause excessive memory swaps to the hard drive
and not lead to the memory fragmentation, and to access the
hard drive for data storage as infrequently as possible. The
following data may be useful to estimate the code’s speed:

ing to the usual counting statistics, provided that the distri-on a Sun UltraSparc 5 with 128 megabytes of random access
bution of fluxons over the surface of the rotor is a uniformmemory (RAM) running System V, Rel. 4.0 and having a
random one. Thereford fluxons in this case should produce network mounted storage drive it takes, depending on the

a total flux on the order of/N®, for “large” N.

network load, from 1.5 upot2 h togenerag 1 h ofsignal of
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42 ' ' ' ' ' ' ' ' Figure @b) shows various signals from one fluxon.
Again, the solid line corresponds to “the most probable”
signal: the positive and negative half-fluxons are far from
aof . each other(although not opposite on the sphesnd have
large oscillation amplitudes.

Figure Gc) shows typical signals of 5, 15, and 100 flux-
ons distributedrandomlywith the uniform probability over

M- B

39

asl b
g the gyro’s surface. The/N growth of the signal is visible;
s7r ] the complexity of the signal profile also clearly increases
sl | with N.
Figure &d) shows short fragments of the 12 h of signal
ask . generated for the test of the GP-B data reduction algorithms.
There are 100 fluxons distributed unevenly: 60 of them are
sar il uniformly spread at random over the surfapest like in Fig.
% . . , , . . . , 6(c)], while the remaining 40 are used to create a total net
0 T S flux of ~40®, along some random axis. This should ac-
count for the small residual magnetization of the rotor at the
FIG. 7. Envelope of the simulated trapped flux sigrig=43.6 min. time when it was made superconductifgge Ref. 1Y This

magnetization not only significantly increases the amplitude

of the signal, it also smoothes it out. Different curves in Fig.
100 fluxons at a sampling frequency of 2200 fze actual 6 correspond to the signals taken at different stages of the
sampling rate of GP-B electronics polhoidal motion(namely, 0, 15, and 24 min from some

We will not elaborate more here on the code details buteference pointfor a duration of three spin periods.
will continue with the results of our simulations. All of them In Fig. 7 a low-frequency envelope is plotted of the sig-
have been performed with the parameters set at the valuégl from Fig. &d) used in the GP-B simulations. The graph
expected for the GP-B experimefgee cf. Refs. 13 In was constructed by splitting the magnetic flux signal into 2 s
particular, the spin frequenchg,=100 Hz, the roll period blocks (4400 data points in eagland plotting the maximum
T,=3 min, the polhode period,~43.6 min; recall thats value of the flux for each block. The periodicity of the large
=0.025. scale structures of the envelope with an approximate polhode
In Fig. 6 the signals are seen as generated by differereriod of about 43 min is clear. On the other hand, a com-

number of fluxons distributed in various ways over the sur-parison of the signal in any two corresponding regions dem-
face of the gyroscope. In all of the graphs the “adjustedonstrates that the short scale features, presumably introduced
arctan” approximation(19) to the universal curve is used. by the roll frequency and other less intensive harmonics, are
Figure Ga) shows signals of a positive half-fluxagwithout ~ not repeated precisely every polhode perifg, which is
its negative counterparpositioned at different points on the expected becausk, and the roll periodr, are incommensu-
gyro. The majority of magnetic charge positions provide sig-rable.
nals like the one drawn as a solid line. The dashed and dash- Figure 8 shows the slow polhoidal variation of Fourier
dotted lines correspond to rare charges oscillating in a smafimplitudes of the spin minus roll harmonics calculated ac-
(~A ) vicinity of the pick-up loop plane, which is why their cording to Eqs(35) and summed over the fluxons. The first
amplitude is smaller. On average, one cannot expect tod0 odd and even harmonics are shown in plasand (b),
many charges like that, however, each of the four GP-B rofespectively, in Fig. 8. Recall that in expressid8$) for the
tors will carry just oneparticular realization of the fluxon flux all even harmonics are multiplied by the misalignments,
position distribution, so these “weak” half-fluxons are pos- so that the actual vertical scale in Figbgis about 16 that
sible. in Fig. 8(@. The pictures clearly show that the odd harmon-

a. Odd Harmonics b. Even Harmonics

oth
harmonics

g" ol FIG. 8. Slowly varying amplitudes of the Fourier har-
| \ monics of the trapped flux signal,,~43.6 min.

0 20 40 60 80 0 20 40 60 80
Time, min Time, min
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ics drop much faster with the number than the even ones, &. Calculation of ks
predicted. It is interesting to note that the lowest evan ( A Ref. 1510.10. (12
=0) harmonics, which gives the amplitude of the dc and the s [see Ref. 1810.10, (12)]

roll frequency components, has a shape rather distinctive (-1)%(3
from the profile of the other modes. Pl 1(0)=(2k+1) Py (0)= T(E) ,
: k
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k=0 kK (1)k
APPENDIX: SUMMATION OF CERTAIN SERIES OF . (A2)
LEGENDRE POLYNOMIALS =2nF(1/2,3/2,1;7°)

Here we give a derivation of formuld&4) and (15) for _ 27 .2
X =——F(1/2,-1/2,1,

fs=F 5(1) and for the slope; of the transfer function &t 1-79 W / 7)
=0. We use the Pochgammer symbal) =1, (a)=a(a

+1) e (a+k—1)=T(a+k)/T(«), as well as the standard = %—E( 7),
notation, m(1—7°)
(a)(by) ¢ whereE( %) is the complete elliptical integral of the second
F(a,b, ¢; {)= 2 (c) k! kind, and we have exploited the classical relatieee Ref.
) ) 15 (2.1.4, (23)]
for the Gauss hypergeometric function of arguménand
parameters, b, andc. From Eq.(11) we have F(a,b,c;0)=(1—-0)° 2 PF(c—a,c—b,c; ),
=FW(q)—E@)(q)-
Fals)=F5 () =F57(s); and the expression for the elliptical integral in terms of the
“ (- A% (1 hypergeometric functiohsee Ref. 1613.8)] is
FP(s)=29 2, —,(5) Paki1(S), (A1)
k=0 K 2
_— F(1/2,—1/2,1;9%)= —E(7). (A3)
FiP(s)= 21 — -J Pk 1(8),
o (k+ D12/, Similarly,
where we introducedy=1— 6 for brevity.
| FP g v—zw :
A. Calculation of f; s 5:0_52 TP P2k+1(0)
SinceP,(1)=1, we have
w 2vk (1) (3
2~ 2K 2 7 (79" (22
FOw=2, 3 S0 -2 28 K@),
o k! 2 V1t 7]2
(= 1) _7 2
F )= 2 ) @D _ =2 F(1/2,3/2,2;%%)
(1= Z k+1), . F(1/2 1,2; 2
_ d
- 7%= N1+ 72 1), :g(_4)WF(_1/2’1/2’1;”2)
and for the elementary expression of the hypergeometric
function we have used formuld1) from Ref. 15(2.11) with —475 d 2
a=1/2 andb=1. Combining these results with Eq&1), — WE( n=-_[E(n-K(n],
we obtain g g (Ad)

fs=Fs(s)=F§(s)—F&(s)

2p  Ji+7%-1 1(1_ 1— 7

and here we used the formula for the derivative of the hy-
pergeometric functiofisee Ref. 1%2.8), (20)], formula(A3)
, again, and a formula for the derivative B ) [see Ref. 16

- 2 s 2
Vit g AN E R (13.7, (12)]; K(7) is the complete elliptic integral of the
which, in view of =1- 6, is exactly the same as expres- first kind.
sion (14). Equations(A2) and (A4) now provide
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