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Explicit Green’s function of a boundary value problem for a sphere
and trapped flux analysis in Gravity Probe B experiment

I. M. Nemenmana) and A. S. Silbergleit
Gravity Probe B, W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford,
California 94305-4085

~Received 25 January 1999; accepted for publication 1 April 1999!

Magnetic flux trapped on the surface of superconducting rotors of the Gravity Probe B~GP-B!
experiment produces some signal in the superconducting quantum interference device readout. For
the needs of GP-B error analysis and simulation of data reduction, this signal is calculated and
analyzed in this article. We first solve a magnetostatic problem for a point source on the surface of
a sphere, finding the closed form elementary expression for the corresponding Green’s function.
Second, we calculate the flux through the pick-up loop as a function of the source position. Next,
the time dependence of a source position, caused by rotor motion according to a symmetric top
model, and thus the time signature of its flux are determined, and the spectrum of the trapped flux
signal is analyzed. Finally, a multipurpose program of trapped flux signal generation based on the
above results is described, various examples of the signal obtained by means of this program are
given, and their features are discussed. Signals of up to 100 fluxons, i.e., 100 pairs of positive and
negative point sources, are examined. ©1999 American Institute of Physics.
@S0021-8979~99!08113-X#
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I. INTRODUCTION

The Gravity Probe B~GP-B! satellite is scheduled to fly
in the year 2000. It contains a set of gyroscopes intende
test the predictions of general relativity that a gyroscope
low ~altitude'650 km! circular polar orbit will precess, rela
tive to a distant star, about 6.6 arcsec/year in the orbital p
~DeSitter, or geodetic, precession! and about 42 marcsec
year perpendicular to the orbital plane~Lense–Thirring, or
frame-dragging, precession!. To provide the desired mea
surement accuracy~1 part in 105 for the geodetic effect!, a
magnetic London moment readout using a superconduc
quantum interference device~SQUID! has been chosen, s
that the experiment will be carried out at low temperatu
~;2.5 K!, and the gyrorotors will be superconducting~see
Refs. 1, 2, and 3 for the design and status of the experim
the history of GP-B development is found in Ref. 4, and
survey of space relativity tests is in Ref. 5!. The direction of
the magnetic London moment developed in a rotating su
conductor coincides with the direction of the rotation~spin!
axis6 ~for basic superconductor physics see Ref. 7; the
scription of gyromagnetic effects can be found in Ref.!.
The corresponding magnetic flux through the pick-up loop
the SQUID is proportional to the sine of the angle betwe
the London moment vector and the pick-up loop plane,
the change of this angle, and thus the drift of the gyrosc
axis, can be detected from the SQUID signal at the roll f
quency of the spacecraft which will be deliberately rotate

However, along with the London moment dipole, the
will also be quantum-size sources of magnetic field pinned

a!Permanent address: Department of Physics, Princeton University, P
eton, NJ 08544; electronic mail: nemenman@princeton.edu
6140021-8979/99/86(1)/614/11/$15.00
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the surface of the superconducting rotor~see Refs. 7 and 9!.
They appear in pairs of the opposite polarity called fluxo
the sources constituting the pair are connected by a magn
vortex line going through the whole body of the superco
ductor~see Fig. 1!. The fluxons produce additional magnet
flux through the pick-up loop called trapped flux; its tim
signature will be present in the SQUID output. The low fr
quency part of this signal, although comparatively small u
der the GP-B conditions, might corrupt the accuracy of
London moment readout. On the other hand, its high f
quency part can provide additional information that is s
nificant for the experimental results. To make sure
trapped flux does not affect the measurement precision
well as to extract useful information from it, one has to an
lyze the trapped flux signal and develop the code genera
it for the use in simulations of the GP-B error analysis a
data reduction. This is the primary goal of the present artic
we also hope that our analysis may be of use for other
plications as well. Note that the first work on the analysis
the trapped flux from a GP-B rotor was done by Wai in h
thesis.10

In Sec. II we give a closed form solution to a magne
static problem of a point field source~‘‘magnetic charge,’’
‘‘half-fluxon’’ ! on the surface of the gyroscope. In Sec.
the solution is used to find the trapped flux signal in t
pick-up loop as a function of the half-fluxon’s position. Th
closed form expression for the trapped flux appears to be
very useful for further applications, so various exact and
proximate formulas are also obtained. In Sec. IV we inv
tigate the motion of fluxons with respect to the pick-up loo
thus finding the time signature of the trapped flux signal;
then go on to analyze its frequency spectrum. Section
contains a brief description of the program used to simu
c-
© 1999 American Institute of Physics

o AIP copyright, see http://ojps.aip.org/japo/japcpyrts.html.
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trapped flux for the GP-B data processing routines. Pictu
of the high frequency signal, its low frequency envelope, a
various Fourier spectra are presented and discussed.

II. THE GREEN’S FUNCTION OF THE
MAGNETOSTATIC PROBLEM

The GP-B experiment will be conducted at low tempe
tures, so the fluxons can be treated as static~welded to the
rotor’s surface! and noninteracting ones. In such a case
total fluxon field is a superposition of the fields of individu
fluxons, each consisting of contributions from its positi
and negative magnetic charges. In addition, the rate
change of this field due to the rotor’s motion is negligib
hence the magnetostatic approach should be used. Thu
consider a single~positive! source of the field whose chara
teristic size is on the order of 1025 cm;9 due to a macro-
scopic size of the gyroscope~1.91 cm radius!, this can be
treated as a point source of magnetic field with the coo
nate anglesq1 , w1 on the surfacer 5r g of the rotor. The
spherical coordinatesr ,q, w here correspond to a Cartesia
frame$x,y,z% fastened to the pick-up loop so that the orig
coincides with the loop center and thez axis is perpendicular
to the loop plane; the real relative motion of the fluxon a
the loop, i.e., the dependence of the position anglesq1 , w1

on time, will be incorporated and examined in Sec. IV.
In these settings, the boundary value problem for

magnetic potentialC(r ) of the fluxon outside the rotor is
formulated as

DC~r !50, r .r g , 0<u1<p, 0<w1,2p, ~1!

2
]C

]r U
r 5r g

5
F0

r g
2 sinq1

d~q2q1!d~w2w1!, ~2!

whereF05h/2e is the magnetic flux quantum, and the ma
netic field is

B52“C. ~3!

Evidently, up to a factorF0 , C is the Green’s function of
the external Neumann boundary value problem for a sph

A standard separation of variables leads to the follow
series representation of the solution to Eqs.~1! and ~2!:

FIG. 1. Rotor with a fluxon.
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C~r ![C~r ,q,w!5
F0

2pr g
(
l 50

`

(
m50

l

~Mlm cosmw

1Nlm sinmw!S r g

r D l 11

Pl
m~cosq!,

~4!

with the coefficients given by

Mlm5
2l 11

~11dm0!~ l 11!

~ l 2m!!

~ l 1m!!
Pl

m~cosq1!cosmw1 ,

~5!

Nlm5
2l 11

~ l 11!

~ l 2m!!

~ l 1m!!
Pn

m~cosq1!sinmw1 .

As it turns out, this series may be summed to give
closed form solution forC. To determine it, we first intro-
duce Eq.~5! into Eq. ~4! to obtain

C~r !5
F0

4pr g
(
l 50

`
2l 11

l 11 S r g

r D l 11F Pl~cosq!Pl~cosq1!

12 (
m50

l

Pl
m~cosq!Pl

m~cosq1!cosm~w2w1!G .

Then, by applying the addition theorem for Legendre fun
tions @see Ref. 11~10.11!, ~47!#, we convert the latter into

C~r !5
F0

4pr g
(
l 50

`
2l 11

l 11 S r g

r D l 11

Pl~cosg!

5
F0

4pr g
F2(

l 50

` S r g

r D l 11

Pl~cosg!

2(
l 50

`
1

l 11 S r g

r D l 11

Pl~cosg!G , ~6!

whereg is the angle between the directions to the fluxon a
to the observer

cosg[cosq cosq11sinqsinq1cos~w2w1!. ~7!

The first of the series in the above expression forC is
obviously the generating function for Legendre polynomi
@see Ref. 11~10.10!, ~39!#, the second one is just an integr
of it, namely,

(
l 50

`
1

l 11
h l 11Pl~z!5E

0

h
dt(

l 50

`

t l Pl~z!

5E
0

h dt

A122zt1t2

5 ln
h2z1A122zh1h2

12z
.

Using these results in Eq.~6!, we can now write the magneti
potential in its final form as a finite combination of eleme
tary functions,
o AIP copyright, see http://ojps.aip.org/japo/japcpyrts.html.
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C~r ![F0 G~r ,r1!

5
F0

2p F 1

ur2r1u
2

1

2r g
ln

r g
22r•r11r gur2r1u

rr g2r•r1
G , ~8!

where G(r ,r1) is the Green function mentioned andr1

5$r g ,q1 , w1% is the position vector of the source. The fir
term here, as one would expect, is a half of the potential
point charge, and the addition to it describes the contribu
of the curved boundary.

Since, surprisingly enough, we were not able to find t
explicit formula in the literature, it seems reasonable to g
here a closed form expression for the Green function of
corresponding Dirichlet problem (G0), in which boundary
condition ~2! is replaced by

Cur 5r g
5

F0

r g sinq1
d~q2q1!d~w2w1!. ~9!

The result then is

C~r ![F0 G0~r ,r1!5
F0

4p

r 22r g
2

ur2r1u3
. ~10!

Note that the Green’s functions for the corresponding in
nal problems can be obtained from Eqs.~8! and ~10! by
means of inversion.

III. TRAPPED FLUX AS A FUNCTION OF A MAGNETIC
CHARGE POSITION

Magnetic flux measured by the pick-up loop of a GP
SQUID is the flux through the circle of the radiusR in the
plane z50, or, equivalently, the flux through the~upper!
hemisphere. The dependence of the trapped flux on the
fluxon position turns out to be rather complicated, especi
for the GP-B design, when the gap between the rotor and
loop is very small as compared to the pick-up loop radiusR.
For that reason we give here a number of different repres
tations of the trapped flux as a function of the fluxon po
tion; each of them has its own merits and drawbacks an
thus used for different purposes pertinent to our investi
tion.

A. Trapped flux in terms of a series of Legendre
polynomials

The simplest way to calculate the trapped flux is to
tegrate over the hemisphere the series expression for th
dial component of the magnetic field obtained from E
~3!–~5!:

F15E
hemisphere (r 5R)

BrU r 5R dA

5E
hemisphere (r 5R)

2
]C

]r U
r 5R

dA

5F0(
l 50

`

~ l 11!S r g

R D l

M l0E
0

1

Pl~s! ds;

all spherical harmonics withm5” 0 here have averaged ou
over the azimuthal anglew. The last integral is calculate
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with the help of the known relations of the theory of Le
endre polynomials@see Ref. 11~10.10!, ~14!, ~2!, ~4!#:

Pl~s!5
Pl 118 ~s!2Pl 218 ~s!

l 11
; Pl~1!51;

P2k11~0!50; P2k~0!5
~21!k

Ap

G~k11/2!

k!
;

l ,k50,1,. . . ;

G(z) is the Euler gamma function. Then, after inserting t
valuesMl0 from Eq. ~5!, we arrive at the following expres
sions:

F1~cosq1!5
F0

2
Fd~cosq1!;

Fd~s!5 (
k50

`

~12d!2k11P2k11~s!@P2k~0!2P2k12~0!#

5
2

Ap
(
k50

`

~21!k
k13/4

~k11!!
G~k11/2!

3~12d!2k11P2k11~s!. ~11!

Here d denotes the dimensionless gap between the pick
loop and the rotor, 0<d5(R2r g)/R,1.

From the point of view of signal processing,Fd(s) is a
transfer function which converts the ‘‘input’’ half-fluxon po
sition signalSin(t)5cosq1(t) ~the position is changing with
time as the rotor moves relative to the pick-up loop; see S
IV !, into an ‘‘output’’ trapped flux signal Sout(t)
50.5F0Fd@Sin(t)# which is present in the GP-B readou
Since the total contribution to the flux of any number
fluxons scattered in any way over the rotor’s surface is giv
by the sum of the values of the same functionFd taken at
proper different values of its argument, it was called ‘‘un
versal curve’’ in Ref. 10. Clearly,Fd(s) is an odd function
of s; in particular,Fd(0)50 means that a source sitting e
actly in the pick-up loop plane does not, of course, regis
any flux.

By settingd50 in Eq. ~11! ~the loop on the surface o
the rotor!, we immediately find

F0~s!5
2

Ap
(
k50

`

~21!k
k13/4

~k11!!
G~k11/2!P2k11~s!

5H 1 if 0,s<1;

0 if s50;

21 if 21<s,0
~12!

~the last equality here is proved by expanding its right-ha
side in the orthogonal series of Legendre polynomials!.

This result obtained by Wai10 has a clear physical mean
ing: when the pick-up loop lies on the rotor’s surface, t
same as the point source of field always does, the
through the loop remains unchanged (6F0/2, half of the
total! while the half-fluxon stays in either of the hemispher
separated by the plane of the loop, and changes its sign
jump when the half-fluxon crosses this plane. However,
o AIP copyright, see http://ojps.aip.org/japo/japcpyrts.html.
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~12! also demonstrates the difficulties in using express
~11! for GP-B, whered50.025 is very small: for anyd.0
the series of Eq.~11! has an absolutely converging majoran
so its sumFd(s) is an analytical function ofs, but it has a
jump discontinuity ats50 whend50. Therefore the serie
of Eq. ~11! converges worse and worse with the separatiod
becoming smaller and smaller, which makes Eq.~11! practi-
cally unacceptable for accurate numerical calculations at
required value of separation. It also turns findinga uniform
in s asymptotic expansion ofFd(s) for d→0 into a rather
difficult mathematical problem. The effect is that for sm
positive values ofd the transfer function has the shape o
very steep ‘‘kink’’ @recall thatFd(s) is odd#: it is almost
constant outside a small vicinity (2Dd , Dd) of the origin,
with Dd5O(d) as shown below, and is equal to zero as
50 with a huge gradient;O(1/d) there~see Fig. 2!. That is
why we are deriving three more representations forFd(s) in
the text that follows.

B. Integral representation of the trapped flux

An integral expression forFd(s) is obtained by replac-
ing the Legendre polynomials in Eq.~11! by their integral
representation@see Ref. 11~10.10!, ~43!#

P2k11~cosq1!5
1

pE2q1

q1 exp@ i ~2k1111/2!# dc

A2~cosc2cosq1!
.

Changing then the order of summation and integration,
arrive at a sum of two hypergeometric series which
readily summed up to result in

Fd~cosq1!5
F0A2

p E
0

q1 dc exp~ ic/2!

Acosc2cosq1

3F l

A11l2
2

A11l2

2l
1

1

2lG , ~13!

l[~12d!exp~ ic!.

FIG. 2. Universal curveFd(s).
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Representation~13! is very convenient for precise nu
merical calculation~and, in fact, is used for this purpose
our code; see Sec. V!, because the integrand in Eqs.~13! is
an algebraic one, and the weak singularity at the upper li
can be taken care of rather easily. The plot of the trans
function computed from Eqs.~13! is given in Fig. 2, along
with graphs of its various approximations that are describ
in Sec. III C. The relative error of the numerical computati
has been kept within 1025.

C. Elementary approximations of the trapped flux

From the described behavior ofFd(s) for small d it is
clear that to effectively approximate it one needs the value
its gradient ats50 and the ‘‘saturation’’ valueFd(1) in the
first place. Fortunately, it is possible to compute these qu
tities exactly, and they are

f d[Fd~1!5
1

12d F12
2d2d2

A11~12d!2G
512~A221!d1O~d2!; ~14!

kd[
]Fd~s!

]s U
s50

5
2

p F11~12d!2

12~12d!2 E~12d!2K ~12d!G
5

2

p F1

d
121O~d logd21!G , d→0;

~15!

here K (k), E(k) are complete elliptic integrals of the firs
and second kind, respectively~see Ref. 14 for their defini-
tions and asymptotic behavior atk→120). The formulas
are derived from Eq.~11! by direct summation of the corre
sponding series of Legendre polynomials carried out in
Appendix.

The simplest approximation of the transfer function f
d→10 is evidently a piecewise-linear one,

Fd~s!'H 1, if Dd,s<1;

kds, if usu<Dd;

21, if 21<s,2Dd,
~16!

with Dd defined in a natural way as

kd Dd5 f d , Dd5
f d

kd
5

p

2
d1O~d2!. ~17!

It turns out that this approximation gives the right qualitati
picture of the signal and is even not too bad quantitative
providing, for all valuesusu<1, the error within 1/3 for both
d50.3 andd50.025. This accuracy, however, is not enou
for the GP-B simulations; moreover, the largest error, as
ciated with the jump of the derivative of function~16! at
s56Dd , occurs in a very sensitive transition region whe
the fast growth ofFd(s) is replaced by its almost constan
behavior.

A much more attractive approximation is given by th
function
o AIP copyright, see http://ojps.aip.org/japo/japcpyrts.html.
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Fd~s!'
2

p
f d arctanS p

2

kds

f d
D , d→10. ~18!

The parameters here are arranged in such a way tha
slope ats50 is exactlykd and, in the spirit of asymptotic
methods, the true saturation value is achieved whenkds
5` @note that another ‘‘simple and natural’’ approximatin
function, the hyperbolic tangent, is not acceptable, beca
the rate of approach off d by Fd(s) is a power rather than
exponential one#. The performance of the approximatio
~18! exceeds all expectations, giving, over the whole ran
of s, a maximum error of 20% ford50.3, and only 1.8% for
d50.025. The accuracy is mostly lost outside the transit
zone (2Dd , Dd) due to the fact thatf d is achieved only at
infinity. This can be dealt with by redefining the paramet
to have both the exact slope ats50 and the right value a
s51, which produces

Fd~s!'Ad arctan
kds

Ad
, Ad arctan

kd

Ad
5 f d , d→10. ~19!

This ‘‘adjusted’’ arctan gives the maximum error with
0.3% for d50.025; even for as large a separation asd
50.3 the error is still about 0.6%. Like in Eqs.~16! and~18!,
the dependence, Eq.~19!, is shown in Fig. 2. CoefficientAd

is plotted versusd in Fig. 3; note the relative flatness of th
function.

D. Closed form expression of the trapped flux

The explicit formula for the trapped flux can also b
obtained, although not that easily, from Eq.~11!; however, a
direct way to get it is to integrate the closed form express
for the magnetic field through the pick-up loop planez50.
For this planeq5p/2, r 5r ~the polar radius!; in addition,
we can redefinew by settingw150. Then Eqs.~8! and ~3!
provide the needed component of the magnetic field in
form

FIG. 3. Dependence ofAd on d.
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the

se

e

n

s

n

e

Bzuz5052
F0r g cosq1

2p F 1

X3~r,w!

1
r2r g sinq1 cosw

2r g
2rX~r,w! Y1~w! Y2~w!

1
sinq1 cosw

2r g
2r Y1~w! Y2~w!

2
1

2r g
2r Y2~w!

G , ~20!

where

X~r,w!5Ar g
222r gr sinq1 cosw1r2,

Y6~w!516sinq1 cosw. ~21!

Now we need to integrate Eq.~20! over the area of the
pick-up loop. First we calculate the simple, although rath
cumbersome, algebraic integral of the field, Eq.~20!, times
rdr over the polar radius from 0 toR ~if instead, one first
integrates overw, elliptic integrals of a complicated argu
ment appear in the result that make the closed form ra
integration very difficult!. As we are then to integrate ove
the period of cosw, the termsodd in cosw can be omitted,
and we obtain

F1~cosq1!5
F0

2
Fd~cosq1!52

F0r g cosq1

2p

3E
0

2p

dwF R22r g
2

2r g
2 X~R,w! Y1~w! Y2~w!

2
R

2r g
2 Y2~w!

G . ~22!

In view of Eqs.~21!, this integration is also rather straigh
forward and leads to the desired result,

F1~cosq1!

5
F0

2

cosq1

12d H 1

ucosq1u
2

2d2d2

p A2~12d!~11sinq1!1d2

3F P~n1 ,k!

11sinq1
1

P~n2 ,k!

12sinq1
G J , ~23!

where

n6~q1!57
2 sinq1

16sinq1
,

~24!

k~q1 ,d!5A 4~12d!sinq1

2~12d!~11sinq1!1d2
,

and P(n,k) is the complete elliptical integral of the thir
kind ~see Ref. 14!. As a consistency check, one may calc
late the saturation value and the derivative at zero of
transfer function, Eq.~23!, to see that they are indeed equ
to the previously obtained values, Eqs.~14! and ~15!.

The first term in Eq.~23! evidently has a jump disconti
nuity at s5cosq150. Therefore, for all finited, the second
term must contain the discontinuity of the opposite sign
make the sum of two analytical ins. Hence for small positive
d in the transition zone we are dealing with a small diffe
ence of two large quantities, which is always a proble
o AIP copyright, see http://ojps.aip.org/japo/japcpyrts.html.
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Also, the first term in Eq.~23! coincides exactly with expres
sion ~12! for d50, hence the second one should disappea
this limit, which it necessarily does in a very nonunifor
way. Evidently, such an expression cannot be effectiv
used for both numerical and analytical purposes whend is
small enough, which is our case.

IV. FLUXON KINEMATICS AND SPECTRAL
DECOMPOSITION OF THE TRAPPED FLUX SIGNAL

Now we need to determine the time signatureq1(t) of a
half-fluxon polar angle in the pick-up loop frame to comple
investigation of the trapped flux signal.

In doing that we use four Cartesian coordinate syste
The first one$x, y, z% has been introduced in Sec. I; it
fastened to the pick-up loop, andz is the unit vector norma
to the loop plane~Fig. 1!. The second coordinate syste
$xr , yr , zr% is associated with the roll axis of the spacecra
v̂ r5zr ~Fig. 4!. The roll axis is almost in the pick-up loo
plane, that is, the roll axis—pick-up loop plane misalignme
a<1025 is very small. The third set of coordinate
$xL , yL , zL% is related to the angular momentum vectorL in
a way thatzL5L /uL u. Both ther andL coordinates are fixed
in inertial space, since the roll axis is pointed to the Gu
Star, and we can so far neglect the pointing errors, as we
the relativistic drift ofL . We choose axesyr and yL in the
plane containing bothzr andzL , so then the perpendicular t
this plane axesxr andxL coincides~Fig. 5!, and the follow-
ing relations are true:

zL•zr5yL•yr5cosb0 , zL•yr52yL•zr5sinb0 ,

xr•zr5xr•zL5xr•yr5xr•yL50. ~25!

Here b0 is the roll axis—angular momentum misalignme
which is required to be<531025 rad in the GP-B experi-
ment.

A symmetric top with the moment of inertiaI 1DI rela-
tive to the body symmetry axis and slightly different valueI
for the moments of inertia about the other two axes is a v
good model for the GP-B rotors~note thatuDI u/I<1025 for
them!. Therefore, we choose the fourth Cartesian coordin
system$xB , yB , zB% fixed in the rotor’s body withzB di-
rected along the rotor’s symmetry axis.

FIG. 4. Mutual orientation of roll and loop coordinates.
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The dynamics of a symmetric rotor are well known a
relatively simple~see Refs. 12 and 13!. Its motion in theL
coordinates is a precession aboutzL with the spin frequency

vs5
L

I
, ~26!

and rotation about the rotor symmetry axiszB with the fre-
quency

v rot5
L

I 1DI
cosgB.vsS 12

DI

I D cosgB ; ~27!

0<gB<p is the angle betweenzL andzB .
For the signal of the trapped field we need, however,

time dependence of the position of a source in the iner
coordinates, hence we need expressions
xB(t), yB(t), zB(t) in terms ofxL , yL , zL . The latter is found
with the help of the Euler angles~see, for instance, Ref. 12!
in the form

zB~ t !5zL cosgB1xL singB cosus1yL singB sinus ,

yB~ t !52zL singB cosup

1xL ~cosgB cosus cosup2sinus sinup!

1yL~cosgB sinus cosup1cosus sinup! ,

xB~ t !52zL singB sinup

1xL~cosgB cosus sinup1sinus cosup!

1yL~cosgB sinus sinup2cosus cosup!. ~28!

Here the spin and polhode phases are

us~ t !5vst1us
0 , up~ t !5vpt1up

0 , us,p
0 5const,

~29!

andvp is a polhode frequency,

vp5
L

I

uDI u
I

cosgB5vs

uDI u
I

cosgB ~30!

~in the body-fixed frame the instant angular velocity vec
rotates around the rotor’s symmetry axis with the polho
frequency!. Using this, we obtain the following expressio
for the unit vectore1 in the direction of a half-fluxon~i.e., in

FIG. 5. Mutual orientation of roll and angular momentum coordinates
o AIP copyright, see http://ojps.aip.org/japo/japcpyrts.html.
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the direction of an arbitrary fixed point of the rotor surface
some polar, 0<j<p, and azimuthal, 0<h,2p, angles in
the body-fixed spherical coordinates!:

e15zB~ t ! cosj1~xB~ t ! cosh1yB~ t ! sinh!sinj

[e1~ t !xL1e2~ t !yL1e3~ t !zL ,

e1~ t !5sinj@cosgB cosus~ t ! sin~up~ t !1h!

1sinus~ t ! cos~up~ t !1h!#

1cosj singB cosus~ t ! ,
~31!

e2~ t !5sinj@cosgB sinus~ t ! sin~up~ t !1h!

1cosus~ t ! cos~up~ t !1h!#

1cosj singB sinus~ t !

e3~ t !52sinj singB sin~up~ t !1h!1cosj cosgB .

According to the results of Sec. III, we only need t
en
n

pu

e

o
s
-
s
e-
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tcosine of the angleq1(t) betweene1(t) and the normalz(t)
to the pick-up loop plane to study the trapped field sign
together with the loop,z(t) rotates aboutv̂ r with frequency
v r ~see Fig. 4!:

z~ t !5cos~p/22a!v̂ r1sin~p/22a!~cosu r xr1sinu r yr !

[sina zr1cosa ~cosu r xr1sinu r yr ! ,
~32!u r5u r~ t !5v r t5roll phase.

By means of this, Eqs.~31!, and formulas~25! relating ther
andL coordinates to the first order in the misalignmentsb0

anda we obtain~quadratic and higher order terms are se
eral orders below the required GP-B accuracy!:

cosq1~ t !5as2r sinQs2r1a~b0 sinu r1a!,
~33!Qs2r~ t !5~vs2v r !t1qs2r ; u r~ t !5v r t.

For a perfectly spherical rotorDI 50 and the amplitudes an
initial phase here are true constants whose values dep
only on the position of a fluxon relative to the symmet
axis, as2r5sinj, qs2r5h, a5cosj. If, on the other hand,
DI 5” 0, they start to vary slowly with time at the polhod
frequency according to
as2r~vpt !5A@cosj singB1sinj cos~vpt1up
01h!#21sin2 j cos2 gB sin2~vpt1up

01h!,

tanqs2r~vpt !5
sinj cosgB sin~vpt1up

01h!

cosj singB1sinj cos~vpt1up
01h!

, ~34!

a~vpt !5cosj cosgB2sinj singB sin~vpt1up
01h!.
as

e
ller

n-

he
ol-
Note that under the conditions of the GP-B experim
the spin frequency is always much larger than the roll a
polhode ones,v r;531025vs , vp;1025vs . Since gener-
ally the second term in the first equation of Eqs.~33! is about
five orders of magnitude smaller than the first one, the in
signal for the trapped flux output F1(t)
5(F0/2)Fd@cosq1(t)# is a single carrier harmonics of th
~high! spin minus roll frequency (Qs2r), slowly modulated
in the phase and amplitude at polhode frequency, added t
a small dc offset (aa) and a small low frequency harmonic
(u r), both modulated atvp . Therefore it is natural and con
venient to representF1(t) as a Fourier series of spin minu
roll harmonics with the amplitudes modulated by low fr
quencies, namely,

F1~ t !5
F0

2
Fd~cosq1~ t !!

5
F0

2 Fas2r~vpt ! (
k50

`

Ak~vpt !

3sin~2k11!Qs2r~ t !1a~vpt ! ~b0sinv r t1a!

3 (
k50

`

Bk~vpt ! cos2kQs2r~ t !G ; ~35!
t
d

t

by

Ak~vpt !5
2

p~2k11!
E

0

p

cos~2k11!c cosc

3Fd8~as2r~vpt !sinc! dc1O~b0
2!;

Bk~vpt !5
2

p~11dk0!
E

0

p

cos 2kc

3Fd8~as2r~vpt !sinc! dc1O~b0
2!;

here the prime denotes the derivative ofFd(s) in s.
As readily seen, the amplitudes ofodd harmonics of

Qs2r (Ak) are generally of the order of unity and decrease
O(k22) for a large enough numberk. In contrast with that,
the amplitudes ofevenharmonics, which are linear in th
misalignments, are at least four orders of magnitude sma
but decrease only asO(k21), k→`. In addition, the even
harmonics are modulated also by the roll frequencyv r , so
that, along with the harmonics 2kQs2r(t), k50,1,. . . , with
amplitudesa ar(vpt) Bk(vpt), harmonics 2kQs2r(t)6v r t
are present, whose amplitudes differ only by the misalig
ment involved, 0.5b0 instead ofa.

With all this in mind, one can easily understand that t
full spectrum of the trapped flux signal consists of the f
lowing series of frequencies: (2k11)(vs2v r)6mvp ,
2k(vs2v r)6v r6mvp and 2k(vs2v r)6mvp , m,k
o AIP copyright, see http://ojps.aip.org/japo/japcpyrts.html.
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FIG. 6. Simulated readout signals.
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50,1,... . The highest peaks are at (2k11)(vs2v r), and
those at 2k(vs2v r)6v r and 2k(vs2v r) are four to five
orders of magnitude smaller. All of them are surrounded
an appropriately scaled forest of side bands separated
6mvp .

The only remaining thing is to discuss briefly the to
flux F produced byall fluxons. There are always someN
fluxons present on the rotor’s surface after cooling the ro
down below the transition temperature. Experiments h
indicated that the expected number of the pairs is arounN
;100, at most. We denote any values related to either p
tive or negative half-luxons by indexes1 and 2, respec-
tively, numbering them with the indexi 51,2,...,N; for in-
stance, their body coordinates will bej1

i , h1
i andj2

i , h2
i ,

the input signalsS1
i (t)5cosq1

i (t), S2
i (t)5cosq2

i (t), etc.
The general expression for the total trapped field flux

given by

F~ t !5(
i 50

N

@F1
i ~ t !1F2

i ~ t !#

5
F0

2 (
i 50

N

@Fd~cosq1
i ~ t !!2Fd~cosq2

i ~ t !!#; ~36!

obviously, the full spectral representation ofF(t) is just a
scaled up version ofF1(t) given in Eqs.~35!.

Since for smalld the transfer functionFd(s) is close to
6Fd(1)'61 everywhere except within a small vicinity o
the origin ~see Sec. III!, expressions~36! and ~35! demon-
strate that the maximum value ofF(t) is distributed accord-
ing to the usual counting statistics, provided that the dis
bution of fluxons over the surface of the rotor is a unifo
random one. ThereforeN fluxons in this case should produc
a total flux on the order ofANF0 for ‘‘large’’ N.
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V. CODE AND SIGNAL ANALYSIS

For the GP-B error analysis and data reduction o
needs to simulate the trapped flux signal as expected in
SQUID output. To do that, the results obtained earlier w
utilized for writing a program that is able to be fast enou
to generate, store, and analyze the high-frequency sig
The code, written in the MATLAB V.5.0 to ensure compa
ibility with other GP-B software, is available from the au
thors.

The program is very versatile, allowing many optio
and many different tasks. For instance, there may be a
ferent number of fluxons, and theirpositionsmay be read
either from a prewritten file or generated at random acco
ing to different probability distributions.Transfer function
may be calculated by means of several different express
introduced in Sec. III. Generation of thehigh frequency sig-
nal and/or its slow varyingFourier amplitudes, Eqs.~35! and
~36!, is possible. In addition, all gyroscope and pick-up lo
parameters~radii, rotor asphericity, misalignments, etc.!, as
well as the discretization frequency, time intervals, and
angular velocities may be specified in an arbitrary way.

A lot of attention in the program’s realization has be
paid to the fact that tracing positions of as much as 1
fluxons for long enough periods of time with high discre
zation frequency easily becomes too memory consum
The program has thus been optimized in several directio
so as to not cause excessive memory swaps to the hard
and not lead to the memory fragmentation, and to access
hard drive for data storage as infrequently as possible.
following data may be useful to estimate the code’s spe
on a Sun UltraSparc 5 with 128 megabytes of random acc
memory ~RAM! running System V, Rel. 4.0 and having
network mounted storage drive it takes, depending on
network load, from 1.5 up to 2 h togenerate 1 h ofsignal of
o AIP copyright, see http://ojps.aip.org/japo/japcpyrts.html.
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100 fluxons at a sampling frequency of 2200 Hz~the actual
sampling rate of GP-B electronics!.

We will not elaborate more here on the code details
will continue with the results of our simulations. All of them
have been performed with the parameters set at the va
expected for the GP-B experiment~see cf. Refs. 1–3!. In
particular, the spin frequencyf spin5100 Hz, the roll period
Tr53 min, the polhode periodTp'43.6 min; recall thatd
50.025.

In Fig. 6 the signals are seen as generated by diffe
number of fluxons distributed in various ways over the s
face of the gyroscope. In all of the graphs the ‘‘adjust
arctan’’ approximation~19! to the universal curve is used
Figure 6~a! shows signals of a positive half-fluxon~without
its negative counterpart! positioned at different points on th
gyro. The majority of magnetic charge positions provide s
nals like the one drawn as a solid line. The dashed and d
dotted lines correspond to rare charges oscillating in a sm
(;Dd) vicinity of the pick-up loop plane, which is why thei
amplitude is smaller. On average, one cannot expect
many charges like that, however, each of the four GP-B
tors will carry just oneparticular realization of the fluxon
position distribution, so these ‘‘weak’’ half-fluxons are po
sible.

FIG. 7. Envelope of the simulated trapped flux signal,Tp'43.6 min.
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Figure 6~b! shows various signals from one fluxon
Again, the solid line corresponds to ‘‘the most probable
signal: the positive and negative half-fluxons are far fro
each other~although not opposite on the sphere! and have
large oscillation amplitudes.

Figure 6~c! shows typical signals of 5, 15, and 100 flu
ons distributedrandomlywith the uniform probability over
the gyro’s surface. TheAN growth of the signal is visible;
the complexity of the signal profile also clearly increas
with N.

Figure 6~d! shows short fragments of the 12 h of sign
generated for the test of the GP-B data reduction algorith
There are 100 fluxons distributed unevenly: 60 of them
uniformly spread at random over the surface@just like in Fig.
6~c!#, while the remaining 40 are used to create a total
flux of ;40F0 along some random axis. This should a
count for the small residual magnetization of the rotor at
time when it was made superconducting~see Ref. 17!. This
magnetization not only significantly increases the amplitu
of the signal, it also smoothes it out. Different curves in F
6 correspond to the signals taken at different stages of
polhoidal motion~namely, 0, 15, and 24 min from som
reference point! for a duration of three spin periods.

In Fig. 7 a low-frequency envelope is plotted of the si
nal from Fig. 6~d! used in the GP-B simulations. The grap
was constructed by splitting the magnetic flux signal into
blocks~4400 data points in each! and plotting the maximum
value of the flux for each block. The periodicity of the larg
scale structures of the envelope with an approximate polh
period of about 43 min is clear. On the other hand, a co
parison of the signal in any two corresponding regions de
onstrates that the short scale features, presumably introd
by the roll frequency and other less intensive harmonics,
not repeated precisely every polhode periodTp , which is
expected becauseTp and the roll periodTr are incommensu-
rable.

Figure 8 shows the slow polhoidal variation of Fouri
amplitudes of the spin minus roll harmonics calculated
cording to Eqs.~35! and summed over the fluxons. The fir
10 odd and even harmonics are shown in plots~a! and ~b!,
respectively, in Fig. 8. Recall that in expressions~35! for the
flux all even harmonics are multiplied by the misalignmen
so that the actual vertical scale in Fig. 8~b! is about 105 that
in Fig. 8~a!. The pictures clearly show that the odd harmo
r-
FIG. 8. Slowly varying amplitudes of the Fourier ha
monics of the trapped flux signal,Tp'43.6 min.
o AIP copyright, see http://ojps.aip.org/japo/japcpyrts.html.
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ics drop much faster with the number than the even ones
predicted. It is interesting to note that the lowest evenn
50) harmonics, which gives the amplitude of the dc and
roll frequency components, has a shape rather distinc
from the profile of the other modes.
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APPENDIX: SUMMATION OF CERTAIN SERIES OF
LEGENDRE POLYNOMIALS

Here we give a derivation of formulas~14! and~15! for
f d5Fd(1) and for the slopekd of the transfer function ats
50. We use the Pochgammer symbol (a)051, (a)k5a(a
11) . . . (a1k21)5G(a1k)/G(a), as well as the standar
notation,

F~a, b, c; z!5 (
k5o

`
~a!k~bk!

~c!k

zk

k!
,

for the Gauss hypergeometric function of argumentz and
parametersa, b, andc. From Eq.~11! we have

Fd~s![Fd
(1)~s!2Fd

(2)~s!;

Fd
(1)~s!52h (

k50

`
~2h2!k

k! S 1

2D
k

P2k11~s!, ~A1!

Fd
(2)~s!5

h

2 (
k50

`
~2h2!k

~k11!! S 1

2D
k

P2k11~s!,

where we introducedh512d for brevity.

A. Calculation of f d

SincePn(1)51, we have

Fd
(1)~1!52h (

k50

`
~2h2!k

k! S 1

2D
k

5
2h

A11h2
;

Fd
(1)~1!5

h

2 (
k50

`
~2h2!k

~k11!!

~ 1
2!k ~1!k

~2!k
5

h

2
F~1/2, 1, 2;

2h2!5h21~A11h221!,

and for the elementary expression of the hypergeome
function we have used formula~11! from Ref. 15~2.11! with
a51/2 andb51. Combining these results with Eqs.~A1!,
we obtain

f d5Fd~s!5Fd
(1)~s!2Fd

(2)~s!

5
2h

A11h2
2

A11h221

h
5

1

h S 12
12h2

A11h2D ,

which, in view of h512d, is exactly the same as expre
sion ~14!.
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B. Calculation of kd

As @see Ref. 15~10.10!, ~12!#

P2k118 ~0!5~2k11! P2k~0!5
~21!k

k! S 3

2D
k

,

from Eqs.~A1! we find

]Fd
(1)

]s
U

s50

52h (
k50

`
~2h2!k

k! S 1

2D
k

P2k118 ~0!

52h (
k50

`
~h2!k

k!

~ 1
2!k~

3
2!k

~1!k

~A2!
52h F~1/2, 3/2, 1;h2!

5
2h

12h2 F~1/2,21/2, 1;h2!

5
4h

p~12h2!
E~h!,

whereE(h) is the complete elliptical integral of the secon
kind, and we have exploited the classical relation@see Ref.
15 ~2.1.4!, ~23!#

F~a, b, c; z!5~12z!c2a2b F~c2a, c2b, c; z!,

and the expression for the elliptical integral in terms of t
hypergeometric function@see Ref. 16~13.8!# is

F~1/2,21/2, 1;h2!5
2

p
E~h!. ~A3!

Similarly,

]Fd
(2)

]s
U

s50

5
h

2 (
k50

`
~2h2!k

~k11!! S 1

2D
k

P2k11
8 ~0!

5
h

2 (
k50

`
~h2!k

k!

~ 1
2!k~

3
2!k

~2!k

5
h

2
F~1/2, 3/2, 2;h2!

5
h

2
~24!

d

d~h2!
F~21/2, 1/2, 1;h2!

5
24h

p

d

d~h2!
E~h!52

2

ph
@E~h!2K ~h!#,

~A4!

and here we used the formula for the derivative of the
pergeometric function@see Ref. 15~2.8!, ~20!#, formula~A3!
again, and a formula for the derivative ofE(h) @see Ref. 16
~13.7!, ~12!#; K (h) is the complete elliptic integral of the
first kind.

Equations~A2! and ~A4! now provide
o AIP copyright, see http://ojps.aip.org/japo/japcpyrts.html.
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kd5
]Fd

]s U
s50

5
]Fd

(1)

]s
U

s50

2
]Fd

(2)

]s
U

s50

5
2

ph F11h2

12h2 E~h!2K ~h!G ,
which coincides with the exact expression in Eq.~15!; the
asymptotic formula there for smalld512h is obtained by
using the expansions of elliptical integrals in the series in
conjugate modulus@see Ref. 14~773.3!, ~774.3!#.
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