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Gradient sensing requires at least two measurements at different
points in space. These measurements must then be communicated
to a common location to be compared, which is unavoidably noisy.
Although much is known about the limits of measurement precision
by cells, the limits placed by the communication are not understood.
Motivated by recent experiments, we derive the fundamental limits
to the precision of gradient sensing in a multicellular system,
accounting for communication and temporal integration. The gradi-
ent is estimated by comparing a “local” and a “global” molecular
reporter of the external concentration, where the global reporter is
exchanged between neighboring cells. Using the fluctuation–dissipa-
tion framework, we find, in contrast to the case when communica-
tion is ignored, that precision saturates with the number of cells
independently of the measurement time duration, because commu-
nication establishes a maximum length scale over which sensory in-
formation can be reliably conveyed. Surprisingly, we also find that
precision is improved if the local reporter is exchanged between cells
as well, albeit more slowly than the global reporter. The reason is
that whereas exchange of the local reporter weakens the compari-
son, it decreases the measurement noise. We term such a model
“regional excitation–global inhibition.” Our results demonstrate that
fundamental sensing limits are necessarily sharpened when the need
to communicate information is taken into account.
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Cells sense spatial gradients in environmental chemicals with
remarkable precision. A single amoeba, for example, can

respond to a difference of roughly 10 attractant molecules be-
tween the front and the back of the cell (1). Cells are even more
sensitive when they are in a group: Cultures of many neurons
respond to chemical gradients equivalent to a difference of only
one molecule across an individual neuron’s axonal growth cone
(2), clusters of malignant lymphocytes have a wider chemotactic
sensitivity than single cells (3), and groups of communicating
epithelial cells detect gradients that are too weak for a single
cell to detect (4). More generally, collective chemosensing
properties are often very distinct from those in individual cells
(3, 5–7). These observations have generated a renewed interest
in the question of what sets the fundamental limit to the pre-
cision of gradient sensing in large, spatially extended, often
collective sensory systems.
Fundamentally, sensing a stationary gradient requires at least

two measurements to be made at different points in space. The
precision of these two or more individual measurements bounds
the gradient sensing precision (8, 9). In its turn, each individual
measurement is limited by the finite number of molecules within
the detector volume and the ability of the detector to integrate
over time, a point first made by Berg and Purcell (BP) (8). More
detailed calculations of gradient sensing by specific geometries of
receptors have since confirmed that the precision of gradient
sensing remains limited by an expression of the BP type (10–12).
However, absent in this description is the fundamental rec-

ognition that for the gradient to be measured, information about

multiple spatially separated measurements must be communi-
cated to a common location. This point is particularly evident in
the case of multicellular sensing: If two cells at either edge of
a population measure concentrations that are different, neither
cell “knows” this fact until the information is shared. This is also
important for a single cell: Information from receptors on either
side of a cell must be transported, e.g., via diffusive messenger
molecules, to the location of the molecular machinery that initiates
the phenotypic response. How is the precision of gradient sensing
affected by this fundamental communication requirement?
As discussed recently in the context of instantaneous mea-

surements (4), the communication imposes important limita-
tions. First, detection of an internal diffusive messenger by cel-
lular machinery introduces its own BP-type limit on gradient
sensing. Because the volume of an internal detector must be
smaller than that of the whole system, and diffusion in the cy-
toplasm is often slow, such an intrinsic BP limitation could be
dramatic. Second, in addition to the detection noise, the strength
of the communication itself may be hampered over long dis-
tances by messenger turnover. This imposes a finite length scale
over which communication is reliable, with respect to the mo-
lecular noise. However, the communicating cells can integrate
the signals over time (8), improving detection of even very weak
messages. To what extent such integration and the ensuing
temporal correlations between the ligand and the communica-
tion molecules change the communication constraints has not
yet been addressed.
To analyze constraints on gradient sensing in spatially ex-

tended systems with temporal integration, we use a minimal
model of collective sensing based on the local excitation–global
inhibition (LEGI) approach (13). This sensory mechanism uses a
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local and a global internal reporter of the external concentration,
where only the global reporter is exchanged and averaged among
neighboring cells. Comparison of the two reporters then mea-
sures whether the local concentration is above or below the av-
erage and hence whether the cell is on the high-concentration
edge of the population. We analyze the model, using a fluctua-
tion–dissipation framework (14), to derive the precision with
which a chemical gradient can be estimated over long observa-
tion times. In the case where the need to communicate is ignored,
the precision would grow indefinitely with the number of cells. In
contrast, we find that communication imposes limits on sensing
even for long measurement times, although slightly different from
those on instantaneous sensing (4). Furthermore, the analysis re-
veals a counterintuitive strategy for optimizing the precision. We
find that if the local reporter is also exchanged, at a fraction of the
rate of the global reporter, the precision can be significantly en-
hanced. Even though such exchange makes the two compared
concentrations more similar, which weakens the comparison, it
reduces the measurement noise of the local reporter. This tradeoff
leads to an optimal ratio of exchange rates that maximizes sensory
precision. We discuss how our model is realized in classic gradient
sensing systems and how its additional predictions could be tested
experimentally.

Results
Spatially extended gradient sensors come in different forms,
from large spatially extended cells (15, 16) to groups of neigh-
boring cells or nuclei (4, 17–19). We intend to develop a theory
that accounts for both structures simultaneously. For this, we
view the spatially extended gradient sensor as consisting of
compartments. These can be whole cells or their parts, but we
refer to them as cells from now on. The limit of a single-cell,
homogeneous, spatially extended sensor can be obtained by
taking the compartment size to zero, while keeping the overall
sensor length constant.
There is a diffusible chemical whose concentration varies lin-

early in space. The chemical gradient defines a direction within
the sensor, and we focus on a chain of cells along this direction
(Fig. 1A). Numbering the cells from n= 1 to N, each cell expe-
riences a local concentration cn = cN − ðN − nÞag, where cN is the
background concentration, g is the concentration gradient, and a
is the linear size of each cell. We choose without loss of gener-
ality to have g≥ 0 and to reference the background concentration
at cell N, which is then at the higher edge of the gradient. We
focus on this cell because we imagine it will be the first to initiate
a phenotypic response, such as proliferating or directed motility.
Finally, we focus on the limit ag=cN � 1 because limits on the

sensory precision will be the most important for such small, hard
to measure gradients.

An Idealized Detector. First, we consider the case when the two
edge cells form an idealized detector, in the sense that each cell
counts every external molecule in its vicinity and one cell
knows instantly and perfectly the count of the other (Fig. 1B).
The gradient could then be estimated by the difference in the
concentration measurements made by the two cells (8, 9). The
mean of this difference is Δ= cN − c1 = ðN − 1Þag, and its error is
given by the corresponding errors in the two measurements,
ðδΔÞ2 = ðδc1Þ2 + ðδcNÞ2, under the assumption that the measure-
ments are independent.
Berg and Purcell (8) showed that the fractional error in each

measurement is not smaller than ðδc=cÞ2 ∼ 1=ðaDTcÞ, where D is
the diffusion constant of the ligand, and T is the time over which
the measurement is integrated. This expression has an intuitive
interpretation: The fractional error is at least as large as the
Poisson counting noise, which scales inversely with the number
of molecular counts. The number of counts that can be made in
a time T is given by the number of molecules in the vicinity of a
cell at a given time, roughly ca3, multiplied by the number of times
the diffusion renews these molecules, T=τ, where τ∼ a2=D. This
product is aDTc.
The error in the gradient estimate is then given by ðδΔÞ2 ∼ c1=

ðaDTÞ+ cN=ðaDTÞ. For sufficiently small gradients, such that
c1 ≈ cN, this becomes �

δΔ
cN

�2

∼
1

aDT cN
. [1]

Thus, for an idealized detector, the error in the gradient estimate
is limited entirely by the error in the measurements made
by each of the edge cells. In general, we could think of the
measurement at either edge being performed by a region that
is larger than a single cell. Because each region could not be
larger than the whole system, the highest precision is obtained
when ∼Na replaces a in Eq. 1. This result has been derived
more rigorously (10), and apart from a constant prefactor,
Eq. 1 indeed provides the estimation error in the limit of large
detector separation and fast detection kinetics. More complex
geometries, such as rings of detectors (10), or detectors distrib-
uted over the surface of a circle (11) or a sphere (12), have also
been considered, and Eq. 1 again emerges as the corresponding
bound, with the length scale a replaced by that dictated by the
specific geometry.
Eq. 1 can be combined with the mean Δ to produce the signal-

to-noise ratio (SNR) for gradient detection,

1
SNR

≡
�
δΔ
Δ

�2

∼
cN

½ðN − 1Þag�2aDT
. [2]

This expression again has a clear interpretation: The SNR in-
creases if the external molecules diffuse more quickly (D) or are
more sharply graded (g) or if the detectors are larger (a), are
better separated (N), or integrate longer (T). However, the
SNR decreases for a larger background concentration (cN), be-
cause it is more difficult to detect a small gradient on top of a
larger background (4). The measures defined in Eqs. 1 and 2 are
conceptually equivalent only in the case of low background con-
centration, when the difference Δ is comparable to the back-
ground concentration cN (i.e., c1 ≈ 0). Whereas much of the field
has focused on Eq. 1, here we are concerned with the opposite
case: the fundamental limits to the detection of small gradients on
a large background. Therefore, from here on we focus on the
SNR, Eq. 2.

A C

B

Fig. 1. Spatially extended gradient sensing. (A) A chain of N compartments
or cells is exposed to a linear profile of a diffusible chemical. (B) In an idealized
detector, the two edge cells communicate their measurements perfectly and
instantly. (C) In our model, bound receptors (R) activate local (X) and global
reporter molecules (Y), and Y is exchanged between cells for the commu-
nication. Kinetic rates associated with various processes are indicated by
Greek letters.
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Accounting for the Need to Communicate. Eq. 2 cannot be a fun-
damental limit because it neglects a critical aspect of gradient
sensing: the need to communicate information from multiple
detectors to a common location. Indeed, the idealized detector
implies the existence of a “spooky action at a distance” (20),
i.e., an unknown, instantaneous, and error-free communication
mechanism. What are the limits to gradient sensing when com-
munication is properly accounted for?
To answer this, a model of gradient sensing must be assumed.

A naive model would allow each cell access to information about
the input measured and broadcast by every other cell. This would
require a number of private communication channels that grow
with the number of cells, which is not plausible. A realistic al-
ternative that would involve just one message being communi-
cated is for each cell to have access to some aggregate, average
information, to which all comparisons are made. There are a few
such models (21–23), and our choice among them is guided by
the fact that collective detection of weak gradients is observed in
steady state and over a wide range of background concentrations
in both neurons (2) and epithelial cells (4). This supports an
adaptive spatial (rather than temporal) sensing, such as can be
implemented by the local excitation–global inhibition (LEGI)
mechanism (13).
The LEGI model is illustrated in Fig. 1C. Each cell contains

receptors that bind and unbind external molecules with rates α
and μ, respectively. Bound receptors (R) activate both a local (X)
and a global (Y) intracellular species with rate β. Deactivation of
X and Y occurs spontaneously with rate ν. Whereas X is confined
to each cell, Y is exchanged between neighboring cells with rate
γ, which provides the cell–cell communication. X then excites a
downstream species whereas Y inhibits it (LEGI). Conceptu-
ally, X measures the local concentration of external molecules,
whereas Y represents their spatially averaged concentration. If
the local concentration is higher than the average (i.e., the
excitation exceeds the inhibition), then the cell is at the higher
edge of the gradient. Although such comparison of the exci-
tation and the inhibition can be done by many different mo-
lecular mechanisms (13), here we are interested in the limit of
shallow gradients. In this limit, biochemical reactions doing the
comparison can be linearized around the small difference of X
and Y, and the comparison is equivalent to subtracting Y from X
(4). Therefore, we take this difference, Δ, as the readout of
the model.
Because we are interested in the limits to sensory precision, we

focus on the most sensitive regime, the linear response regime,
where the effects of saturation are neglected. Introducing rn, xn,
and yn as the molecule numbers of R, X, and Y in the nth cell, the
stochastic model dynamics are

_c=D∇2c−
XN
n=1

δ
�
~x−~xn

�
_rn,

_rn = αcn − μrn + ηn,
_xn = βrn − νxn + ξn,

_yn = βrn − ν
XN
n′=1

Mnn′yn′ + χn,

[3]

where cð~x, tÞ is the external concentration, and cn ≡ cð~xn, tÞ is the
concentration at the location ~xn of the nth cell. The matrix
Mnn′ ≡ ð1+ 2γ=νÞδnn′ − ðγ=νÞðδn′,n−1 + δn′,n+1Þ includes the neigh-
bor-to-neighbor exchange terms and is appropriately modified
at the endpoints n∈ f1,Ng. ηn, ξn, and χn are the noise terms.
Specifically, ηn arises from the equilibrium binding and unbind-
ing of external molecules to receptors and can be expressed in
terms of fluctuations in the free energy difference Fn associated
with one molecule unbinding from the nth cell (14), ηn = αcnδFn

(here Fn is in units of the Boltzmann constant times tempera-
ture). The Langevin terms ξn and χn account for noise in the
activation, deactivation, and exchange reactions. They have zero
mean and obey (24)

hξnðtÞξn′ðt′Þi= δn′nðβrn + νxnÞδðt− t′Þ,
hχnðtÞχn′ðt′Þi= ½δn′nðβrn + νyn + 2γyn + γyn−1 + γyn+1Þ

− δn′,n−1ðγyn−1 + γynÞ
−δn′,n+1ðγyn+1 + γynÞ

�
δðt− t′Þ,

[4]

where positive terms account for the Poisson noise corresponding
to each reaction, and negative terms account for the anticorrela-
tions introduced by the exchange. We are particularly interested in
the SNR for the difference between local and global molecule
numbers in the edge cell, ΔN = xN − yN, which is the analog of Eq. 2
for the idealized detector.
Δ is given by the means xN and yN, which follow from Eq. 3

in steady state: xN = ðβ=νÞrN = ½αβ=ðμνÞ�cN and yN = ðβ=νÞPn
M−1

Nnrn = ½αβ=ðμνÞ�PnM
−1
Nncn, such that

ΔN =
αβ

μν

 
cN −

XN−1

n=0

KncN−n

!
. [5]

Here Kn ≡M−1
N,N−n is the communication “kernel,” which deter-

mines how neighboring cells’ concentration measurements are
weighed in producing the global molecule number in the edge
cell. Previously we showed (4) that Kn is

Kn =

PN−n−1
j=0

�
N − n− 1+ j

2 j

�
ðν=γÞj

PN−1
ℓ=0

�
N + ℓ
2ℓ+ 1

�
ðν=γÞℓ

. [6]

To find the noise, we calculate the power spectra of r, x, and y.
As explained below and argued for in Discussion, we assume that
the measurement integration time T is longer than the receptor
equilibration time (τ1), the messenger turnover time (τ2), and
the messenger exchange time (τ3). Under this assumption,
(co)variances in long-time averages are given by the low-frequency
limits of the power spectra, Cxy

nn′ = limω→0S
xy
nn′ðωÞ=T. The first

step is to calculate the power spectrum for rn, which we do using
the fluctuation–dissipation theorem (FDT) as in ref. 14. It has
been argued (25) that the FDT approach of ref. 14 is inaccurate
for a single receptor because it linearizes a binary variable (re-
ceptor occupancy) around its mean value. In contrast, here we
use the FDT to describe bound receptor number for an entire
cell, which can be many thousands. The linear noise approxima-
tion is applicable in this case. The FDT relates the power spectrum
Srrnn′ðωÞ (fluctuations) to the imaginary part of the generalized
susceptibility Gnn′ðωÞ (dissipation),

Srr
nn′ðωÞ=

2
ω
Im½Gnn′ðωÞ�, [7]

where Gnn′ðωÞ describes how the receptor binding relaxes to small
changes in the free energy,

eδrn = X
n′

Gnn′ðωÞfδFn′. [8]

As detailed in SI Text, we solve for Gnn′ðωÞ by linearizing Eq. 3
around its means and Fourier transforming in time and space,
which yields a relationship between eδrn and fδFn. Writing this
relationship in the form of Eq. 8 requires inverting a Toeplitz
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marix (a matrix with constant diagonals), which has a known
inversion algorithm (26). The result is

Srrnn′ðωÞ=
2αcn′
μ2

8>><>>:
�
1+

α

2πaD

�
n′= n,

α

4πaD
1

jn− n′j n′≠ n.
[9]

Here the cell diameter a appears because we cut off the wave-
vector integrals at the maximal value k∼ π=a, as in ref. 14. This
regularizes unphysical divergences caused by the δ-correlated
noises in the Langevin approximation in Eq. 3. In deriving Eq.
9, we have made the first of our timescale assumptions, namely
T � τ1 ≡ μ−1 +K=4πσD, where K ≡ α=μ is the equilibrium con-
stant, and σ ≡ a=2 is the cell radius. τ1 is the receptor equilibra-
tion timescale: It is the time it takes for a signal molecule to
unbind from the receptors and diffuse away from the cell into
the bulk (27). Its first term is the intrinsic receptor unbinding
time, and its second term accounts for rebinding events before
the molecule diffuses far away (25).
The second step is to calculate power spectra for xN and yN. As

shown in SI Text, we calculate these directly from the Fourier
transform of Eq. 3 and the noise correlations in Eq. 4, which
propagate via the same matrix Mnn′ as the means (28). The result is
an expression for the variance ðδΔNÞ2 = ðδxNÞ2 + ðδyNÞ2 − 2Cxy

NN =
½SxxNNð0Þ+ SyyNNð0Þ− 2SxyNNð0Þ�=T, namely

ðδΔNÞ2 = β2

ν2

"
SrrNNð0Þ

T
+
X
nn′

KN−nKN−n′
Srrnn′ð0Þ

T
− 2
X
n

KN−n
SrrNnð0Þ

T

#

+
2
νT

ðxN +K0yNÞ.
[10]

Eqs. 5 and 10, together with Eqs. 6 and 9, give the SNR=
ðΔN=δΔNÞ2, which we do not write here for brevity. In taking the
low-frequency limit to obtain Eq. 10, we have made our second
timescale assumption, namely T � τ2 ≡ 1=ν, where τ2 is the time-
scale of messenger turnover by degradation.
The SNR is compared with the result for the idealized de-

tector (Eq. 2) in Fig. 2. We see that whereas the SNR for the
idealized detector increases indefinitely with the number of
cells N, the SNR for the model with communication and tem-
poral integration saturates, as in the no-integration case (4).
This is our first main finding: Communication leads to a max-
imum precision of gradient sensing, which a multicellular sys-
tem cannot surpass no matter how large it grows. The reason is
that communication is not infinitely precise over large length
scales. In the next section, we make this point clear by deriving
a simple fundamental expression for the maximum value of
the SNR.

Fundamental Limit to Sensory Precision.Our results up to this point
hold for arbitrary communication strengths and cell numbers and
are applicable to multicellular systems or cellular compartments.
However, it is instructive to derive the saturating value of the
SNR in the limit of large N and strong communication, where
messenger hopping between cells is equivalent to continuous dif-
fusion. In this limit, and when communication is strong (γ � ν),
the kernel (Eq. 6) reduces to Kðn, n0Þ≈ e−n=n0=n0 (4). Here n0 ≡ffiffiffiffiffiffiffi
γ=ν

p
sets the length scale of the kernel and therefore sets the

number of neighboring cells with which the edge cell effectively
communicates. The limit γ � ν and our assumption T � τ2 = 1=ν
imply our third timescale assumption, T � τ3 ≡ 1=γ, i.e., that the
integration time is longer than the timescale of messenger ex-
change from cell to cell. Inserting the expression for Kðn, n0Þ into
Eq. 5 and approximating the sum as an integral in the large

N limit, the mean becomesΔN ≈ ðαβ=μνÞðcN − cN−n0Þ= αβn0ag=μν.
Inserting Kðn, n0Þ into Eq. 10 results in products of the exponential
with the 1=jn− n′j dependence of the bound receptor power
spectrum (Eq. 9), leading to sums like

P
je
−j=j, which we evaluate

in SI Text. The result is

1
SNR

=
�
δΔN

ΔN

�2

J
ceff

πðn0agÞ2aDT
, [11]

where

ceff ≡ cN +
log n0
2n0

�
cN−n0=2 − 2cN

�
, [12]

and T � fτ1, τ2, τ3g. Eq. 11 is fundamental in the sense that it
does not depend on the details of the internal sensory mecha-
nism. Rather, it depends only on the properties of the external
signal (c, g,D), the physical dimensions (a), and the fact that
information is integrated (T) and communicated (n0) by the
cells. The inequality reflects the fact that the right-hand side
contains additional positive terms arising from the finite number
of bound receptors and intracellular molecules (SI Text). These
terms represent intrinsic noise and can in principle be made
arbitrarily small by increasing the gain factors α=a3μ and β=ν,
which dictate the internal molecule numbers. What remains in
Eq. 11 is the communicated extrinsic noise, which arises unavoid-
ably from the diffusive fluctuations in the numbers of the ligand
molecules being detected. Eq. 11 is shown to bound the exact
SNR in Fig. 2.
Comparing Eq. 11 to the expression for the idealized detector

(Eq. 2), we see that the expressions are very similar but contain
two important differences. First, whereas Eq. 2 decreases in-
definitely with N, Eq. 11 remains bounded by n0 for large N (Fig.
2). Evidently, a very large detector is limited in its precision to
that of a smaller detector with effective size n0. This limitation
reflects the fact that reliable communication is restricted to a

Fig. 2. Precision of gradient sensing with temporal integration. Signal-to-
noise ratio (SNR) vs. number of cells N is shown for the idealized detector
(Eq. 2 with prefactor 1=π) and for our model with communication (Eqs. 5, 6,
9, and 10). Whereas the SNR for the idealized detector increases indefinitely,
the SNR for the model with communication saturates for N � n0. The sat-
uration level is bounded from above by the fundamental limit, Eq. 11. As
shown, the bound is reached in the high-gain regime α=a3μ= β=ν= 100,
where intrinsic noise is negligible. Other parameters are a= 10 μm, cN = 1 nM,
g= 1 nM/mm, D= 50 μm2/s, μ= ν= 1 s−1, and n0 =

ffiffiffiffiffiffiffi
γ=ν

p
= 10, and the in-

tegration timescale is T = 10 s.
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finite length scale. Importantly, Eq. 11 demonstrates that this
noise is present independently of the number of intrinsic sig-
naling molecules in the communication channel. Thus, the fun-
damental sensory limit is affected not only by the measurement
process (as in BP theory), but also unavoidably by the commu-
nication process.
The second important difference is that Eq. 2 depends on cN,

whereas Eq. 11 depends on the effective concentration ceff, de-
fined in Eq. 12. ceff is a sum of the concentration measured by the
local species, the global species, and the covariance between
them, respectively. The local species measures the concentration
only within its local vicinity, cN. However, the global species ef-
fectively measures the concentration in the vicinity of n0 cells.
This fact reduces the noise associated with this term (and the
covariance term) by the factor of n0 in the denominator of Eq.
12. Because intercellular molecular exchange also competes with
extracellular molecular diffusion, not all of the measurements
made by these n0 cells are independent. Therefore, the reduction
is tempered by the log n0 factor in the numerator of Eq. 12. This
log arises from the interaction of the e−n exchange kernel with
the 1=jn− n′j diffusion kernel (SI Text). The net result is that,
because of the correlations imposed by external diffusion, the
number of independent measurements grows sublinearly with the
system size. For real biological systems n0 is small (4, 19), such as
n0 ≈ 4 for mammary epithelial organoids. However, as shown in SI
Text, the asymptotic expansion in Eqs. 11 and 12 is still very ac-
curate in this range. Thus, this logarithmic correction cannot be
summarily neglected. Nonetheless, even with the correction, in Eq.
12 the measurement noise in the global species decreases with the
communication length scale n0. Crucially, this means that Eq. 11 is
dominated by the measurement noise of the local species, i.e., the
first term in Eq. 12.
In deriving the precision of gradient sensing, we have also

derived the precision of concentration sensing by communicating
cells. Specifically, by focusing only on the global species terms,
and following the steps leading to Eq. 11, we get�

δyN
yN

�2

J 1
2πaeffDTceff

, [13]

where aeff ≡ an0=log n0 and ceff ≡ c2N−n0=cN−n0=2. This expression
has the same form as the BP limit, ðδc=cÞ2 ∼ 1=ðaDTcÞ. Indeed,
in the absence of a gradient, cn = cN is constant, and ceff → cN.
Importantly, however, the effect of communication remains pre-
sent in aeff: Messenger exchange expands the effective detection
length scale by a factor n0, whereas ligand diffusion once again
tempers the expansion by log n0, which is an important correction
if n0 is not too large. The net result is that communication re-
duces error by increasing the effective detector size, aeff > a. Note
that previous analyses that considered effects of spatial averaging
on concentration sensing accuracy did not consider either com-
munication noise (29) or effects of correlations between messen-
ger concentrations in different detector compartments induced
by the ligand diffusion (17, 19), resulting in expressions different
from Eq. 13.

Optimal Sensing Strategy. In the previous section, we saw that the
limit to the precision of multicellular gradient sensing is domi-
nated by the measurement noise of the local species in the edge
cell (Eqs. 11 and 12). In contrast, the measurement noise of the
global species is reduced by the intercellular communication.
This finding raises an interesting question: Could the total noise
be further reduced if the local species were also exchanged be-
tween cells? To explore this possibility, we extend the model in
Eqs. 3 and 4 to allow for exchange of the local species at rate γx,
and we take γ→ γy > γx for the global species. An immediate
consequence of this modification is that the signal becomes

ΔN ≈ αβðny − nxÞag=μν, where nx ≡ γx=ν and ny = γy=ν. Thus, the
signal is reduced by local exchange, because increasing γx de-
creases the difference ny − nx. This is because the signal is de-
fined by the difference between the global and local readouts,
and allowing for the local species exchange makes the two
readouts less different. We thus anticipate that any useful local
exchange rate will satisfy γx � γy to maintain sufficiently high
signal. In this limit, we find that Eq. 12 remains dominated by the
first term, even as local exchange reduces this term according to
cN → cNðlog nxÞ=2nx. Eq. 11 then becomes

SNRK 2πðagÞ2aDT
cN

�
ny − nx

�2nx
log nx

. [14]

For large ny, this expression has a maximum as a function of nx.
The maximum arises due to a fundamental tradeoff: Exchange of
the local species reduces the signal, but it also reduces the dom-
inant local measurement noise.
The optimal value npx depends on ny. Experiments in epithelial

cells suggest that the communication length scale ny is on the
order of a few cells (4). In this range, we find the optimum nu-
merically from the exact SNR, which comes from straightfor-
wardly generalizing Eq. 10 (Eq. S67 in SI Text). Fig. 3 shows that
npx is about half of ny for one specific set of parameters, leading to
an optimal exchange rate ratio of γpx=γy = ðnpx=nyÞ2 ≈ 25%. Al-
though the exact optimal ratio depends on the relative strengths
of different noises, and hence on the gains (Fig. S1), the main
finding is robust: A multicellular system should exchange both
antagonistic messenger molecules, one at a fraction of the rate of
the other. We call this strategy “regional excitation–global in-
hibition” (REGI). Fig. 3 shows that the enhancement over the
one-messenger LEGI strategy can be substantial. For example,
with ny = 10 cells, the SNR is optimally enhanced by a factor of 5.
With ny = 15, the enhancement is almost eightfold.

Discussion
Cellular sensing of spatially inhomogeneous concentrations is
a fundamental biological computation, involved in a variety of

Fig. 3. Regional excitation–global inhibition (REGI). Signal-to-noise ratio
(SNR) is enhanced by allowing both messengers to be exchanged between
cells. The optimal enhancement over LEGI is substantial and occurs because
exchange of the local species reduces measurement noise, but also reduces
the signal. Parameters are as in Fig. 2, but with N= 100, α=a3μ= β=ν=5, and
several values of ny ≡

ffiffiffiffiffiffiffiffiffiffi
γy=ν

q
as indicated.
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processes in the development and behavior of living systems.
Like binocular vision and stereophonic sound processing, it is a
process where the sensing is done by an array of spatially dis-
tributed sensors. Thus, the accuracy of sensing is limited in part
by the physical properties of the biological machinery that brings
together the many spatially distributed measurements. Un-
derstanding these limits is a difficult problem.
Here we solved this problem in the case where the commu-

nication is diffusive, and one-dimensional distributed measure-
ments are used to calculate external concentration gradients
within the LEGI paradigm. We allowed for temporal integration,
extending the results of ref. 4. Some of the features of the gra-
dient sensing limit we derived (Eq. 11), such as the unbounded
increase of the SNR with the diffusion coefficient of the ligand
or with the integration time, carry over from the Berg–Purcell
theory of gradient sensing (12), which does not account for
communication. However, our most important finding is that, in
contrast to the BP theory, the growth of the sensor array beyond
a certain size stops increasing the SNR. The effect is in-
dependent of the intrinsic noise in the communication system
and thus represents a truly fundamental limitation of diffusive
communication for distributed sensing. In particular, it holds for
multicellular systems, as well as for large individual cells. Al-
though we derived the limit for a linear signal profile, we an-
ticipate that the limit for a nonlinear profile will be similar, Eq.
11, but with a different effective concentration ceff. It remains
to be seen whether similar limits hold when the sensors are
arranged in 2D or 3D structures or when concentration infor-
mation propagates superdiffusively, as is possible in wave-based
or Turing-type models of polarization establishment (23). Ad-
ditionally, it will be important to relax various assumptions of the
model, such as allowing for saturation of receptors or limiting the
total number of messengers and coupling the model to the mo-
tility apparatus to investigate how the improved sensory pre-
cision affects downstream functions.
Our results illustrate two important features of temporal av-

eraging by distributed sensors. First, our derivation naturally
reveals which timescales are relevant in this process, namely
receptor equilibration (τ1 = μ−1 +K=4πσD), messenger turnover
(τ2 = 1=ν), and messenger exchange (τ3 = 1=γ), which was unclear
in simpler previous analyses. In principle, these timescales could
have depended on system-level properties, such as the system
size (N) or the communication length (n0). Surprisingly, instead
they depend only on single-cell properties, meaning that efficient
temporal averaging is not slowed down by increasing the number
of sensors. Second, our results reveal the effects of overcounting
due to correlations between external and internal diffusion. In
both gradient sensing (Eqs. 11 and 12) and concentration sensing
(Eq. 13), we see that the noise reduction afforded by commu-
nication-based averaging is tempered by a factor log n0. This log
is not a mathematical curiosity. Rather, it reflects the fact that
not all measurements communicated to a cell by its neighbors are
independent because the signal molecules also diffuse externally.
Coupling external diffusion with internal exchange introduces
correlations among measurements, which reduces the benefit of
internal averaging. This effect has been omitted in previous
analyses of concentration sensing by extended systems (17, 19).
At the same time, for multicellular mammary organoids (4), n0 is
estimated as ∼ 4, so that log n0 is not much smaller than n0 itself
and should not be neglected.
Our analysis of the limits on the gradient sensing accuracy has

assumed that the integration time is longer than any of the other
timescales in the problem, T � fτ1, τ2, τ3g (receptor equilibra-
tion, messenger turnover, and messenger exchange). It is crucial
to understand whether such an assumption is experimentally
relevant. First, in Dictyostelium, a∼ 1 μm is a typical size of an initial
membrane protrusion, which can be viewed as a minimal sensing
unit. The dissociation constant of cAMP is Kd = K−1 ≈ 0.2 μM,

its dissociation rate is μ≈ 1 s−1, and cAMP diffusion constant is
D≈ 400 μm2 s−1 (30). Thus, τ1 ≈ 1 s. The identity of the diffusive
messenger is still being debated, although some suggest it is
RasGAP, a 120-kDa protein (31). Although its cytosolic turnover
rate and the diffusion constant are unknown, the estimates are
ν∼ γ ∼ 1 s−1 (30, 32). The onset of the Dictyostelium gradient
response takes about 30 s, and the adaptation phase (global in-
hibition) can be 300 s or longer (16). This validates our as-
sumptions that T can be much larger than any of τi, allowing for
temporal integration. Interestingly, ref. 12 shows that the in-
tegration actually occurs, and they estimate T ≈ 3.2 s. This is
already longer than each of τi and can also be seen as an un-
derestimate because their analysis neglected noise in communi-
cation and further downstream of sensing, which would decrease
SNR and reduce the apparent integration time.
Similar analysis can be done for multicellular sensors, such as

EGF gradient sensing by mammary epithelial organoids in the
companion paper (4). There the ligand is EGF, and the messenger
is associated with calcium signaling and is able to pass through gap
junctions; one possibility is inositol 1,4,5-trisphosphate (IP3). The
cell size is a∼ 10 μm, the dissociation constant is as small as
Kd = K−1 ∼ 200 pM (33), the dissociation rate is μ∼ 0.001 s−1

(34), and the EGF diffusion constant is D∼ 50 μm2 s−1 (35).
The turnover rate of IP3 is estimated as ν∼ 0.1 s−1 (36). Thus,
τ1 ∼ 15min, τ2 ∼ 10 s, and the exchange time of IP3 among cells is
τ3 ∼ 1 s (37) (it is slower than the diffusion in the cytoplasm
would allow due to bottlenecks at gap junctions). In contrast, the
response in this system is measured on the scales of hours or days
(4), allowing for temporal integration and validating our time-
scales assumptions, T � fτ1, τ2, τ3g. These arguments make it
clear that the timescales of these systems warrant the approxi-
mations we make, although whether the time integration is ac-
tually used may vary by organism.
Another central prediction of our theory is that the gradient

sensing is improved by a system with two messengers, exchanged
at different rates. We call this mechanism REGI, a generalization
of the standard LEGI model. Optimality of REGI follows directly
from the interplay between the ligand stochasticity and the com-
munication constraints. Therefore, REGI has not been identified
as an optimal strategy in previous studies that neglected either of
these two effects. Although the need for spatial averaging of two
measurements involved in gradient detection was proposed (38),
no model of the communication was suggested, limiting the ability
of that analysis to make specific predictions.
Molecular mechanisms supporting REGI are suggested by

biophysical mechanisms in many eukaryotic cell types. There
activated receptor complexes, which diffuse in the membrane at
the rate of ∼ 10− 100 times slower than similarly sized cytosolic
molecules (32), could act as the regional messengers. Further,
the initial size of protrusions in the cell membrane of a migrating
Dictyostelium cell is a few microns in size, which is a sizable
fraction of a cell size of about 10–20 μm. These can be identified
with regionally averaging functional units in our terminology.
Diffusion of surface receptors and finite membrane rigidity en-
sure the existence of regional integration in other eukaryotic
cells, further supporting REGI over LEGI as a correct model.
REGI emerged from maximizing the SNR in our system,

which revealed the optimal rate ratio γx=γy. Maximization of the
SNR also implies that the optimal value of γy (or ny) is infinity,
because the SNR grows indefinitely with ny (Fig. 3). Infinite ny
corresponds to averaging over as large a distance as possible.
Such a strategy is optimal here only because the concentration
profile is linear, with constant gradient g. In contrast, more
physical nonlinear profiles (e.g., exponential, power law, randomly
varying, or profiles with extrema) have spatially varying g. In these
cases, if the size of the group of cells is larger than the correlation
length of g, then an infinite ny would average out the signal
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together with the noise, which would reduce the SNR. In contrast, a
finite ny would allow a subset of cells to detect the local gradient in
their vicinity, which is an essential task in morphological processes
such as tissue branching and collective migration.
REGI can be interpreted as performing a spatial derivative.

Specifically, the two-lobed filter Kðn, nxÞ−Kðn, nyÞ reports the
difference in concentrations measured over distances nx and ny
near a given detector, and the values nx and ny depend on the
properties of the environment. Thus, REGI is similar to the
temporal differentiation in Escherichia coli chemotaxis. Indeed,
the temporal filter of the E. coli sensory module is also two-
lobed, with the short and long timescales set by ligand statistics
and rotational diffusion, respectively (39). Thus, for both spatial
and temporal filtering, the choice of the two optimal length
scales or timescales is determined by matching the filter to the
statistical properties of the signal and the noise (40), which is
understood well for E. coli (39).
Interpreting the REGI model as a spatiotemporal filter suggests

experiments that would identify whether a certain biological
system employs this mechanism. Such experiments would involve
concentration profiles that differ substantially from steady-state

linear gradients. For example, subjecting cells to a concentration
profile with a spatially localized maximum would allow one to
measure both γx and γy by observing the response of cells near
the concentration peak as a function of the peak width. Alter-
natively, one can subject cells to a spatiotemporally localized
concentration pulse and observe whether a response a certain
distance away from the pulse exhibits the signs of only inhibition
(LEGI, one messenger) or inhibition and excitation on different
scales (REGI, two messengers). Understanding fundamental
sensory limits for diffusive communication in gradient sensing
opens up possibilities to propose and analyze these and other
related experiments.
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Derivation of the Power Spectra
Linearizing Eq. 3 of the main text around its means and Fourier
transforming (denoted by ~) in time and space obtains

−iω eδc=−Dk2 eδc+ iω
X
n

  eδrn   ei~k ·~xn , [S1]

−iωeδrn = α bδc�~xn,ω�− μeδrn + αcnfδFn, [S2]

−iωeδxn = βeδrn − νeδxn +~ξn, [S3]

−iωeδyn = βeδrn − ν
X
n′

Mnn′ eδyn′ + ~χn, [S4]

where

bδc�~x,ω�≡ Z d3k  ð2πÞ−3 eδc�~k,ω�e−i~k ·~x. [S5]

We first find the power spectrum for rn, using the fluctuation–
dissipation theorem. To do so, we solve Eq. S1 for eδc and, using
Eq. S5, insert it into Eq. S2 to obtain

fμ− iω½1+ αΣðωÞ�geδrn − iωα
X
n′≠n

V
�
j~xn −~xn′j,ω

�eδrn′ = αcnfδFn,

[S6]

where

ΣðωÞ≡
Z

d3k

ð2πÞ3
1

Dk2 − iω
=

1
2π2

Z∞
0

dk
k2

Dk2 − iω
[S7]

and

V ðx,ωÞ≡
Z

d3k

ð2πÞ3
e−i~k ·~x

Dk2 − iω
=

1
2π2x

Z∞
0

dk
k sinðkxÞ
Dk2 − iω

[S8]

are the “self-energy” and “interaction potential” between cells
mediated by diffusion, respectively (14). The simplifications in
Eqs. S7 and S8 come from writing the volume element d3k=
k2 sin  θ  dk  dθ  dϕ in spherical coordinates aligned with ~x, such
that ~k ·~x= k  x  cos θ.
We are interested in the low-frequency limits of ΣðωÞ and

V ðx,ωÞ. V ðx, 0Þ= 1=ð4πDxÞ is finite, whereas Σð0Þ diverges. The
divergence stems from the delta functions in the dynamical equa-
tions, which model the cells as point sources. As in ref. 14, we
regularize the divergence by introducing a cutoff Λ∼ π=a at large k
to account for the fact that cells have finite extent a, making
Σð0Þ∼ ð2π2Þ−1 RΛ0 dk=D= 1=ð2πaDÞ. This models cells as spheres
of diameter a, but the exact shape of the cell will not be important
for the limits we take. These expressions allow us to write Eq. S6 asXN

n′=1
Lnn′ eδrn′ = αcn

μ
ð1+ iωτ1ÞfδFn, [S9]

where

τ1 ≡
1
μ
+

α=μ

2πa D
, [S10]

Lnn′ ≡ δnn′ +
zð1− δnn′Þ
jn− n′j , [S11]

z≡ − iω
α=μ

4πa D
. [S12]

In writing Eq. S9, we have assumed that ωτ1 is small. This as-
sumption is valid for integration times T = 2π=ω much longer
than τ1; we support this assumption in Discussion in the main
text. The quantity τ1 is the receptor equilibration time: it is the
time it takes for a signal molecule to unbind from the receptors
and diffuse away from the cell into the bulk (27). Its first term
μ−1 is the intrinsic receptor unbinding time, and its second term
K=4πσD (where K = α=μ is the equilibrium constant and σ = a=2
is the cell radius) accounts for rebinding events that occur before
the molecule diffuses away from the cell completely (25). Either
term can dominate: The first term dominates if the intrinsic
association rate α is much smaller than the diffusion-limited
association rate 4πσD, because then the molecule rarely rebinds.
Conversely, the second term dominates if α is much larger than
4πσD, because then rebinding is frequent and comprises most of
the escape time. We see from Eqs. S10 and S12 that jzj<ωτ1;
therefore, we also treat z as a small parameter.
Solving Eq. S9 for eδrn requires inverting the matrix Lnn′. This

matrix is a Toeplitz matrix (a matrix with constant diagonals), which
has a known inversion algorithm (26). Because Lnn′ is also sym-
metric, it is completely specified by its first row ½1  ρ1   ρ2   . . .   ρN−1�.
The inversion is performed recursively as follows. First, one intro-
duces N − 1 scalars h1, h2, . . ., hN−1 and N − 1 column vectors~qð1Þ,
~qð2Þ, . . .,~qðN−1Þ. These are initialized as

h1 = 1− ðρ1Þ2, ~qð1Þ = ½−ρ1�, [S13]

and updated as

hk+1 = hk −
ðζkÞ2
hk

, ~qðk+1Þ =

24~qðkÞ − ζkb~qðkÞ.hk
−ζk=hk

35, [S14]

where ζk ≡ ρk+1 +
Pk

ℓ=1ρℓq̂
ðkÞ
ℓ , and b~q is ~q with the elements in re-

verse order. Then the inverse is written in terms of the final
quantities hN−1 ≡H and ~qðN−1Þ ≡~Q. The upper left element is

L−1
11 =

1
H
, [S15]

the rest of the first row and the column are

L−1
i+1,1 =L−1

1,i+1 =
Qi

H
ð1≤ i≤N − 1Þ, [S16]

and the diagonals are calculated recursively from the first row and
column as

L−1
i+1,j+1 =L−1

ij +

�
QiQj − Q̂iQ̂j

�
H

ð1≤ fi, jg≤N − 1Þ. [S17]
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We now apply this algorithm to Eq. S11, keeping only terms up to
first order in the small quantity z. From Eq. S11 we have ρj = z=j.
The initial values are

h1 = 1− z2 ≈ 1, ~qð1Þ = ½−z�. [S18]

Using ζ1 = z=2+ ðzÞðzÞ≈ z=2, the first recursive step gives

h2 = 1−
ðz=2Þ2

1
≈ 1, ~qð2Þ =

�
−z− ðz=2Þð−zÞ=ð1Þ

−ðz=2Þ=ð1Þ
�
≈
�

−z
−z=2

�
.

[S19]

Continuing the recursion establishes the general formulas

hk = 1, ~qðkÞj =
−z
j

ðj≤ kÞ, [S20]

from which we extract the final values,

H = 1, Qj =
−z
j
. [S21]

These values immediately provide the first row and column of the
inverse according to Eqs. S15 and S16. Then noting that the
second term on the right-hand side of Eq. S17 is second order
in z, that equation implies that the diagonals of the inverse are
constant. We therefore have the inverse to first order in z,

L−1
nn′ = δnn′ −

zð1− δnn′Þ
jn− n′j . [S22]

The inverse allows us to solve Eq. S9 for eδrn,
eδrn = XN

n′=1
Gnn′fδFn′, [S23]

where

Gnn′ðωÞ= α

μ
ð1+ iωτ1ÞL−1

nn′cn′

=

8>>><>>>:
αcn
μ

�
1+ i

ω

μ

�
1+

α

2πaD

��
n′= n,

α2ωcn′
4πaDμ2jn− n′j

�
i−

ω

μ

�
1+

α

2πaD

��
n′≠ n,

[S24]

is the generalized susceptibility. The fluctuation–dissipation the-
orem then gives the power spectrum,

Srrnn′ðωÞ=
2
ω
Im  ½Gnn′ðωÞ�= 2αcn′

μ2

8>><>>:
�
1+

α

2πaD

�
n′= n,

α

4πaD
1

jn− n′j n′≠ n,

[S25]

as in Eq. 9 of the main text.
We now solve for the power spectra for xN and yN. Using Eqs.

S3 and S4, we obtain

SxxNNðωÞ=
Deδx*N eδxNE= 1

ν2 +ω2

�
β2SrrNNðωÞ+

D
~ξ*N~ξN

E�
, [S26]

SyyNNðωÞ=
Deδy*N eδyNE= 1

ν2

X
nn′

~M
−1*
Nn

~M
−1
Nn′

h
β2Srrnn′ðωÞ+

D
~χ*n~χn′

Ei
,

[S27]

SxyNNðωÞ=
Deδx*N eδyNE= 1

νðν+ iωÞ
X
n

~M
−1
Nnβ

2SrrNnðωÞ, [S28]

where ~Mnn′ ≡Mnn′ − iðω=νÞδnn′. Now taking the low-frequency limit
imposes our second timescale assumption, namely T � τ2 ≡ 1=ν,
where τ2 is the timescale of messenger turnover by degradation.
The noise spectra in Eqs. S26 and S27 follow directly from Fourier
transforming Eq. 4 of the main text and using the steady-state
means of Eq. 3 of the main text to eliminate βrn,D

~ξ*N~ξN
E
= 2νxN ,D

~χ*n~χn′

E
= νðMnn′yn′ +Mn′nynÞ.

[S29]

The appearance ofMnn′ in Eq. S29 is expected, because the noise
arises in reactions in every cell and then propagates to other cells
via the same matrix as the means (28). Indeed, this simplifies Eq.
S27 for ω→ 0, because then Mnn′ = ~Mnn′ðω= 0Þ hits its own in-
verse. The result is an expression for the variance,

ðδΔNÞ2 = ðδxNÞ2 + ðδyNÞ2 − 2Cxy
NN [S30]

=
1
T

�
SxxNNð0Þ+ SyyNNð0Þ− 2SxyNNð0Þ

	
[S31]

=
β2

ν2

"
SrrNNð0Þ

T
+
X
nn′

KN−nKN−n′
Srrnn′ð0Þ

T
− 2
X
n

KN−n
SrrNnð0Þ

T

#

+
2
νT

ðxN +K0yNÞ,
[S32]

as in Eq. 10 of the main text.

SNR in the Many-Cell, Strong-Communication Limit
The variance of the readout is given by Eq. 10 of the main text,

ðδΔNÞ2 = β2

ν2

"
SrrNNð0Þ

T
+
XN
n, n′=1

KN−n   KN−n′
Srrnn′ð0Þ

T

− 2
XN
n=1

KN−n
SrrNnð0Þ

T

#
+

2
νT

ðxN +K0yNÞ,
[S33]

where xN = αβcN=μν and yN = αβ
PN−1

n=0 KncN−n=μν. In the limit of
many cells (N � 1) and strong communication (γ � ν), the kernel
takes the approximate form

Kn ≈
1
n0

e−n=n0 , [S34]

where n0 ≡
ffiffiffiffiffiffiffi
γ=ν

p � 1 is the communication length scale (4).
Using Eqs. S25 and S34, we evaluate Eq. S33 term by term.
The first, fourth, and fifth terms in Eq. S33 are straightforward,

β2

ν2
SrrNNð0Þ

T
=

2
μT

αβ2

μν2
cN +

1
πaDT

α2β2

μ2ν2
cN , [S35]
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2
νT

xN =
2
νT

αβ

μν
cN , [S36]

2
νT

K0yN =
2
νT

αβ

μν

cN−n0
n0

. [S37]

In the last equation we use the limit of largeN to approximate the
sum in yN as an integral,

XN−1

n=0

KncN−n ≈
Z∞
0

dn 
1
n0

e−n=n0ðcN − nagÞ= cN − n0ag= cN−n0 .

[S38]

The third term in Eq. S33 we split in two,

−2
β2

ν2

XN
n=1

KN−n
SrrNnð0Þ

T
=−2

β2

ν2

"
K0

SrrNNð0Þ
T

+
XN−1

n=1

KN−n
SrrNnð0Þ

T

#
.

[S39]

The first of these is like Eq. S35,

−2
β2

ν2
K0

SrrNNð0Þ
T

=−
4
μT

αβ2

μν2
cN
n0

−
2

πaDT
α2β2

μ2ν2
cN
n0
. [S40]

The second one evaluates to

−2
β2

ν2

XN−1

n=1

KN−n
SrrNnð0Þ

T
=−2

β2

ν2

XN−1

n=1

1
n0

e−ðN−nÞ=n0

×
2α
μ2T

½cN − ðN − nÞag� α

4πaD
1

N − n
[S41]

=−
1

πaDT
α2β2

μ2ν2

"
cN
n0

XN−1

j=1

e−j=n0

j
−
ag
n0

X
j=1

N − 1

e−j=n0
#

[S42]

≈−
1

πaDT
α2β2

μ2ν2

�
cN
n0

log n0 − ag
�
, [S43]

where the last step again uses the integral approximation for large
N. In particular, we have written

XN−1

j=1

e−j=n0

j
≈
1
2
e−1=n0 +

Z∞
1

dj 
e−j=n0

j
[S44]

=
1
2

 
1+

X∞
ℓ=1

ð−1=n0Þℓ
ℓ!

!
+ log n0 − γe −

X∞
k=1

ð−1=n0Þk
k!k

[S45]

≈ log n0, [S46]

where the first step uses the Euler–Maclaurin formula (ignoring
higher-order corrections and taking N→∞), the second step
expands the exponential and replaces the integral form of the upper
incomplete Gamma function with its explicit sum, and the last step
neglects terms of order 1=n0 and assumes log n0 � ðγe − 1=2Þ≈
0.077 for the Euler–Mascheroni constant γe. Numerically, we have
checked that Eq. S46 is valid for 3K n0 � N, with the error of only

∼10% for the smallest n0. This ensures that the derived bounds are
applicable in the context of realistic biological systems, such as
mammary epithelial organoids (4). Altogether, the third term in
Eq. S33 is then

−2
β2

ν2

XN
n=1

KN−n
SrrNnð0Þ

T
=−

4
μT

αβ2

μν2
cN
n0

−
2

πaDT
α2β2

μ2ν2

�
cN
n0

+
cN
2n0

log n0 −
ag
2

�
[S47]

≈−
4
μT

αβ2

μν2
cN
n0

−
2

πaDT
α2β2

μ2ν2
log n0
2n0

cN ,

[S48]

where the second step uses cN − agn0=2= cN−n0=2 < cN and assumes
log n0 � 2.
The second term in Eq. S33 we also split in two,

β2

ν2

XN
n, n′=1

KN−n   KN−n′
Srrnn′ð0Þ

T
=
β2

ν2

"XN
n=1

K2
N−n

Srrnnð0Þ
T

+
XN
n=1

X
n′≠n

KN−n   KN−n′
Srrnn′ð0Þ

T

#
.

[S49]

The first of these is straightforward to evaluate with the integral
approximation in Eq. S38,

β2

ν2

XN
n=1

K2
N−n

Srrnnð0Þ
T

=
β2

ν2

XN−1

j=0

1
n20

e−2j=n0
2αcN−j

μ2T

�
1+

α

2πaD

�
[S50]

≈
2
μT

αβ2

μν2
cN−n0=2

2n0
+

1
πaDT

α2β2

μ2ν2
cN−n0=2

2n0
.

[S51]

The second can be evaluated in two parts,

β2

ν2

XN
n=1

X
n′≠n

KN−n   KN−n′
Srrnn′ð0Þ

T
=

1
2πaDT

α2β2

μ2ν2

×

"
cN
n20
 
XN−1

j=0

X
j′≠ j

e−ðj+j′Þ=n0

jj− j′j|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

−
ag
n20
 
XN−1

j=0

X
j′≠ j

j′e−ðj+j′Þ=n0
jj− j′j|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

B

#
. [S52]

Note that B=−∂uA=2, where u≡ 1=n0, so that we need only to
evaluate A. We split A into two equal components,

=
XN−1

j=0

Xj−1
j′=0

e−ðj+j′Þ=n0

j− j′
+
XN−1

j=0

XN−1

j′=j+1

e−ðj+j′Þ=n0

j′− j
[S53]

= 2
XN−1

j=0

Xj−1
j′=0

e−ðj+j′Þ=n0

j− j′
, [S54]

and rewrite it in terms of k= j+ j′ and ℓ= j− j′,
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A= 2
XN−1

ℓ=1

X2ðN−1Þ−ℓ

k=ℓ, ℓ+2, ℓ+4, ...

e−k=n0

ℓ
. [S55]

We approximate with integrals for large N, accounting for the
fact that k has support on only half of the integers in its range,

A≈ 2
ZN
1

dℓ 
1
2

Z2ðN−1Þ−ℓ

ℓ

dk 
e−k=n0

ℓ
[S56]

= n0

ZN
1

dℓ 
e−ℓ=n0

ℓ
− n0e−2N

ZN
1

dℓ 
eℓ=n0

ℓ
. [S57]

The first integral is approximately log n0 by Eq. S46. The second
integral evaluates to EiðN=n0Þ−Eið1=n0Þ, where Ei is the expo-
nential integral function, whose large- and small-argument limits
are EiðN=n0Þ≈ eN=n0=ðN=n0Þ and Eið1=n0Þ≈−log n0, respectively.
Thus, the second term in Eq. S57 vanishes exponentially with N,
and we have

A= n0   log n0, [S58]

B=
n20
2
ð1+ log n0Þ≈ n20

2
  log n0, [S59]

making the term in brackets inEq.S52 equal to ðcN − agn0=2Þðlog n0Þ=
n0 = ðcN−n0=2 log n0Þ=n0. Altogether, the second term in Eq. S33
is then

β2

ν2

XN
n, n′=1

KN−nKN−n′
Srrnn′ð0Þ

T

=
2
μT

αβ2

μν2
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+
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πaDT
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�
[S60]

≈
2
μT

αβ2

μν2
cN−n0=2

2n0
+

1
πaDT

α2β2

μ2ν2
log n0
2n0

cN−n0=2, [S61]

where the second step assumes log n0 � 1.
Finally, collecting the terms in Eqs. S35–S37, S48, and S61, the

variance in Eq. S33 becomes

ðδΔNÞ2 =
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3777775.
[S62]

The last line contains the intrinsic noise from xN and yN. For ex-
ample, the first term in this line is ðδxNÞ2 = ð2=νTÞðαβcN=μνÞ=
2xN=νT; the relative noise ðδxN=xNÞ2 = 2=νTxN then decreases with
the number of molecules xN × νT that are turned over in time T, as
expected for intrinsic counting noise. The second term in this line is
for y and is similar, except that because the global species is ex-
changed over roughly n0 cells, more molecules are counted and the
noise is reduced by a factor n0. The second line contains the in-
trinsic noise in r, propagated to x and y. The third line contains the
noise in c, propagated to x and y, which we deem extrinsic, because
it originates in the environment and is not under direct control of
the cells.
Importantly, the intrinsic noise terms in Eq. S62 are reducible

by increasing the numbers of receptors and local and global
species molecules. These molecule numbers are set by the gain
factors rN=a3cN = α=a3μ and xN=rN = β=ν, and indeed, we see that
the second and third lines in Eq. S62 vanish as the gain factors
grow large. In this limit we are left with only the lower bound set
by the extrinsic noise,

ðδΔNÞ2 ≥
�
αβ

μν


2 1
πaDT

�
cN +

log n0
2n0

cN−n0=2 − 2
log n0
2n0

cN



.

[S63]

Dividing by the square of the mean ΔN = αβn0ag=μν produces
Eqs. 11 and 12 in the main text.

Exact SNR for Regional Excitation–Global Inhibition
In the regional excitation–global inhibition (REGI) strategy,
both messengers X and Y are exchanged between cells, at rates γx
and γy, respectively. This results in a straightforward general-
ization of the expression for the signal-to-noise ratio (SNR).
Specifically, the mean becomes (compare with Eqs. 5 and 6 in
the main text)

ΔN =
αβ

μν

 XN−1

n=0

Kx
ncN−n −

XN−1

n=0

Ky
ncN−n

!
, [S64]

where now there are two communication kernels,
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, [S65]

Ky
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�
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�ℓ . [S66]

The variance becomes (compare with Eq. 10 in the main text)

ðδΔNÞ2 = β2
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�
,

[S67]

where the bound receptor power spectrum Srrnn′ðωÞ remains the
same as in Eq. 9 in the main text (or equivalently Eq. S25 here).
The SNR is then ðΔN=δΔNÞ2.
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The SNR has amaximum as a function of the rate ratio γx=γy. The
location of the maximum γpx=γy must lie between 0 and 1. At
γx=γy = 0, the X messenger is not exchanged, and we recover the
SNR of the local excitation–global inhibition (LEGI) strategy,
which is a limiting case of REGI. At γx=γy = 1, there is no difference
between X and Y, and the signal (and therefore the SNR) is 0. The
exact location of γpx=γy depends on factors that are specific to the
system, e.g., the concentration profile cn, the environmental and
system parameters, and the measurement location (n= 1 vs. n=N).
We illustrate the dependence of γpx=γy on particular system

parameters, namely the gain factors α=a3μ and β=ν. For this,

Fig. S1 shows the dependence of the SNR on γx=γy as we vary the
gain factors α=a3μ (Fig. S1A) and β=ν (Fig. S1B). In both cases,
we see that the optimal rate ratio γpx=γy increases with increasing
gain. This is because increasing either gain factor increases the
number of internal messenger molecules. With more molecules,
the system can afford to increase γx while maintaining the same
difference in molecule number ΔN in the Nth cell. The increase
in γx enhances the spatial averaging by the X messenger and thus
reduces the noise in the estimate of cN. Therefore, we see in Fig.
S1 that the maximal SNR occurs at a higher γpx value as either
gain is increased.

Fig. S1. Dependence of the optimal exchange rate ratio on system parameters in the regional excitation–global inhibition (REGI) strategy. The signal-to-noise
ratio (SNR) has a maximum at a particular rate ratio γx*=γy, which increases as a function of either gain factor, (A) α=a3μ or (B) β=ν. Parameters are a= 10 μm, cN = 1 nM,
g= 1 nM/mm, D= 50 μm2/s, T = 10 s, μ= ν= 1 s−1, N= 100, and ny =

ffiffiffiffiffiffiffi
γ=ν

p
= 10. In A, β=ν= 5, and α=a3μ is varied as indicated. In B, α=a3μ= 5, and β=ν is varied

as indicated.
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