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Fitness in time-dependent
environments includes a geometric

phase contribution
Sorin Tănase-Nicola1,† and Ilya Nemenman2,*

1Department of Physics, and 2Departments of Physics and Biology and Computational
and Life Sciences Initiative, Emory University, Atlanta, GA 30322, USA

Phenotypic evolution implies sequential rise in frequency of new genomic sequences. The
speed of the rise depends, in part, on the relative fitness (selection coefficient) of
the mutant versus the ancestor. Using a simple population dynamics model, we show that
the relative fitness in dynamical environments is not equal to the geometric average of the
fitness over individual environments. Instead, it includes a term that explicitly depends on
the sequence of the environments. For slowly varying environments, this term depends
only on the oriented area enclosed by the trajectory taken by the system in the environment
state space. It is closely related to the well-studied geometric phases in classical and quantum
physical systems. We discuss possible biological implications of these observations, focusing
on evolution of novel metabolic or stress-resistant functions.

Keywords: geometric phase; fluctuating selection; Lotka–Volterra equation
1. INTRODUCTION

Organisms react to long-term changes in environmental
conditions by sequential rises in frequency of new
genome sequences, mostly corresponding to increasingly
more adapted phenotypes. However, often environ-
mental changes are faster than the characteristic time
for mutation-selection cycles needed to evolve an opti-
mal phenotype. In such cases, depending on the
structure and timescales of the fluctuations, a dynamic
environment creates dynamic fitness landscapes [1],
promotes sensing [2], modularity [3,4], switching [5],
and can change the speed of adaptation [6,7].

The effect of fluctuating selection and/or population
size on the population-genetics dynamics has been
extensively studied over the years [7,8], starting with
the introduction of the concept of adaptive topography
by Wright [9]. Dempster was probably the first to relate
a population growth rate to the geometric mean of
its fitness across the experiences environments [10].
More recently, the evolutionary dynamics of popula-
tions with density-dependent dynamics in fluctuating
environments has been elucidated in ecologically realis-
tic models [11–13]. These bridge the gap between the
classical population dynamics exhibiting very diverse
responses to fluctuating environments [14,15] and clas-
sical population genetics models. However, a complete
understanding of the effect of fluctuations on popu-
lation and evolutionary dynamics has not been
achieved yet.
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Some of the relevant parameters describing evol-
utionary response of a population to a changing
environment are the rate at which new genotypes are
created (mutation rate), the relative fitness of new pheno-
types and the total population size. Each of these
parameters depend on the magnitude and speed of the
changing environment. We concentrate on the case of
environments changing on scales longer than an individ-
ual’s lifetimes. This is relevant, in particular, for bacterial
populations confronted with daily environmental changes
(natural or artificial) [16], for longer living organism
affected by seasonal variations or for pathogens experien-
cing transmission, uncontrolled growth in a new host and
then effects of the host immune system. For example, in
the now classic long-term Escherichia coli evolution
experiment [17], bacterial cultures are diluted daily,
and the environment (i.e. cell growth and death rates)
changes during dilution events and between them
owing to depletion of resources, cell density growth and
cell-to-cell interactions. These experiments are a great
model to study clonal competition [18]. Interestingly,
the number of accumulated beneficial mutations is rela-
tively small, considering that every single point and
many possible double mutations have happened thou-
sands of times in the 25-year history of the experiment.
This discrepancy is likely largely accounted for by
strong bottlenecks at dilution times, when most new
mutations disappear by chance. However, all clones,
even beneficial ones, experience additional huge fluctu-
ations in their reproductive rates during the course of
the experiment. It remains to be seen if such fluctuations
can contribute to the slowing down of the evolutionary
adaptation as well.
This journal is q 2011 The Royal Society
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In this article, we make a step in this direction by
studying effects of fluctuating environments (rep-
resented by birth and death rates) on the effective
selection coefficient. Using analytic and computational
tools, we investigate a model of a heterogeneous popu-
lation (a background strain and a newly emergent
mutant) under the assumption that the timescales of
the clonal frequency dynamics on the one hand and
the environment fluctuation on the other hand are
both much larger than the division time, but not
necessary well separated from each other. We start by
showing that the selection coefficient in infinitely slowly
changing environments (we call this the adiabatic
limit) is given by a time-average of static selection
coefficients corresponding to each environment. This
time-average is equivalent to the geometric mean
result of Dempster [10]. It is independent of the order
or the speed with which different environmental states
are visited. However, for environments varying at a
slow but finite rate, this time-average is not the whole
story. A new contribution emerges. For example, in a
cyclically oscillating environment, this new contri-
bution to the selection coefficient now depends on
the sequence of environments visited during each
cycle, while still remaining independent of the speed
of variation. The contribution is non-zero only for
non-trivial couplings between the environment and
the population dynamics, represented as a multi-
dimensional trajectory in the space of birth and death
rates. The contribution changes sign when the sequence
of the visited environments is reversed. It is largely
independent on the speed of the dynamics. Finally,
it scales quadratically with the amplitude of the
environmental fluctuations. In other words, the con-
tribution is geometric in nature and parallels the
discussion of geometric phases in mathematical physics
[19]. We believe that this has not been noticed before in
the context of population dynamics. In particular, the
concepts of geometric mean and geometric phases are
totally unrelated.

We will focus on the deterministic approximation to
population dynamics. This focus allows us to state
beyond doubt that the observed geometric phases are
unrelated to the stochastic treatment of the temporally
variable selection problem [20]. Geometric effects are
well-known for slowly changing deterministic dynami-
cal systems [19,21]. While evolutionary dynamics of a
population driven together by forces of mutation, drift
and selection cannot be accurately described determi-
nistically, we believe that our model is meaningful
even for a stochastic case for a large population, low
mutation rate and strong selection. Indeed, the recent
observation that stochastic dynamical systems are also
subject to geometric corrections suggests that deter-
ministic versus stochastic treatment of population
dynamics is not crucial for the phenomenon [22,23].

In what follows, we develop our results in a relatively
simple two species population model with bilinear,
symmetric competition, which we believe is general
enough to capture the main effects of fluctuations for
a large class of related models. We first solve the
system in the limit of small differences between the
birth and the death rates of the competing species.
J. R. Soc. Interface
We derive expressions for the selection coefficient in
the limit of stationary, very slowly continuously and
infrequently discontinuously varying environments.
The selection coefficient for an arbitrary timescale
of the environment fluctuations can be derived then
using a perturbative approach.
2. METHODS

2.1. Model

Let xi be the number of individuals of genotypes i, i ¼
1,2, in a large asexual population. We assume that
xi� 1, so that demographic (phenotypic) fluctuations
and random genetic drift can be neglected. We refer
to x1 as an ancestral phenotype, and to x2 as a
mutant. The competition between the two is described
by a driven two-dimensional Lotka–Volterra (logistic)
model [14,15]

_x1 ¼ x1½b1ðtÞ � d1ðtÞðx1 þ x2Þ�
and _x2 ¼ x2½b2ðtÞ � d2ðtÞðx1 þ x2Þ�:

)
ð2:1Þ

Here bi(t) represents the birth rates, and di(t) para-
metrize the death rates for each of the genotypes.
Generally, all parameters are time-dependent. This
equation describes the ecological competition between
populations of ancestral and mutant phenotypes,
which may eventually result in displacement of the
former by the latter.

Following classical models of ecological population
genetics, we view our model as a particular form
of the more general dynamics. Defining the total
population size, x(t) ¼ x1(t) þ x2(t), we write

_x1 ¼ x1g1ðx; tÞ
and _x2 ¼ x2g2ðx; tÞ:

)
ð2:2Þ

Here, g is the generalized growth rate. For this sys-
tem of equations to represent the dynamics of a
realistic self-sustaining population, gi(x) must be nega-
tive for large x, and it must have at least one zero.
Our approach applies to a very general subset of such
growth rate functions provided that the system,
equation (2.2), has exactly one fixed point on each of
the axes xi ¼ 0 in addition to the trivial unstable
extinction point (0,0).

One traditionally takes [13]

gi ¼ r1ðtÞ 1� f ðxÞ
f ðKiðtÞÞ

� �
; ð2:3Þ

where ri’s are the intrinsic maximum growth rates of
each genotype, if unconstrained by limited resources.
The terms rif(x)/f(Ki(t)) represent the reduction of
these rates due to competition for resources. This
reduction depends only on the total population size
x(t) and on Ki, which are stable total populations of
the isolated phenotypes i supported by stationary
resource-limited environments. K ’s are referred to as
the carrying capacities. Our approach applies for
any non-negative, monotonously increasing f(x), as
explained earlier. However, for simplicity, we now con-
centrate on f(x) ¼ x. In this case, the competition is

http://rsif.royalsocietypublishing.org/
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linear and symmetric, and the simple Lotka–Volterra
model (2.1) is recovered with bi(t) ¼ ri(t) and di(t) ¼
ri(t)/Ki(t).

We are interested in modelling competition of the
ancestral genotype with the mutant one. The two are
very close in the genotype space, essentially one
mutation away. Because mutation effects are, in gen-
eral, small [18], we assume that the differences
between g1 and g2 are also small,

g1ðx; tÞ � g2ðx; tÞ
g1ðx; tÞ þ g2ðx; tÞ

����
���� � 1� 1: ð2:4Þ

This corresponds to small differences in the parameters
bi, di, ri and Ki. We assume this from now on. In par-
ticular, it is possible that differences between the
mutant and the ancestor parameters at any particular
time are much smaller than the variations of each of
the parameters over time.

2.2. Preliminaries

In order to determine the conditions under which the
mutant, initially present in small numbers relative to
the ancestor, invades the population, we explicitly inte-
grate the model, equation (2.1). We write the dynamics
of the total population size x ¼ x1 þ x2:

_x ¼ x
b1ðtÞx1

x
þ b2ðtÞx2

x

� �
� d1ðtÞx1

x
þ d2ðtÞx2

x

� �
x

� �
:

ð2:5Þ

To the zeroth order in e�1, this does not depend on
the individual values x1 and x2:

_x ¼ x½bðtÞ � dðtÞx� þ Oð1Þ; ð2:6Þ

where we have defined

bðtÞ ¼ b1ðtÞ þ b2ðtÞ
2

and dðtÞ ¼ d1ðtÞ þ d2ðtÞ
2

: ð2:7Þ

We also define

p ¼ x2

x1 þ x2
; ð2:8Þ

the fraction of the mutant in the whole population.
This obeys

_p ¼ pð1� pÞf½b2ðtÞ � b1ðtÞ� � ½d2ðtÞ � d1ðtÞ�xg:

The model then reduces to

_x ¼ x½bðtÞ � dðtÞx�
and _p ¼ pð1� pÞ½dbðtÞ � ddðtÞx�;

)
ð2:9Þ

where we have used the notation d(b,d) for small
(order e) time-dependent differences between the
corresponding mutant and ancestral rates. To simplify
the notation, for any pair of parameters (P1, P2)
describing the ancestor and the mutant, we write P ¼
(P1 þ P2)/2, and dP ¼ P2 2 P1. In addition, we
always assume jdP/Pj ¼ O(e)� 1. The second of
equations (2.9) is one of the simplest models of evol-
utionary game dynamics [24], whose outcome entirely
depends on the time average of the function s(t) ¼
[db(t) 2 dd(t)x]. In what follows, we describe how the
J. R. Soc. Interface
environment-determined fluctuations of birth and
death rates determine this time-dependent selection coef-
ficient s(t), and hence the outcome of the competition
between the mutant and ancestor populations.

To the zeroth order in e, the dynamics of the total
population size defined by equations (2.1) is now
uncoupled from the dynamics of the mutant fraction

xðtÞ ¼ xð0Þe
Ð t

0
dtbðtÞ

1þ xð0Þ
Ð t
0 dt0dðt0Þe

Ð t0

0
dtbðtÞ

: ð2:10Þ

Owing to the small variation assumption, equation
(2.4), jdb(t) 2 dd(t)xj � jb(t) 2 d(t)xj and p(t) chan-
ges on timescales much longer than x(t). On these
timescales, x(t) converges to a unique (up to the first
order in e) attractor xa(t), independent of the initial
conditions,

xaðtÞ ¼
1Ð t

�1
dt0dðt0Þe

Ð t0

t
dtbðtÞ

: ð2:11Þ

Then the slower dynamics of p is

logit pðtÞ ¼ logit pð0Þ þ
ðt

0
dt½dbðtÞ � ddðtÞxðtÞ�;

ð2:12Þ

where logit p ¼ logp 2 log(1 2 p). The obvious first
lesson from this equation is that the clone with the
largest average growth rate, kgil � ð1=T Þ

Ð T
0 dt½biðtÞ�

diðtÞxðtÞ� for some large T, will have an advantage.
2.3. Selection coefficient

For coefficients varying periodically with a period T,
we write for the logarithmic change of the mutant-
to-ancestor ratio, logit p, over time T �T,

DðT Þ ; logit pðT Þ � logit pð0Þ

¼ T
ÐT
0 dt½dbðtÞ � ddðtÞxðtÞ�

T
; sT ;

ð2:13Þ

where the last equality defines the selection coeffi-
cient, s. It is the sign of s that decides the stability of
the fixed points p¼ 1 and p¼ 0. For example, for s . 0,
p¼ 0 is unstable, and the mutant phenotype invades the
population towards a stable fixed point p¼ 1.

In a constant environment, and for e � 1, the selec-
tion coefficient s can be rewritten in terms of the
ecological parameters defined in equation (2.3):

s � r
dK
K
: ð2:14Þ

We have a classical result that selection favours pheno-
types with larger carrying capacities (larger Ki)
independent of the magnitude of the intrinsic growth
rates ri [11,12]. To derive this, we rely on the fact
that the total population is given at all times by K,
and it is independent of the frequency of the mutants
in the population.

In this paper, we are interested in the values of the
selection coefficient for temporally varying environments.

http://rsif.royalsocietypublishing.org/
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As a consequence, the selection coefficient is now given
by the interaction between several varying quantities.
To simplify the discussion, we focus on limiting cases
of large time-scale separation between the environment
fluctuations and individual lifetimes.

In the regime of infinitely fast environmental fluctu-
ations, for T! 1, we approximate the general driven
model, equation (2.2), as

_x1 ¼ x1kg1ðxÞlT
and _x2 ¼ x2kg2ðxÞlT :

)
ð2:15Þ

We assume here that the environment variation attains
a well-defined, constant average for every state (x1, x2).
We denote this by k . . . lT, where the subscript T stands
for averaging over a period. We assume that x does not
change appreciably over this time. For the specific case
of the Lotka–Volterra model, the selection coefficient
for fast fluctuations, sf, can be computed using the for-
mula for the constant case, equation (2.14), keeping in
mind that one has to use the average values of the
relevant coefficients:

sf ¼ dkrl� dk r
Kl krl

kr=K l
: ð2:16Þ

In the opposite limit of an infinitely slow parameter
variation, the total population is equal to the carrying
capacity at all times, x(t) ¼ K(t). In this case, the
quasi-stationary (qst) selection coefficient s is

sqst ¼
1
T

ðT

0
dt rðtÞ dKðtÞ

KðtÞ ¼
1
T

ðT

0
dt sðtÞ; ð2:17Þ

where the period T is much longer than the individual’s
lifetime. This allows for a proper average to be attained.

In both limits, the sign of the selection coefficient does
not depend on the average carrying capacity [12,13].
Indeed, it is possible to have a slowly varying environ-
ment, in which the mutant has, on average, a larger
carrying capacity but a lower fitness. In both limits,
the selection coefficient becomes independent of the
speed of environmental variations, and it is symmetric
with respect to time reversal for the driving parameters.
3. RESULTS

3.1. Continuous, deterministic, oscillatory
environments

We now proceed to a more realistic case of an environ-
ment fluctuating slowly, but not infinitely slowly,
compared with an individual’s lifetime. This condition
allows us to derive a perturbative approximation for
the selection coefficient valid when b(t), r(t)� 1/T
are satisfied at every t. Our approximation is based on
a simplified solution for the dynamics of the total popu-
lation size xa(t), equation (2.11). By making a variable
change yðtÞ ¼

Ð t
0 dtbðtÞ, we write

xaðyÞ ¼
1Ð y

�1
dzðdðzÞ=bðzÞÞe�ðy�zÞ

¼ 1Ð y
�1

dzð1=KðzÞÞe�ðy�zÞ :

ð3:1Þ
J. R. Soc. Interface
In the limit of slow environmental changes, the carrying
capacity K(y) varies slowly, and the integral in the
denominator is dominated by the value of 1/K(z)
around z ¼ y. In this regime,

1
KðzÞ ≃

1
KðyÞ �

K 0ðyÞ
K2ðyÞ ðz � yÞ for ðy � zÞ � y: ð3:2Þ

Using equation (3.2), we now derive an approxi-
mation for the total population trajectory xa valid in
the qst regime. We denote it as xqa,

xqaðtÞ ≃ KðtÞ �K 0ðtÞ
rðtÞ : ð3:3Þ

This solution represents the correction to the
quasi-stationary result xqst(t) ¼ K(t) as a first-order per-
turbation in the small ratio between the rate of change
of the environment and the typical rate of change of
the total population. Note that the approximation
is consistent with the intuition that the instanta-
neous total population falls behind the instantaneous
carrying capacity.

The selection coefficient can be expressed now as

s ¼ sqst þ sgeom; ð3:4Þ

where

sgeom ¼
1
T

ðT

0
dt

drðtÞ
rðtÞ �

dKðtÞ
KðtÞ

� �
K 0ðtÞ
KðtÞ ð3:5Þ

is a geometric contribution to the selection rate.
The geometric nature of this term can be better under-
stood if we express the change in the mutant-to-ancestor
ratio as

DðT Þ ¼ sqstT þ DgeomðT Þ: ð3:6Þ

We note that, for any reparametrization of time, l ¼ l(t);
Dgeom can be written in a very similar form:

DgeomðT Þ ¼
ðLðT Þ

0
dl

drðlÞ
rðlÞ �

dKðlÞ
KðlÞ

� �
K 0ðlÞ
KðlÞ

¼
ðLðT Þ

0
dl d log

r
K

� �
	 d logKðlÞ

dl
:

ð3:7Þ

This expression shows that Lgeom explicitly depends on
the trajectory, [r1,2(l), K1,2(l)], but not on how this
trajectory is traversed, as also can be seen in figures 1
and 2. Just as any other closed contour integral, this
expression can be transformed into a surface integral
over any two-dimensional domain bounded by the trajec-
tory [r1(t), r2(t), K1(t), K2(t)] in the parameter space.
In particular, using variables

X ¼ d log
r
K and Y ¼ logK ; ð3:8Þ

and the Stokes theorem, we can equateDgeom(T ) ¼
Ð
XdY

with the oriented area bounded by the trajectory for times
t [ [0,T ) in the plane (X, Y).

In other words, Dgeom is a truly geometric term in the
spirit of geometric phases in quantum or classical mech-
anics [19,21]. The geometric nature of the change in the
population composition over long times, equation (3.7),
is the main result of the paper. It allows us to make

http://rsif.royalsocietypublishing.org/
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Figure 1. Mutant fraction as a function of time for two
sample environment trajectories (X(t),Y(t)): X1(t) ¼ 0.02
sin[v1t þ sin(v1t)], Y1(t) ¼ 1 þ 0.1 cos[v1t þ sin(v1t)] and
X2(t) ¼ 0.02 sin[v2t þ 2.5 sin(v2t)], Y2(t) ¼ 1 þ 0.1 sin[v2t þ
2.5 sin(v2t)] where v1/1.4¼ v2 ¼ 2p/40. (a) The two trajec-
tories for Y ¼ log K are shown; the first has the frequency 1.4
times the second, and the second reverses twice before complet-
ing the full cycle. (b) Nonetheless, the shapes of the trajectories
(X(t), Y(t)) are the same for both examples. (c) Instantaneous
and one-period-averaged mutant fractions for both trajectories.
The average growth of D, given completely by a geometric term,
is linear. The slopes of the two curves are different by exactly
1.4, so that D is only dependent on the number of elapsed
periods. This is indicated by the horizontal line connecting
the two averages delayed by the same number of periods.
Thus the geometric contribution to the mutant fraction
depends only on the shape of the contour in the parameter
space and on the number of cycles, but is independent of the
speed of the trajectory traversal.
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Figure 2. Illustration of the geometric nature of the mutant
fraction dynamics. (a) Three different trajectories (X(t),
Y(t)): X1(t) ¼ 20.02 cos(vt), Y1(t) ¼ 1 þ 0.1 sin(vt), X2(t) ¼
0.01 cos(vt), Y2(t) ¼ 1 þ 0.1 sin(vt), X3(t) ¼ 0.02 cos(vt),
Y3(t) ¼ 1 þ 0.1 sin(2vt), where v ¼ 2p/100. The second tra-
jectory (solid line, D2) encloses exactly half the area of the
first (dotted line, D1), and the two are traversed in opposite
directions. The oriented area enclosed by the third trajec-
tory (dashed-dotted line, D3) is zero. (b) The average mutant
fraction change for the first trajectory is equal to the orien-
ted area and is, therefore, twice that for the second one,
and in the opposing direction. The quantity is zero for the
third trajectory.
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important macroscopic predictions about the popu-
lation dynamics that will hold generally irrespective of
the microscopic details of the model. First, the geo-
metric changes in the relative fraction of the mutant
depend on the sequence of the environmental states in
addition to their identity: same environmental states
may have very different effects depending on the
order in which the states are visited. At an extreme, a
reversal of the order (time-reversal) would change the
sign of the geometric contribution, which may make a
deleterious mutation advantageous, and vice versa.
To our knowledge, such dependence of the effective
selection coefficient on the sequence of the environ-
mental states has not been noticed before in simple
Lotka–Volterra models. Second, the contribution to
Dgeom depends only on the oriented area covered in
the parameter space (and thus, in particular, on the
number of periodic oscillations), but not on the speed
of traversal of the trajectory. Figure 1 illustrates these
features: even when the environmental dynamics
involves backtracking, the overall contribution per
period still does not change. The dependence on the
J. R. Soc. Interface
area in the parameter space also suggests that the geo-
metric contribution scales as the square of the
fluctuation amplitudes. Finally, to achieve a non-zero
area, more than one parameter must be changing, and
they must change incoherently. We illustrate some of
these features in figure 2.
3.2. Switching among discrete environment
states

The approach can be extended to a more common model
of piecewise constant environments [2,7]. Consider the
case of parameters abruptly changing between m sets
indexed by m ¼ 1, . . . , m, (r1

m, r2
m, K1

m, K2
m), at possibly

random times ta. The state occupied between ta and taþ1

will be denoted by ma. We assume that the interval
(taþ1 2 ta) is long enough so that the total population
x(t) reaches the carrying capacity long before the environ-
ment switches again—that is, 1/rmi� (taþ1 2 ta). In this
case, one can derive the qst contribution as a sum over
all of the environment states

Dqst ¼
X

a

rma
dKma

Kma
ðtaþ1 � taÞ: ð3:9Þ

At each switch, there is an extra contribution because
x(t . ta) reaches the value Kma with a delay. That is,
from equation (2.10), we derive

xðta , t , taþ1Þ

¼ Kma
Kma �Kma�1

Kma�1
erma ðta�tÞ þ 1

� ��1

: ð3:10Þ

Integrating equation (3.10) results in a geometric contri-
bution after M environment state changes

DgeomðT Þ ¼
X

a

drmaðlÞ
rmaðlÞ �

dKmaðlÞ
KmaðlÞ

� �
log

KmaðlÞ
Kma�1ðlÞ

� �
:

ð3:11Þ
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The fact that equation (3.11) is independent of the actual
time spent in each state and depends only on the sequence
of environmental states is the signature of its geometric
nature, illustrated in figure 3. Importantly, unlike in the
continuous variation case, equation (3.7), Dgeom in
equation (3.11) can have a finite value even if parameters
change only between two states. Hence, it is unclear
whether the contribution canbe interpreted as anoriented
area enclosed by the trajectory in the parameter space.

3.3. Continuous stochastic environments

Often environments change in a continuous but unpre-
dictable way, such that the typical rate of change is
still small. This scenario is modelled with Gaussian
fluctuations of the parameters [13,25]. Denoting all
parameters with a single symbol ga, a ¼ 1, . . . , A, we
generalize our result, equation (3.7), and represent the
geometric contribution for randomly driven equations
(2.2) as a line integral [22,23,26]

DgeomðT Þ ¼
ðT

0
dt
XA
a¼1

faðg1ðtÞ; . . . ; gAðtÞÞ _gaðtÞ:

ð3:12Þ

Here T is a long time that allows for averaging, and
fa are some model-dependent functions. Because fluc-
tuations are small, we expand fa to the first order in
the fluctuations around the average parameters

faðg1ðtÞ; . . . ; gAðtÞÞ ¼ f0a þ
XA
b¼1

kabgbðtÞ: ð3:13Þ

Now using suitable continuity properties of the
parameters’ trajectory, we transform the geometric
contribution to

DgeomðT Þ ¼
ðT

0
dt
XA
a¼1

XA
b¼aþ1

ðkba�kabÞgaðtÞ _gbðtÞ:

ð3:14Þ

The geometric properties of Dgeom are clear from
equation (3.14): Dgeom(T ) depends only on the length
of the parameters’ trajectory, is antisymmetric with
respect to time reversals and is non-zero only if multiple
parameter vary simultaneously and incoherently. Note
that equation (3.14) is valid only for parameter vari-
ations with small (bounded) speeds. Therefore, if the
parameter dynamics, ga(t), are modelled as multi-
dimensional Wiener processes, care must be taken to
regularize and properly define the stochastic integrals
in equations (3.12) and (3.14) [25].

Equations (3.12) and (3.14) represent a natural
extension of the geometric correction to acyclic trajec-
tories [26]. While now the geometric term Dgeom(T ) is
aperiodic, for parameters dynamics with a stationary
distribution of ga and _ga, Dgeom(T ) still has a mean
linear dependence on T for large times:

lim
T !1

DgeomðT Þ
T ¼

XA
a¼1

XA
b¼aþ1

ðkba�kabÞ
dCabðtÞ

dt

����
t¼0
;

ð3:15Þ
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where Cab(t) ¼ kga(0)gb(t)l are time-dependent corre-
lations of the environment. Note that the derivatives
dCab(t)/dtjt¼0 are inversely proportional to the corre-
lation times of the process. Moreover, one can identify
the terms in the right-hand side of equation (3.15) as
products of the Berry curvature, kba 2 kab, previously
introduced in the classical and quantum geometric
phases literature [19,23], and, for a= b, the rates of
growth of the oriented areas bounded by the process
dCab(t)/dtjt¼0.
3.4. Possible experimental effects

The existence of geometric corrections to fitness in a
time-dependent environment requires that changes in
the environment are felt by the population on multiple
timescales. In the model, equation (2.1), the imme-
diate change in the growth rates and the delayed effect
of the population reaching the carrying capacity provide
these scales, but other mechanism would work as well.
Similar effects will be encountered in almost any situation
when a population responds to asynchronous changes in
multiple external stresses or nutrient supplies. Therefore,
the geometric effects must be considered when modelling
emergence or fixation of new metabolic or stress-resistance
functions in the presence of environmental changes. We
suggest that the relative timing of fluctuations of extra-
cellular nutrient/stressor concentrations will affect the
relative fitness advantage of these functions.

Of particular interest is the emergence of antibiotic
resistance in bacteria. Mutations conferring antibiotic
resistance often decrease the ability of cells to grow in
the absence of antibiotics, but provide a growth advan-
tage in their presence [27]. At the same time, delivery of
antibiotics is hardly ever uniform, and nutrient supplies
also fluctuate. Focusing for simplicity on periodic nutri-
ent and antibiotics concentration changes, we see that
the time delay, or the phase lag, between the changing
concentrations will join their amplitudes and the
period in selecting whether a resistant strain will fix
or not. We illustrate this in figure 4: depending on the
phase difference between the nutrient and the antibiotic
influx, either the resistant or the faster growing bacter-
ium will be selected for. A robust prediction of our
theory is that the difference in the logarithmic frac-
tional population changes between an environmental
trajectory and its time reversed counterpart will grow
almost linearly in time with the number of periods.
We emphasize that the effect is different from episodic
selection [28], where only frequencies and magnitudes
of antibiotic selection episodes determine fixation of
the resistant strain.

Another experimental system where our predictions
can be important is the evolution of a metabolic path-
way corresponding to a new metabolite, when both
the old and the new metabolite concentrations change
in time. In such a case, one would need to take into
account possible effects of catabolite repression and
di-auxic growth in addition to instantaneous effects of
metabolite concentrations on the birth/death rates.
Nevertheless, we expect that careful modelling of
these effects will also uncover the fitness sensitivity to
the timing of pathway activation.

http://rsif.royalsocietypublishing.org/
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Figure 4. Simulated dynamics of the logarithm of the relative
population size for two partially-antibiotic-resistant populations
competing for the same consumable carbon source in a chemo-
stat. The concentration of the antibiotic changes as A(t)¼
0.1þ 0.1 cos(vt) in arbitrary units. The nutrient influx is 1 þ
cos(vtþ f). The nutrient is cleared by the chemostat and con-
sumed by both strains in proportion to the population growth,
resulting in the concentration n(t). The growth rate of either
population is proportional to V(1þ A/KA)21 (1þ Kn/n)

21. V
is the maximum growth rate, Kn is the Monod growth constant
and KA is related to the minimal inhibitory concentration for the
antibiotic. KA for the more resistant strain is 14% higher than
for the less resistant one, but its V is 5% smaller to account
for the cost of resistance [27]. The numbers are chosen such
that the average growth for very slow environmental changes
(solid line, f ¼ p/2 (slow)) is almost the same for both strains.
Depending on the phase f (dashed line (f ¼ p/2) and dashed-
dotted lines f ¼ 2p/2), either the resistant or the non-resistant
strain has the higher growth rate and will eventually take over
the population. The ‘difference’ line (solid line with diamonds)
shows the nearly linear difference between the logarithmic
mutant to ancestor ratios for the two opposite environmental
trajectories.
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Figure 3. Mutant–ancestor competition for environment fluc-
tuating between two states. (a) Time dependence of x1 and x2.
(b) Time dependence of the logarithm of the population ratio,
D(T ). The two states are characterized by (r1 ¼ 2.3, r2 ¼ 2,
K1 ¼ K2 ¼ 1) and (r1 ¼ 1.1, r2 ¼ 1, K1 ¼ K2 ¼ 2). The time
spent in each state is uniformly distributed between 4 and
10. The equal carrying capacities ensure zero qst contribution,
while the mutant x2 is winning in the long-term owing to the
geometric contribution. The evolutionary pressure is exerted
only at the very beginning of the residence period in each
environmental state, and the total population and the
mutant fraction stay constant for the rest of each phase.
Thus, the mutant ratio drift depends only on the number of
switches, but not on the duration of the process.
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An important characteristic of the geometric effect is
that it is much harder to be observed in typical serial
dilution experiments, especially when the environment
changes are only imposed at the dilution points. Such
experimental protocols will miss important effects that
may be relevant for wild-type conditions.
4. DISCUSSION

Fixation dynamics of mutants in a large class of math-
ematical models is governed by a single effective
parameter, the selection rate, obtained as a time aver-
age of the instantaneous growth rate difference
between the mutant and the ancestral population. In
population dynamics with symmetric competition,
and in the limit of small differences between the
mutant and the ancestor, the total population size is
decoupled from changes in the population composition.
Instead, the total population enters the fixation
J. R. Soc. Interface
dynamics only as a time-dependent parameter. Then
the population growth rates and the selection coefficient
depend on the interplay between the timescales of the
population dynamics and the environmental fluctu-
ations. For infinite separation between the timescales,
the selection depends only on values of environmental
parameters. More specifically, here the fitness difference
can be expressed as a function of growth rates and car-
rying capacities averaged over all of the environmental
states and independent of the period of the fluctuations.
Nonetheless, owing to the nonlinear dependence of the
growth rates on the environmental parameters, the
average fitness difference is not necessarily the same
as the fitness difference for the average environment.

This quasi-steady-state approximation breaks down
for faster environmental changes. The mutant fraction
dynamics is now dependent not only on the period of
environmental changes but also on the sequence of
successive environmental states. In particular, the first
non-adiabatic correction is always anti-symmetric with
respect to time reversals, and it is geometric in nature.
As long as the fluctuations in the parameters are
large, this non-adiabatic correction can be of the
same order of magnitude in the birth and death rate vari-
ations as the qst contribution to the fitness difference.
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The geometric nature of this term constrains the effect
that environment fluctuations can have on fitness differ-
ences. Indeed, like other geometric contributions [19,21],
this effect is independent of the instantaneous speed of
variation of parameters. In ecological terms, this implies
that the geometric contribution to the mutant ratio drift
does not depend on how fast the environment changes,
but only on the sequence of environmental states. We
illustrate this in figures 1 and 3. Further, we note that
the mutant fraction drift, D, can be seen as a line integral
in the parameter space, cf. equation (3.7). This implies
that only multidimensional and off-phase parameter vari-
ations can give non-zero long-term contributions to the
population dynamics.

For the results derived in this work, the assumption
of an oscillatory environment is not essential. Our con-
clusions, and the concept of geometric phase in general,
are valid for non-cyclic environment dynamics [26].
Typically such dynamics is represented with a Gaussian
and, in general, uncorrelated noise [8,12,13]. While a
detailed extension of the present results to random tra-
jectories is beyond the scope of this paper, we have
shown here that the geometric contribution to the selec-
tion coefficient is present generically if and only if the
population dynamics contains multiple correlated par-
ameters driven by a coloured noise, cf. equation (3.15).

In this article, we have focused on deterministic
population dynamics with small parameter differences
among the competing species, which is equivalent to
frequency-independent selection. We expect that a simi-
lar geometric phase contribution to the fixation
dynamics is present in stochastic Fisher–Wright type
models, as well as models that exhibit phenotypic
switching or frequency and density-dependent selection
effects. Indeed, it has been shown recently that evolution-
ary processes, including mutations, genetic drift and
time-dependent selection satisfy a fluctuation relation
[29] that is similar to the Jarzynski equality [30].
Buildingupon thedeepmathematical connectionsbetween
fluctuation theorems and geometric phases [21], we
expect that the geometric contributions also shape the
evolutionary dynamics in more complex, stochastic
models. In particular, the measures of selection for popu-
lations of switching phenotypes [2,31] likely contain a
geometric term that is awaiting an explicit identification.

Our detailed analysis of multiple specific models
allows us to make a general conclusion that is indepen-
dent of the exact variation of the parameters and
the exact details of the model. Namely, for clones
with the same mean fitness, the clone that has a
higher growth rate when the environment is abundant
(increasing carrying capacity) will have a selective
advantage over the clone that performs well when the
carrying capacity decreases. This is important during
acquisition of new metabolic or stress-response func-
tions, as discussed earlier. Further, in the case of
the long-term E. coli evolution experiment [17], we
point out that unless mutations manifest themselves
in a positive way during the exponential growth phase
following a serial dilution, daily variability of the
environment would make it harder for mutations to
fixate even without stochastic effects associated with
the dilution bottlenecks.
J. R. Soc. Interface
We conclude with an observation that species with
the fitness advantage in the average environment, with
the average fitness advantage over all environments,
and with the average fitness advantage for a particular
time course of the environment are not necessarily the
same species. In particular, a naively deleterious
mutation can fixate in a population owing to these tem-
poral effects. We believe this to hold true independent of
many of the simplifying assumptions of our toy model.

We thank R. Austin, B. Levin, J. Otwinowski, M. Tchernookov
and N. Sinitsyn for important discussions that have shaped this
work. We are particularly grateful to B. Levin for his insightful
critique of the manuscript and the approach.
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