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Abstract: A critical task in systems biology is the identification of genes that interact to control cellular
processes by transcriptional activation of a set of target genes. Many methods have been developed that
use statistical correlations in high-throughput data sets to infer such interactions. However, cellular
pathways are highly cooperative, often requiring the joint effect of many molecules. Few methods have
been proposed to explicitly identify such higher-order interactions, partially due to the fact that the notion
of multivariate statistical dependence itself remains imprecisely defined. The authors define the concept of
dependence among multiple variables using maximum entropy techniques and introduce computational
tests for their identification. Synthetic network results reveal that this procedure uncovers dependencies
even in undersampled regimes, when the joint probability distribution cannot be reliably estimated. Analysis
of microarray data from human B cells reveals that third-order statistics, but not second-order ones,
uncover relationships between genes that interact in a pathway to cooperatively regulate a common set of
targets.

1 Introduction
Reverse engineering molecular interaction networks is a critical
challenge in modern systems biology [1]. High-throughput
technologies allow simultaneous measurements of the
concentrations of thousands of molecular species in a
biological system, such as mRNA [2], microRNA [3],
proteins [4] and metabolites [5]. Each such experiment may
be treated as an observation from a joint probability
distribution (JPD), and it is believed that statistical
dependencies in this JPD provide clues about biochemical
interactions among the species [6]. Thus, identifying
dependencies in JPDs is an essential task for network reverse
engineering, and this problem is also ubiquitous in other
branches of systems biology [7–9] and in many other
applications.

It is clearly understood [10] that statistical dependencies
can be characterised by their order (i.e. by the number of

variables – molecular species – participating in them).
Until recently, most network reverse engineering work
focused on second-order (pairwise) dependencies. Their
identification from data is now a common exercise. In
particular, direct (irreducible) interactions can be
disambiguated from indirect ones (e.g. two biochemical
species correlated due to a common regulator) [11, 12].
However, combinatorial regulation [13], where multiple
effectors combine to regulate a target gene, is prevalent in
higher eukaryotes. Correspondingly, recent years have seen
a surge in the use of high-throughput data to identify these
higher-order structures [6, 14–19]. However, as described
below, there has been little work to rigorously define the
mathematical basis of the identified multivariate statistical
dependencies and the structure of uncovered interactions
(e.g. cooperative or independent regulation). For example,
consider two transcription factors, TF1 and TF2, that may
regulate the expression of a target gene, T, in different
ways, including, but not limited to (note that we use roman
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characters to denote gene names and italic ones for gene
expressions)

dT
dt

= h1(TF1)+ h2(TF2)− rT (1)

dT
dt

= h1(TF1)h2(TF2)− rT (2)

Here hi’s are single-effector activation terms, such as Hill
functions, and rT is the first-order degradation. The first of
these equations describes independent activation of the
target. In the second equation, both transcription factors
(TFs) act synergistically, for example, due to formation of a
transcriptional complex. This type of dependency also
applies in the case of a signalling molecule (SM) that post-
translationally modifies a TF, influencing its ability to
regulate the target. We expect T to be statistically
dependent on TF1 and TF2 in both cases; however, clearly,
there is a difference, since for (2) the effects of TF1 and
TF2 on T cannot be studied in isolation from each other,
forming a third-order dependency among the variables.
With (1) and (2) infused with the usual Gaussian noise
with variance s2, the resulting steady-state equations are,
respectively

P(T |TF1, TF2)/ e−(1/2r2s2)[T−h1(TF1)−h2(TF2)]
2

(3)

P(T |TF1, TF2)/ e−(1/2r2s2)[T−h1(TF1)h2(TF2)]
2

(4)

Thus, joint regulation involves a term that couples all three
variables in the exponent of the JPD. A reasonable tool for
statistical analysis of multivariate interaction patterns should
distinguish such high-order structures from additive
pairwise interactions, as in (1).

This is a non-trivial task since, even now, there is no
consensus definition of an interaction in the multivariate
setting. For example, standard statistical methods [20, 21]
introduce many specialised dependence concepts applicable
in restricted contexts, such as normal noise, binary,
bivariate, or metric data, and so on. Alternatively,
contingency tables literature associates interactions with
deviations of the number of observed counts from their
expectations under various independence assumptions
[22–24]. Unfortunately, this is limited to categorical data
and confounds the definition of dependence with sampling
issues. In information theory [25, 26], continuous and
categorical data can be treated uniformly [27, 28] and
dependencies are defined based on distributions rather than
counts, but none of the information theoretic interaction
measures [10, 18, 19, 29–34] have become universally
accepted either.

In the context of systems biology, multivariate
dependencies have been studied traditionally [6] using
probabilistic graphical models [35], such as Bayesian
networks (BNs) or Markov networks, also known as

Markov random fields (MRFs). However, these models are
generically unable to disambiguate different types of
regulation, such as in (1) and (2) [36]. This limitation
arises from relying on the notion of conditional
(in)dependence rather than providing a precise definition of
statistical dependency among subsets of variables (see below
for more details). That is, many different interaction
patterns can give rise to the same conditional independence
structure in an MRF.

In this work, we provide a rigorous definition of
multivariate statistical dependence. Section 2 motivates our
definition by extending recently developed information
theoretic concepts, such as the definition of connected
interactions proposed by Schneidman et al. [10]. We refer
the readers to [10] for additional background reading on
some of the concepts used in our work. In Section 3, we
describe the connection between our definition of
multivariate dependence and commonly used graphical
models. We use this framework to suggest how local tests
on triplets of variables can be used in the context of genetic
network inference to identify proteins that cooperatively
interact in a pathway to control the expression of a target
gene. We use a simple synthetic model in Section 4 to
demonstrate the method’s ability to infer interactions even
for undersampled distributions, which are common in
practical applications. In Section 5, we apply the method to
identify combinatorially regulated pathways using a
biological data set from human B cells. To promote the
suitability of the method, we design a computationally
efficient proxy test for our definition of multivariate
dependence that provides a theoretical basis for methods
used in previous work [14, 37]. This approach enables
identification of bona-fide regulatory cofactors that
modulate the activity of the MYC proto-oncogene.

2 Definition of multivariate
dependence
Information theoretic concepts have successfully provided
precise, and often unique, definitions of various types of
statistical dependence, but have not yet converged on a
unique definition of multivariate statistical dependence
among subsets of variables within a group of covariates. In
this section, we review recently developed information
theoretic concepts, such as mutual, multi and connected
information, and demonstrate how each is a special case of
the principle of evaluating the Kullback–Leibler (KL)
divergence [38] between the maximum entropy distributions
constrained by a set of marginals and a subset of these
marginals. We then generalise this concept to provide a
precise definition of multivariate statistical dependence.

For two variables, X1 and X2, independence is well defined
via decomposition of the bivariate JPD, P(X1, X2) =
P(X1)P(X2), and mutual information I (X1; X2) ;
IP(X1; X2) ; k log2 P(X1, X2)/[P(X1)P(X2)]l is the unique
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measure of dependence [26]. Similarly, the total interaction
(i.e. the deviation from independence) in a multivariate
JPD, P({Xi}), i = 1, . . . , N , can be measured by the
multi-information [33]

IP (X1; . . . ; XN ) ; DKL[P||P
∗]

= k log2 P(X1, . . . , XN )
P(X1) · · ·P(XN )

l
P

(5)

which assigns a specific number of bits to the union of all
interactions among the studied variables. Here DKL is the
KL divergence between the full JPD, P(X1, . . . , XN ), and
its approximation under the independence assumption,
P∗(X1, . . . , XN ) = P(X1) · · ·P(XN ). In order to define
multivariate statistical dependence, we seek to partition the
total deviation from independence into contributions from
interactions among various variable subsets (specific pairs,
triplets etc.), and a non-zero contribution from a subset
would indicate an interaction among its members.

We first note that P∗ is the maximum entropy (MaxEnt)
distribution [39, 40] that has the same univariate marginals
as P but introduces no statistical dependencies among the
variables [10, 32, 41]. Thus, the multi-information is the
KL divergence between the JPD and its MaxEnt
approximation with univariate marginal constraints, and it
measures the gain in information by knowing the complete
JPD against assuming total independence. Similarly,
MaxEnt distributions consistent with various multivariate
marginals of the JPD introduce no statistical interactions
beyond those in the said marginals. Thus, by comparing
the JPD to its MaxEnt approximations under various
marginal constraints, one can hope to separate
dependencies included in the low-order statistics from
those not present in them [32, 41–44].

Specifically, one can define connected interactions of a
given order, that is, the interactions that need, at least, the
full set of marginals of this order to be captured. Following
Schneidman et al. [10], suppose that we have a network of
N variables and we know a set of marginal distributions
of all variable subsets of size k ≥ 1, so that P(Xi1 , . . . , Xik ) =∑

X!
⋃k

j=1
Xij
P({X }) is specified. One can ask what is the

JPD P(k) that captures all multivariate interactions
prescribed by these marginals, but introduces no additional
dependencies. That is, one searches for a distribution P(k)

with a minimum IP(k) (or, alternatively, with the maximum
entropy – MaxEnt – HP(k) ) such that the constraints
Ci1,...,ik (P

(k), P) ; P (k)(Xi1 , . . . ,Xik )−P(Xi1 , . . . ,Xik ) = 0 are
satisfied. This is given by the MaxEnt, or minimum multi-
information, problem [10, 39, 41]

P (k) ; arg max
P ′,{l}

H [P ′]−
∑

M[V

lM .∗CM (P ′, P)

{ }

(6)

where M’s are sets of constrained variables, such as

Mi1,...,ik = {Xi1 , . . . , Xik} and V = <M . Further, ls are the
Lagrange multipliers that enforce the marginal constraints.
They are matrices of the same dimensionality as the
constraints they enforce, and ‘‘.∗” denotes element-by-
element matrix multiplication (following Matlab notation).
We do not write out the indices of JPDs or ls explicitly.

The solution of a MaxEnt problem with marginal
constraints has the form of a product of terms dependent
on the constrained variables [45]. In particular, for (6)

P (m) = 1
Z

∏

i1,···,im

c(Mi1...im ), c ≥ 0 (7)

where Z is the normalisation term and each c is a different
function, known as a potential, which is determined
implicitly by the marginal constraints. In general, no
analytical solution for the c’s exists. However, an algorithm
called the iterative proportional fitting procedure (IPFP)
[46], which iteratively adjusts a trial solution to satisfy each
of the constraints in turn, converges to the true solution
[45]. The connected information of order k is then

I (k)C (X1; . . . ; XN ) ; D[P (k)||P (k−1)]
= IP(k−1) (X1; . . . ; XN)−IP(k) (X1; . . . ; XN)

(8)

This characterises the increase in information by knowing all
marginals of order k, as opposed to all marginals of order
k2 1. Note that the multi-information can be decomposed
into a series of connected information, IP =

∑N
k=2 I (k)C .

While appealing, the connected interaction construction
assigns interaction bits to a particular interaction order. We
need to refine the approach to instead assign the bits to a
particular combination of variables within this order, which
has not yet been done.

To localise (connected) interactions to particular sets of
covariates, we note that the definitions provided in this
section illustrate that mutual, multi and connected
information all rely on the general principle of evaluating
the KL divergence between the MaxEnt distributions
constrained by a set of marginals and a subset of these
marginals (or, alternatively, the difference of entropies of
these two MaxEnt distributions or the negative difference
of the multi-information). If the divergence is positive,
then the extra marginal constraints correspond to a non-
zero interaction. Thus, to determine if interactions within a
particular set V of variables contributes to IP, we may check
if enforcing the corresponding constraint CV recovers any
additional dependencies not already contained in a
reference MaxEnt distribution, P(V), constrained by some
set of other marginal constraints in V. That is, we define
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the interaction information

D(V )
V ; k log2 P (V<V )

P (V) l = IP(V<V ) − IP(V) ; I (V ) − I ∗(V ) (9)

Here, similar to (6), P(V) is the MaxEnt distribution
satisfying all constraints in V [45], as in

P (V) = 1
Z

∏

M[V

c(M) ;
1
Z
exp −

∑

M[V

w(M)

[ ]

(10)

By positivity of the Kullback–Leibler divergence, D(V )
V ≥ 0.

Thus if D(V )
V . 0, accounting for the constraint CV recovers

more information, and we say that the variables in V
interact with respect to P(V).

Note that D(V )
V is V-dependent, and to test for

dependencies we must first select the reference set of
constrained variables V. To define an irreducible
interaction among variables in V, we choose V that
minimises the interaction information

VV = argmin
V

D(V )
V (11)

D(V ) ; D(V )
VV

(12)

This guarantees that interactions are defined only if
they cannot be explained away by confounding effects of
other statistical dependencies in the network. Then, in
particular

IP ≥
∑

V[‘({X1,...,XN })

D(V ) (13)

where ‘({X1, . . . , XN }) is the power set (the set of all
subsets) of the analysed variables.

Intuitively, adding additional constraints to V should not
increase the information provided by V, and should only
cause D(V )

V to decrease or remain the same. Stated formally:

Conjecture 1: Let V1 , V2 be sets of non-contradictory
marginal constraints, and P (V1) and P (V2) be the
corresponding MaxEnt distributions. Let V be an
additional marginal constraint, possibly a subset of either
V1 or V2. Then

D(V )
V1

≥ D(V )
V2

(14)

This says that interaction information depends on the order
in which the interactions are considered. Dependency bits
will be accounted for by the first marginal able to explain
them, attributing less bits to later constraints. We have
extensively tested this conjecture numerically (not shown),
but the proof is not yet available.

According to the conjecture, the reference set of
constraints VV to test for the existence of irreducible
interactions within V is

VV =
⋃

M,‘({X1,...,XN }),M"V

M (15)

Thus, P (VV ) preserves all marginals of the original JPD except
those that involve all covariates in V simultaneously. This is
similar to the Type III sum of squares analysis of variance
for the testing significance of predictors. In fact, since DKL

is equal to x2 asymptotically, the similarity is not
accidental. Dependence defined by this choice of P (VV ) is a
generalisation of conditional dependence with the rest of
the network as a condition. This extends the analysis of
Schneidman et al. [10] and defines an interaction among a
particular set of variables, rather than within all variable
subsets of the same cardinality.

While this formulation gives a precise definition of
multivariate statistical dependence, computational issues
arise in applying it to large networks. First, searching
through the space of all possible multivariate dependencies
is exponential in the number of variables as, for N
variables, there are 2N possible subsets of the variables.
Moreover, each test for an irreducible interaction

D(V ) . 0 (16)

requires computing two large MaxEnt distributions, which
is not trivial, especially since empirical distributions
computed for large-dimensional marginals will be severely
undersampled. Finally, in many cases, some of the variables
in the network will be unmeasurable (hidden), influencing
the interaction structure derivable from the visible variables
[10, 47]; this is clearly prevalent in systems biology
applications, where we are still far from measuring the
concentrations of all chemical species in a cell. We will
address these issues partially in Section 3.

Complications aside, the MaxEnt formulation resolves the
problem of disambiguating dynamics arising from different
dependency structures, such as in (1) and (2). Indeed,
independent regulation, as in (1), produces a JPD with
only pairwise potentials, while joint regulation requires a
third-order potential and will, therefore, result in a third-
order interaction.

3 Graphical models
Graphical models [35] are widely used to provide a visual
representation of the factorisation of a JPD and to motivate
efficient inference algorithms based on graph theoretic
considerations. This framework has been applied often in
genetic network inference applications [6]. Thus, it is
informative to illustrate statistical interactions that can be
identified using our approach, but not by commonly used
graphical models, as we describe below and in Section 3.1.
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Moreover, in cases where computation of irreducible
dependencies is intractable, the graphical models
framework provides insights into the interpretation of local
dependency tests, as we describe in Section 3.2.

The maximum entropy formulation is strongly related to
undirected graphical models. In particular, (10) has the
form of a Markov network, which is visually represented by
associating each variable with a node and drawing an edge
between each pair of variables that appear together in a
potential. However, this network representation is
insufficient to distinguish between potentials that are fully
parameterised, or only parameterised by functions on
subsets of variables, which is a major goal of this work. A
more general graphical model, known as a factor graph, is
able to represent this distinction. The factor graph
representation of a JPD contains two types of nodes. Each
factor (potential) c(V ) is explicitly represented as a factor
node, with an edge connected to each variable in V, which
are represented as variable nodes (Fig. 1). However, in
traditional factor graph literature, the factors cannot be
defined uniquely once the JPD is known. For example, if a
three-variable factor c(X1, X2, X3) is present, then any
two-variable factor c(Xi , Xj), i, j ¼ 1, 2, 3, can be
subsumed into it. Therefore traditional factor graphs blur
the distinction between columns (d) and (e) in Fig. 1.
Conversely, while our formulation can also be represented
using factor graph notation, each factor is defined uniquely,
so that the factor structure of the JPDs in columns (d) and
(e) is materially different. Therefore one can talk about
existence or non-existence of a lower-order factor uniquely
and independently of whether the higher-order factor
involving the same variables exists.

3.1 Examples and properties
We consider a few examples of different graphical model
representations for networks of size M ¼ 3 (larger M is

analysed similarly). First, for a regulatory cascade, or a
Markov chain, X1 % X2 % X3, P(x1, x2, x3) =
P(x1)P(x2|x1)P(x3|x2), as shown in Fig. 1b. Consider the
test for X1X2 dependence. Following the notation of (9),
we let I (12) and I

∗(12) be the multi-informations of the
distributions used to test for dependency in X1X2. That is,
D(X1X2) ; D(12) = I (12) − I ∗(12). Then, we have I ∗(12) =
I [X1, X3] + I [X2, X3] ≤ I (12) = I [X1, X2] + I [X2, X3],
where the inequality is due to the information processing
inequality, and the bound is reached only in special cases.
Thus, X1 and X2 are (generically) dependent. Similarly, X2

and X3 are dependent. However, D(13) ¼ 0, and X1, X3 are
not dependent (even though their marginal mutual
information, induced by other interactions, is not zero).
Checking for the triplet interactions, we find
I ∗(123) = I [X1, X2]+ I [X2, X3] = I (123), thus no such
dependencies are present. If instead X2 regulates X1 and
X3, one sees that the dependence structure is the same.
Both networks correspond to the graph in Fig. 1b.

A more interesting case is when X1 and X3 regulate X2

jointly. Here many possibilities exist, not all of them
realisable in terms of Bayesian or Markov Network
modelling. First, consider independent regulation: to predict
X2, one does not need to know the values of X1 and X3

simultaneously, P(x2|x1, x3) = f12 f23, for example,
P(x2|x1, x3)/ exp[− a(x2 − x1)

2 − b(x2 − x3)
2] (this

corresponds to probabilistic analogues of OR and AND gates
[10], to the Lac–repressor [13], and to all regulatory models
based on independent binding of TFs to the DNA [8]). If
P(X1X3) ¼ P(X1)P(X3), then the dependency structure is
again as in Fig. 1b. If, in addition, there is a regulation
X1 % X3, so that P(X1X3) = P(X1)P(X3), then D(13) ≥ 0,
and D(123) ¼ 0. The dependency graph now has a loop in it,
as in Fig. 1c. However, in the case of joint (e.g. cooperative)
regulation, P(X1X2X3) is non-factorisable, D(123) . 0, and
the dependence structure is as in Figs. 1d or e.

3.2 Local tests
While the previous section described precise tests for three-
variable networks, computing irreducible statistical
dependencies for large networks is computationally
intractable. The graphical models framework provides an
intuitive interpretation of statistical tests performed on
subsets of variables. For example, consider a network
with N ≫ 3 nodes and define V3 ¼ {(1, 2, 3)} and
V2 ¼ {(1, 2), (2, 3), (1, 3)}. Evaluation of D(V2) or D(V3)

using (16) is unrealistic since it requires computing
MaxEnt distributions with factors over N2 2 and N2 3
variables. Instead, one may need to marginalise over many
Xi , i . 3, and search for dependencies in the JPD with
three variables only. In general, with marginalised (hidden)
variables, an irreducible dependency cannot be inferred by
MaxEnt tests, but it is informative to understand the
meaning of a difference in MaxEnt entropies even in this
case.

Figure 1 Examples of Markov networks and corresponding
factor graphs for three-variable networks
a A simple second-order interaction
b Two second-order interactions without loops
c Three second-order interactions forming a loop
d A Third-order interaction
e A third-order and a second-order interaction
In the factor graphs, variable nodes are represented by circles
and factor nodes are represented by squares. Note that
a three-way interaction, three two-way interactions or
combinations of the two are represented by the same Markov
network
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Owing to the factor structure of the JPD in (10),
marginalising over a variable will couple all of its
neighbours (nodes with which it participates in a potential)
into a single factor. If any of those nodes are marginalised
out, its neighbours will further be coupled into this factor,
and so on. As a consequence, for any three variables
remaining in a marginalised graph, if, in the full factor
graph, there exists a factor node such that there is a direct
path between it and each of the remaining three variables
that does not pass through the other two, then
marginalisation over the hidden variables will produce an
effective third-order interaction among the remaining three
variables. As discussed in Section 5, this observation has
important consequences in genetic network inference and
indicates that the proposed multivariate dependency
framework can be used to identify proteins that
cooperatively interact in a pathway to regulate the
expression of a target gene.

4 Synthetic data
A major advantage of our definition of statistical
dependencies in terms of MaxEnt approximations is that it
can be applied even when the underlying distributions are
undersampled and the corresponding factorisations cannot
be readily observed. If the cardinality of the sample space,

K =
∏

Ki, where Ki are cardinalities of individual
variables, is larger than the number of samples, s, we
cannot estimate the distributions reliably (we note that
because continuous gene expression values are routinely
discretised in genomics, we focus on the discrete case in
view of its conceptual simplicity). However, entropic
quantities, and therefore the interactions are inferable. In
genomics, continuous expression levels are routinely
discretised. Thus, we focus on the discrete case in view of
its relevance and conceptual simplicity. Some progress is
possible even for s (

+++
K

√
[48, 49]. To show this, we used

Dirichlet priors [49] to generate random probability
distributions with different interaction structures for N ¼ 3,
and with marginal cardinalities Ki ¼ 50. We generated
random samples of different sizes, s = 50, . . . , 125 000,
from these distributions and tested the quality of inference
of the dependencies as a function of s. As an evaluation
metric, we used the evidence for an interaction,
E(V ) ; D(V )/dD(V ), where dD(V ) is the statistical error of
the interaction information. If E(V ) is large, the
dependency is present. According to Fig. 2, proper recovery
is possible for s = K = K1K2K3 with few assumptions
about the distributions.

With modern entropy estimation techniques [49], our
approach will work even for severely undersampled JPDs.

Figure 2 Inferring regulatory networks from sample size, s
a Network with P/ c(X1, X2)c(X2, X3). To the left of the vertical dotted line, s ≃ 3000 . 2HP(V) ≪ K ≃ 125 000, the sample size
corrections are reliable, and all entropies are known well. Here, HP stands for the entropy of the distribution P. There is evidence only
for X1X2 and X2X3 interactions, just as it should be. For smaller s, the method of [50] fails, but the NSB entropy estimation method
[49] works until s ( 21/2HP ≃ 60. For pairwise interactions, we may replace HP(V) by HP (denoted by smaller markers on the plot) and,
since E(13) stays zero nonetheless, and I(X1; X2)+ I(X2; X3) ¼ IP, we still recover the interactions correctly
b Network with three pairwise interactions. Again, to the left of the line, s . 2HP(V) , all entropies are determined reliably, and there is
evidence for all three pairwise interactions, but not for the triplet interaction. To the right of the line, NSB still works, but now we
cannot disentangle the loop from the three-way dependence without estimating HP(V)

c Network with three pairwise interactions and a third-order interaction. Only the regime s . 2HP(V) is shown. The evidence for all three
pairwise interactions and for the triplet interaction is barely significant for small s but grows fast
We used the NSB method to estimate the entropies (with error bars) of the JPD and its marginals directly. The method does not work for
the entropy of P(V) for V ; (123) = {(X1, X2), (X2, X3), (X1, X3)}. Thus, the IPFP [46] was applied to the counts and the entropy HP(V) in the
solution was evaluated and extrapolated for 1/s % 0, following [50, 51], to account for the sample-size dependent bias. The statistical error
for each sample size, s, was determined by bootstrapping, and the resulting extrapolation error was used for dHP(V). This approach works
since the MaxEnt constraints, like those in (6), are linear in the unknown JPD, P, making the biases of HP and HP(V) behave similarly. Finally,
D(V ) was calculated as the differences of the appropriate entropies, and d2D(V) as the sums of squares of the entropy errors. Network
models are displayed above each plot
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The bottleneck is estimation of the maximum entropy
consistent with the marginals, which currently requires
substantial sampling of the marginals, requiring
s ( max(K1K2, K2K3, K1K3), similarly to the jackknifing
method used in [50, 51]. This is encouraging, since the
marginals may be well-sampled when the JPD is not.
However, it is still essential to develop techniques to infer
maximum entropies directly. Further, the interaction
information is the difference of entropies. It may be small
when its error, which is a quadratic sum of the entropy
errors, is large. This leads to uncertainties about
dependencies even for reliably estimated entropies.
Therefore a method that directly estimates D will be
preferred over another entropy-based technique.

5 Genetic networks inference
5.1 Inferring regulatory pathways
The proposed method for identifying multivariate
dependencies has important applications for cellular
networks inference. Cellular networks are composed of a
complex system of interacting and diverse molecular
species. For example, consider the task of inferring genetic
regulatory interactions using statistical correlations between
mRNA concentrations measured using gene expression
microarrays. Generically, genes encode mRNAs, which are
translated into proteins. Some of the latter encode TFs,
which in turn can bind to DNA and influence the
expression of other genes. However, mRNA abundance
data only probes a small percentage of the regulatory
network. For example, the translation of mRNA into
protein is dynamically regulated at many levels, including
by regulating mRNA stability, nuclear export and
cytoplasmic localisation and translation initiation. Once
translated, proteins engage in a vast network of
interactions, being regulated, for example, by complex
formation as well as a variety of post-translational
modifications, such as (de)phosphorylation, (de)acetylation
and (de)ubiquitination. Finally, the ability of a gene to be
transcribed is strongly affected by modifications of the
DNA, such as methylation, chromatin accessibility (which
is influenced by histone modifications such as acetylation),
as well as other genetic factors including mutations, single
nucleotide polymorphisms and chromosomal alterations.
Many of these regulatory processes are carried out by
proteins, but there is also a critical and ever increasingly
appreciated role for other regulatory factors such as non-
coding RNAs and metabolites. The combined effect of
these considerations is to create a vast network of hidden
variables, while we only probe a small percentage of the
system with current technologies. For such complicated
regulatory systems, it is difficult to understand the effect of
the unobserved variables and thus to interpret the meaning
of statistical dependencies between mRNAs.

Section 3.2 provides some insight into this question and
suggests that irreducible multivariate statistical

dependencies between mRNAs may be used to identify
genes that interact in a pathway to jointly regulate the
expression of a downstream target. Consider, for example, a
TF, that regulates a target gene, T. This interaction is
influenced by a (possibly large) number of other proteins,
which we call modulators [14], denoted by M (Fig. 3). The
modulators may interact directly with TF, for example, via
post-transcriptional modification, creating a third-order
dependency between TF, M and T. However, as discussed,
effective third-order dependencies are also created between
variables that interact indirectly, for example, if the
modulator regulates another gene or protein that
subsequently interacts with TF downstream. This type of
series of interactions in which multiple genes jointly control
a cellular process (e.g. expression of a target gene) is called
a pathway, and is a principle mechanism by which a cell
regulates gene expression.

To identify such third-order dependencies, we test for a
reduction in entropy by constraining P(TF, M, T) compared
to constraining P(TF, T), P(M, T) and P(TF, M). The
MaxEnt distribution constrained by all three pairwise
marginals must be computed by an iterative algorithm.
However, a much more computationally efficient procedure
can be derived under the simplifying assumption that TF and
M are not (irreducibly) statistically dependent, which is a
common occurrence in biology [37]. That is, the factorisation
of the JPD produced by the MaxEnt formalism does not
contain the c(TF, M) potential. Note that this is less stringent
than requiring I(TF; M) ¼ 0, and only means that we do not
need to constrain (TF, M) in the MaxEnt construction. Then
the test for the difference in entropy of MaxEnt distributions
constrained by [(TF, T), (M, T)] against that constrained by
[(TF, T, M)] reveals a simplified equation based on
conditional mutual information. In particular, the MaxEnt
distribution constrained by the two pairwise marginals has
the form P∗(TF , T , M) = [(P(TF , T )P(M , T ))/(P(T ))],
whereas the distribution constrained by the three-way
interaction has the form P∗(TF , T , M) = P(TF , T , M).
Therefore letting D denote the difference in multi-information
of the two distributions, we have

D = H (TF , T )+H (M , T )−H (T )−H (TF , M , T )
= H (T |M)−H (T |TF , M)+H (TF , T )
+H (M)−H (T )−H (M |TF )−H (TF )

= I (TF ; T |M)− I (TF ; T )+ I (TF ; M) (17)

Figure 3 TF regulates a target gene, T
a When M is abundant, TF strongly regulates T
b When M is scarce, TF only weakly regulates T
Modulator gene, M, influences this interaction, for example, by
forming a complex with TF, by phosphorylating TF or by
regulating another protein that interacts with TF
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We implemented this form of the equation, considering cases
where I (TF , M) = 0, ensuring that the simplifying
assumption of no statistical interaction between TF and M
holds true. This form of the equation was used in [14, 37], but
its theoretical basis has not been developed until the current
work. This procedure relies on computing whether the mutual
information between TF and T increases when conditioned on
M under the I (TF , M) = 0 assumption. Since expression
data are continuous, to overcome the undersampling issue, we
use Gaussian kernels to estimate conditional information [12].
Further, following [37], we discretise M into M+ and M2,
representing high and low-modulator expressions, and test for
I (TF ; T |M+) = I (TF ; T |M−) as a proxy for (17). Below
we consider how this simplified version of the general
framework can be used to identify cooperative regulation, and
compare it to using pairwise dependencies only. The main
contribution of this work is to formalise the concept of
multivariate dependence, and thus we do not claim to
exhaustively test its application to biological networks, but
rather provide initial evidence of the method’s effectiveness for
this purpose.

5.2 Results for biological networks
The MYC proto-oncogene is a critical regulator of oncogenic
onset and progression, and is estimated to be overexpressed in
at least one-seventh of all human cancers [52], including a
large percentage of B cell lymphomas. The pluripotent nature
of MYC’s interactions make it difficult to characterise the
critical pathways that are affected by aberrant MYC
expression, and it is thus important to characterise the
network of interactions associated with MYC. In addition,
MYC provides a convenient test case for reverse engineering
algorithms due to a public database containing a large
number of biochemically validated MYC transcriptional
targets [53]. Moreover, MYC is known to be regulated by the
B cell receptor (BCR) pathway in B cells [54], and has over

60 known protein–protein interaction (PPI) partners in the
human protein reference database [55]. Thus, while far from
a perfect test, comparing predicted modulators against these
two data sources provides a level of validation.

We have recently taken steps towards characterising the
genetic network associated with MYC by analysing a data set
of 254 microarrays derived from normal and tumour-related
human B lymphocyte populations [56]. In particular, we have
developed a method [12, 57] that has been used to accurately
identify downstream MYC targets [11], and has led to
insights into the relationship between the part of the cellular
interaction network regulated by MYC, and those regulated
by other proto-oncogenes such as NOTCH1 [58]. Further,
we have identified a variety of modulators of MYC [14, 37].
In this work, we take another, more principled look at the
identification of the cellular network that works cooperatively
with MYC to jointly regulate sets of target genes.

After filtering out all genes from the microarray exhibiting
low expression or insufficient dynamic range, following [37],
we compiled two sets of potential modulator genes. The first,
which we call SMs, contains genes that are annotated as
protein kinase, protein phosphotase, acetyltransferase or
aceylase in the gene ontology database, and may potentially
post-translationally regulate MYC or another gene that acts
in the same pathway as MYC. The second group contains
genes with the gene ontology annotation of TF activity,
which may serve as co-TFs associated with MYC. We also
compiled a set of experimentally validated MYC targets
from the www.myccancergene.org database [53]. In order
to apply (17), we removed potential modulators that had
significant MI with MYC, leaving a total of 1128
Affymetrix probe sets as potential modulators (542 SMs
and 598 TFs), which were tested for their ability to
modulate MYC interactions with the 340 probe sets
associated with MYC targets.

Table 1 Third-order, but not pairwise, statistics effectively identified putative modulators

Putative Total Percent, % p-Value

SMs all genes 12 580 74 800 16.8

inferred (three-way) 1015 3586 28.3 3.3∗10211

inferred (pairwise) 432 3586 12.1

TFs all genes 9520 87 040 10.9

inferred (three-way) 771 4343 17.8 4.0∗10211

inferred (pairwise) 380 4343 8.8

Putative modulators were defined as those contained in the BCR pathway or participating in a PPI with MYC. We considered
the percent of putative modulators associated with significant three-way interactions against a background of all tested
triplets, as well as triplets with the highest total MI, I(TF; T)+ I(M; T). We considered separate statistics for SMs and TFs.
Because pairwise statistics identified a lower percent of putative modulators than background, we assessed statistical
significance of the third-order interactions against the background. As shown, third-order statistics identified interactions
highly enriched in putative MYC modulators, whereas pairwise statistics performed slightly worse than background.
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Figure 4 Analysis of third order interactions in the MYC transcriptional network
a Set of 75 putative modulators was compiled, including probe sets from BCR pathway genes and known PPI partners of MYC, together
with 450 negative instances, including those not in the positive set and not correlated with any probe sets in the positive set. Each probe
set was ranked based on the number of MYC interactions that it modulated. By varying this number as the threshold, an ROC curve was
produced. The area under the curve was calculated to be 0.74
b Example of a scatter plot of an interaction modulated by CSNK2A1, a bona-fide positive modulator of MYC. Expression levels (in log) of
MYC and SLC7A1 (a known MYC target) were plotted on the X and Y-axes, respectively. Data were partitioned into the 35% of samples with
the highest CSNK2A1 expression and the 35% of samples with the lowest CSNK2A1 expression (circles and crosses, respectively), and a line
was fitted to the data points in each subset. As shown, when CSNK2A1 was highly expressed, MYC strongly regulated SLC7A1, whereas this
interaction was not apparent at low CSNK2A1 expression levels
c MYC target gene expression modulated by CSNK2A1. Two microarray images (modulated MYC target genes on rows and samples on
columns) are shown for each subset of high and low CSNK2A1 expression. Samples in each subset were sorted by MYC expression and
expression values of target genes were rank transformed, scaled between 21 and 1, and displayed using the colour scheme indicated
by the colour bar shown at the bottom of the plot. At high CSNK2A1 expression, MYC was highly correlated with these targets, but
not at low CSNK2A1 expression
d TF binding site enrichment analysis for MYC modulators functioning as potential co-TFs. For each modulator with an available scoring
matrix in the TRANSFAC database [59], its binding sites were searched for in the promoter regions (2 K upstream and 2 K downstream from
transcription start site) of each modulated MYC target gene. Binding site enrichment for each modulator was assessed using Fisher’s exact
test and comparing to 13 000 random human promoters. M#: number of modulated MYC targets; M+/2: number of MYC targets
positively/negatively affected by the modulators; PBS: p-value of the binding site enrichment test. Twelve of the top 15 inferred co-TF
modulators that had available scoring matrices in TRANSFAC displayed statistically significant enrichment of their DNA binding site in
the promoters of the inferred target genes
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We applied (17) to all combinations of modulators and
target genes, with MYC fixed as the TF variable. Statistical
significance was assessed using the permutation test
described in [37]. This creates a matrix of interaction
p-values with all modulators on the columns and all genes
on the rows. Significant interactions were defined as those
having a Bonferroni corrected p-value less than 0.05.

We sought to test two specific claims made in the
preceding papers [14, 37]. First, that third-order statistics
can be used to identify genes that interact in a pathway to
directly or indirectly cooperate with a TF to control a set of
target genes. Second, that such interactions may be
identified by third-order statistics but not by second-order
ones. To this end, we considered all significant third-order
interactions and analysed the number of associated
modulators either annotated as belonging to the BCR
pathway, or as a PPI partners with MYC. We call genes
meeting these criteria putative modulators. Overall, there
were 3586 and 4343 significant interactions for the SM
and TF data sets, respectively. As shown in Table 1,
modulators associated with inferred three-way interactions
were significantly enriched with putative modulators. We
note that the p-values may be overestimated because
samples are not independent.

To test against the hypothesis that modulators can be
identified by second-order statistics alone, for each data set
we ranked each interaction based on the total pairwise
mutual information, I(TF; T)+ I(M; T), and, to compare
with third-order tests, considered the top-ranking 3586
and 4343 triplets for SMs and TFs, respectively. Only 432
(12.1%) SMs and 380 (8.8%) TFs were putative
modulators, indicating that modulators could not be
identified using pairwise statistics alone. In fact, the top-
ranked interactions based on MI contained a slightly lower
percent of putative modulators than the background, likely
because the activity of a modulator affects the strength of
coupling between the TF and target, diluting the MI.
Thus, gene triplets with high MI are likely to preferentially
not include third-order interactions.

Next, reasoning that important modulators may affect
MYC’s interaction with a large number of target genes, we
tested whether putative modulators could be identified by
ranking them based on the number of MYC interactions
that they affect. Using this procedure, we can
simultaneously identify the modulators of MYC and the
lists of target genes that they modulate. Receiver operating
characteristic (ROC) analysis (Fig. 4a) showed that the
top-ranking genes by this procedure were significantly
enriched for putative modulators. The top-ranking gene,
casein kinase 2 alpha 1 (CSNK2A), showed a strong
pattern of positive modulation of MYC (Figs. 4b and c),
and has been experimentally validated in vivo to directly
phosphorylate MYC and positively modulate its DNA
binding kinetics [60, 61]. Finally, the binding sites for the
top-ranking TF modulators were significantly enriched in

the promoters of inferred target genes (Fig. 4d), providing
evidence that these co-TFs cooperate with MYC by
binding to the promoters of common targets. Together,
these results indicated that our procedure could effectively
identify genes that interact in a cellular pathway of interest.

6 Conclusions
In this article, we revisited the concept of multivariate
dependence using information theoretic, maximum-
entropy-based techniques. We provided a definition of a
higher-order statistical interaction that is able to measure
the interaction strength, in bits, and assign it to a specific
set of statistical covariates. This extends earlier results of
Schneidman et al. [10], which allowed for identification of
the existence of a higher-order interaction, but could not
identify which specific variables participated in it.

Clearly, the method is still in the early stages of
development. To complete the definition, the conjecture
that allowed us to define the interaction information
uniquely needs to be proved. Further, for applications,
development of techniques for dealing with undersampling
for identification of higher-order dependencies is likely the
largest obstacle to a wide adoption of the method. Finally,
additional testing is required to validate the applicability of
the approximate test to various biological data. We will
return to all of these questions in future work.

However, in its present form, we believe that our work
represents both a theoretical and practical advance. Our
formal definition of multivariate dependence will allow
more precise consideration, in statistics and information
theory disciplines, of irreducible statistical dependencies
between subsets of covariates. From a practical standpoint,
our definition is only useful to the extent that it can be
used in real-world applications. Thus we demonstrated
the robust performance of our method even for
undersampled distributions that are typical of statistical
inference problems. Further, we argued that the definition
allows a new, principled treatment of reverse-engineering
transcriptional regulatory networks, in particular to
identify combinatorially regulated pathways in
transcriptional data. To facilitate the application to large-
scale data sets, we designed a computationally efficient
test that well-approximates our definition of multivariate
dependence in typical transcriptional regulation data. The
test enabled specific, verifiable and literature-supported
predictions about regulatory cofactors, also called
modulators, operating together with MYC to regulate its
targets. Our results, taken together, suggest that the
definition of multivariate dependence introduced in this
work provides an important theoretical advance in the
field of statistical inference, with applications to systems
biology and related disciplines.
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