On impossibility of learning in a
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The problem of inferring a probability density Q(x) from a finite number N of
observations has been discussed in many contexts. Arguably, the most interesting
question here is the inference of the density when only some assumptions about
its smoothness properties can be made. This has been analyzed in the framework
of Bayesian statistics using functional analysis methods of Quantum Field Theory
[BCS96, Hol97, NB02]. If Q(z) = 1/lgexp ¢(z) [BCS96, NB02], or Q(z) = ¢*(x)
[Hol97], then the methods prescribe priors of the form
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Here Z is the normalization constant and d-function enforces the normalization of
the density Q. Further, the exponential term punishes for rapid variability (non—
smoothness) of ¢ and, therefore, of Q. Larger values of 1 and ¢ correspond to
smoother assumptions about @, and Ref. [NB02| suggested a way of self-consistently
estimating the correct values of them from the data.

A few issues still remain [NB02], but, conceptually, the problem seems to be well
understood. The biggest hurdle was observed in Ref. [Per97]. If Q(x) is a probability
density, then Q(z)dz is a measure invariant under reparameterizations. Thus under
a coordinate transformation z = z(z), @ must transform as follows:
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Unfortunately, since the prior, Eq. (1), is not reparameterization—invariant, this
transformation condition does not hold. Refs. [Per97, Per99] tried to correct for
this (there were similar attempts for non-Bayesian frameworks as well). The aim
of the current note is to present a series of related arguments that show that
reparameterization—covariant inference is impossible in principle. We first start
with a general discussion, then give an explicit and unexpectedly simple example,
and finally show how approximate reparameterization covariance is still possible.

First note that, for any K = dimx, we can write the probability density as
Q(z) = /|g(z)| Q(x), where |g| is the determinant of the metric tensor. /|g| d¥x



forms an invariant volume element, thus /|g| transforms like a scalar density

similarly to (. Therefore, ) is a pure scalar. One can, of course, write a
reparameterization—invariant regularizing prior for the scalar portion of the proba-
bility density using the metric tensor [Per97, Per99]. However, what is to be used to
enforce the smoothness of the metric itself in a metric-independent way? Indeed,
in one dimension all differential-geometric properties are determined by embed-
ding (equivalently, parameterization), and there is no intrinsic curvature commonly
used to identify more complex solutions prone to overfitting [Vap98, BNT01]. How-
ever, the metric part of the p. d. f. enters multiplicatively and must be regular-
ized for successful learning. Therefore, at least in one dimension, existence of a
reparameterization—covariant and at the same time regular inference mechanism is
unlikely. For higher dimensions, there is, for example, intrinsic curvature, but it is
doubtful that it will be enough to properly regularize allowable metric tensors.

This intuition can be made very precise. Let us describe learning with an op-
erator L that maps observed data, {z;},7 = 1...NN, onto probability densities
Q(x). Further, we introduce a reparameterization operator R,, which acts as
follows: R,z = z(z), R,Q(x) = Q(x(2))J(z), where Q(x) is non-singular, and
J~Y(2) = |dx/dz| is the Jacobian of the reparameterization. Then reparameteriza-
tion covariance means that

[R., L] =0. (3)
That is, reparameterization commutes with learning. Suppose now that we chose
a particular reparameterization z = z(x) that keeps the data unchanged R,x; =
z; = x;. Then we get LR {z;} = L{z;} = Q(z). On the other hand, RL{z;} =
RQ(x) = J(2)Q(z). Therefore, for such reparameterizations,

[R,L] = (J—-1)L. (4)

This is zero for the trivial reparameterization, z = z, but nonzero for any other
reparameterization and continuous Q(xz) = L{z;}. The only fully reparameteri-
zation—covariant solution is a singular, unregularized learning machine, L{z;} =

1/N > 6(z — x;), but this overfits hopelessly [Vap98].

The problem is, of course, equivalent to the fact that there are infinitely many ways
to reparameterize any {z;} into equally spaced {z;}. Thus without some a priori
constraints on particular coordinates used, the data are completely uninformative.

One should not assume that probability densities are special in having this problem:
any quantity that transforms non—trivially will have its own analogue of Eq. (4). The
need for knowing a parameterization has been noticed many times in the previous
literature, but usually set aside as a technical issue. For example, Cucker and
Smale [CS01] note that the total error of learning consists of the sample and the
approximation errors. The latter is finite only under a condition that the true
(unknown) measure on z is absolutely continuous with respect to an assumed one,
e. g., J that maps one measure onto the other is bounded. This is a manifestly
parameterization—dependent assumption.

While Ref. [CS01] deals specifically with quadratic regressions, it is clear that this
particular part of their results generalizes easily. Indeed, learning is usually repre-
sented as minimizing the risk R, which is the expected value of some loss L,

R = / 12Q()£(Q, ), (5)

If Q(z) is allowed to be very small, then there always can be an interval of  that has
an (infinitely) large risk, but a vanishingly small measure, so that it is unobservable
for any N < oco. Without constraining possible densities, one cannot guarantee
asymptotic consistency in the sense developed in Ref. [Vap98].



Now when we have firmly established that it is impossible to learn in a covariant
fashion, we should investigate how badly non-covariant approaches perform. Is it
possible to estimate mistakes made by the learning process? If ¢(x) is the quantity
being estimated (such as ¢(z) = log Q(z)/lp in [BCS96]), and its (unknown) true
value is ¢o(x), then we can define ¥(x) = ¢(x) — ¢o(x) as the error of the estimator.
For most learning scenarios (see, for example, [BCS96))

1
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where P(x) is the (unknown) value of the true probability density, and «, 8 depend
on the assumptions made about the smoothness of ¢, 0 < («, 5) < 1. In particular,
in Ref. [BCS96], « = 8 = 1/2, and other possibilities were discussed in Ref. [NB02].
Note that Eq. (6) does not bound the error variance uniformly. Even worse, a sim-
ple reparameterization (stretching of ) can make P vanishingly small everywhere,
and then the variance diverges. This is clearly because the smoothness properties,
Eq. (1), are imposed onto @ is some coordinates . However, there is a close relation
between the coordinates and the densities [cf. Eq. (2)], and choosing the coordinates
limits the set of probability distributions that can be learned reliably.

To see this notice that 1/P(z) is the Radon-Nikodym derivative of the measure
uniform on x, U(x), with respect to the true, unknown measure, 7(z). If P(z) >
Py > 0 [equivalently, U(x) is absolutely continuous with respect to m(x)], then

1

Here the < reminds us that Eq. (7) is only an asymptotic series in 1/N.

Eqgs. (6, 7) mean that, in order to bound possible errors, one should make an
assumption that the coordinate system chosen is “reasonable”: the Jacobian that
maps 7(x) into U(z) is never singular, or P(x) is bounded away from zero. Surely,
the assumption must not necessarily be hard and may be enforced smoothly by a
prior, but it is needed.

Finally, we notice that Py describes how parameterization—dependent the learning
machine is: when P, decreases, the set of probability densities that can be learned
well grows. If one were able to guarantee uniformly small errors for Py — 0, the
learning machine would succeed for all densities and would be reparameterization—
covariant. Thus Eq. (7) bounds a combination of two errors (estimation of ¢ and
non-covariance) by a function that falls as a power law in the number of data. The
details (such as «, 3, and the choice of Var 1) as the error measure) certainly depend
on a particular problem setup and on assumptions about the smoothness of ¢ and
the allowed values of the Radon—Nikodym derivative. However, it is clear that the
general result should be common: one can trade better approximate covariance for
better non-covariant estimation, and N constraints the balance. It is interesting
whether Occam style arguments [Mac92, Bal97, NB02] can be used to find the
optimum tradeoff between the two errors.
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