
Riedel-Kruse	Lab,	Stanford	Bioengineering,	2016	

Euglena	Matlab	Module	
Zahid	Hossain	(zhossain@stanford.edu),	Honesty	Kim	(honestyk@stanford.edu)	

	
We	 compiled	 a	Matlab	module	 that	 automatically	 tracks	 Euglena	 swimming	 trajectories.	 The	
tracing	is	based	on	computer	vision	and	is	suitable	for	statistical	measures,	(it	may	not	be	very	
accurate	for	an	individual	track	–	but	more	than	suitable	for	our	tasks	at	hand).		

1. Quick Overview: (Details below if you need to). 
	

i. Download	the	Matlab	module	for	your	OS	from	https://goo.gl/Ob99Mw.	(download	the	
entire	folder	-	it	is	~130MB!)	and	unpack	it	

a. You	 may	 need	 to	 do	 some	 extra	 configuration	 steps	 depending	 on	 your	
operating	 system	 –	 see	 section	 1	 below.	 (If	 demo01	 below	 fails	 you	 need	 to	
make	these	configurations.)		

	
ii. Change	your	Matlab	directory	to	where	the	module	is	downloaded.	

	
iii. There	are	three	demos	in	the	Matlab	module	package	that	you	have	downloaded.	Each	

can	be	run	individually	but	its	better	to	run	them	in	the	following	order	from	within	the	
package	folder.	These	demo’s	use	data	from	us	–	read	also	the	comments	inside.	

a. demo01_basic_load.m:	This	shows	the	very	basics	of	how	to	load	data,	get	basic	
information,	generate	a	video	and	eventually	save	the	video	on	disk.	(The	first	
time	you	run	this	it	might	take	1-5	minutes	–	next	time	it	is	fast.)	

b. demo02_trackid.m:	This	demo	shows	how	you	can	investigate	a	single	Euglena	
track	of	your	choice,	extract	geometry	data	and	compute	point	velocities	of	that	
track.	It	also	shows	how	to	visualize	a	track	via	a	video.	

c. demo03_multitrack.m:	This	demo	shows	how	to	select	tracks	between	frames	
and	deal	with	multiple	tracks	at	the	same	time.	

	
iv. Now	work	with	your	own	data:	

a. Download	your	own	experimental	data,	unzip	 it,	which	produces	a	 folder	 (let’s	
call	it	‘images’	from	now	on)	with	two	files,	movie.mp4	and	lightdata.json	

b. Now	modify	the	data	path	in	demo01_basic_load.m	to	‘images’	and	run	(first	run	
may	again	take	1	to	5	minutes)	

c. Now	you	 should	 see	 a	movie	 file	 called	 “tracks_thresholded_10.avi”	 and	 some	
other	files	(which	you	can	ignore	but	should	not	delete).		Watch	this	movie	-	you	
can	 see	 all	 tracks	 and	 stimuli,	 furthermore	 scalebar,	 frame	number	 and	 timer.	
The	number	on	each	track	is	its	“TrackID.”	(Note	that	many	IDs	are	missing	–	as	it	
only	shows	you	cells	that	were	traced	successfully	over	at	least	10	frames),	

d. Now	use	and	modify	starter	codes	problem_2d.m	and	problem_2e	to	do	these	
problems.	
	

v. Repeat	steps	in	iv	if	you	want	to	analyze	more	experiments	



Riedel-Kruse	Lab,	Stanford	Bioengineering,	2016	

2. Potential	 additional	 configuration	 steps	 (Only	 works	 for	 64-bit	
Platforms):	

Please	 download	 the	 folder	 that	 is	 appropriate	 for	 your	 current	 OS	 from	
https://goo.gl/Ob99Mw.	 Note	 that	 on	 all	 platforms,	 video	 generation	 on	 Matlab	 R2012x	
might	be	very	slow!	Besides,	on	R2012x,	some	text	annotation	on	the	videos	will	be	visually	
less	distinguishable,	 so	 consider	 running	a	 later	 version	 if	 possible.	 For	 any	difficulty	please	
contact	me	at	zhossain@stanford.edu.		

2.1. Windows	
OS	version	tested:	Windows	10,	Windows	8.x	
Matlab	version	tested:	R2012a	to	R2015b.		

1.1. OSX	(Mac)	
OS	version	tested	on:	Yosemite	(10.10),	El-Capitan	(10.11),	but	should	also	work	on	10.9	
(Maverick).	
Matlab	version	tested:	R2013b	to	R2015b.	

1.2. Linux	
OS	version	tested:	Ubuntu	14.XX	to	15.XX	with	GCC	4.7	runtime	
Matlab	version	tested:	R2013b	to	R2014b	
NOTE:	On	newer	Ubuntus,	Matlab’s	VideoReader	module	spits	out	an	error	regarding	
libgstreamer.	Unfortunately	this	is	Matlab’s	own	problem	and	you	can	try	the	following	
steps	to	fix	it.	
	
• Install	gstreamer0.10:	Run	the	following	command	in	the	system’s	console:		

o sudo	add-apt-repository	ppa:mc3man/trusty-media	&&	sudo	apt-get	update	
&&	sudo	apt-get	install	ffmpeg	gstreamer0.10-ffmpeg	
	

	 	 Restart	Matlab!	
	

• If	the	problem	persists,	you	have	to	do	the	following	from	within	Matlab’s	console	
(including	 the	 ‘!’).	 The	 exact	 version	 of	 libstdc++	 may	 be	 different,	 use	 the	
appropriate	version	number	as	found	in	the	(matlabroot)/sys/os/glnxa64	folder.	

o cd	(matlabroot)/sys/os/glnxa64/	
o !mv	libstdc++.so.6	to	backuplibstdc++.so.6	
o !mv	libstdc++.so.6.0.10	to	backuplibstdc++.so.6.0.10	
	
Restart	Matlab!	

	

3. The	Matlab	Module	Details	
	
You	 can	 perhaps	 skip	 this	 and	 rather	 read	 the	 demo	 files	 (see	 above)	 which	 has	 lots	 of	
comments	that	explains	everything.	
	



Riedel-Kruse	Lab,	Stanford	Bioengineering,	2016	

Adding path in Matlab 
This	only	matters	if	you	want	to	run	the	module	from	any	arbitrary	directory.	I	will	assume	that	
the	module	 folder	 is	 at	 “C:\Users\Zahid	Hossain\Documents\Windows”.	 Now	we	will	 add	 a	
path	in	Matlab	by	typing	in	the	following	in	the	matlab	console.		
	
addpath	‘C:\Users\Zahid	Hossain\Documents\Windows’	
	
Note	this	is	different	from	adding	to	the	Systems	PATH	variable	for	Windows.		
	
Loading	Data	
Let	 suppose	 you	 downloaded	 an	 experimental	 data	 from	 http://euglena.stanford.edu	 and	
uncompressed	it	at	“C:\Users\Zahid	Hossain\Downloads\images”,	i.e.	the	files	inside	this	folder	
are	“lightdata.json”	and	“movie.mp4”	
	
Now	in	matlab,	you	can	load	this	data	by	the	following	
	
exp	=	EuglenaTracks('C:\Users\Zahid	Hossain\Downloads\images',10);	
	
EuglenaTracks	is	the	class	module	that	encapsulates	an	experimental	data	and	computes	all	the	
tracks	for	you.	From	here,	we	will	only	run	different	queries	on	the	object	“exp”	to	extract	data.	
The	 first	 argument	 is	 the	 folder	 (can	also	be	a	 relative	path)	 that	 contains	 lightdata.json	and	
movie.mp4,	while	the	second	argument	is	a	threshold,	which	means	all	the	track	with	atleast	10	
points	(or	samples)	are	loaded	while	the	anything	smaller	are	discarded.	Setting	this	threshold	
to	0	with	load	all	the	tracks.		
	
The	 first	 time	you	 run	EuglenaTracks	on	a	data	 folder	 it	may	 take	a	while	 to	compute	all	 the	
tracks	and	a	couple	of	videos	that	I	will	talk	about	shortly.	But	these	results	are	cached	and	will	
not	be	computed	again	as	long	as	you	don’t	change	the	“threshold”	parameter.	During	the	first	
run	 it	will	produce	 two	videos,	debug.avi	 and	 tracks_thresholded_<threshold>.avi	 inside	 the	
data	folder.	The	debug.avi	video	will	have	all	the	tracks	(regardless	of	threshold)	in	it,	while	the	
other	 video	 will	 only	 have	 the	 tracks	 that	 have	 atleast	 “threshold”	 number	 of	 points.	 The	
numbers	 written	 on	 the	 each	 of	 the	 track	 is	 its	 “TrackID.”	 Every	 track	 that	 is	 visible	 in	 the	
tracks_thresholded_<threshold>.avi	video	can	be	further	investigated	and	therefore	this	video	
is	the	best	place	to	start.	
	
NOTE:	Unfortunately,	Windows	version	of	the	module	doesn’t	show	a	progress	meter	when	the	
Tracks	are	computed.	
	
Selecting	and	Extracting	Data	from	a	Single	Track	
Say	a	track	with	 ID	90	seems	quite	 interesting	 in	the	tracks_threshold_<threshold>.avi	video.	
We	can	extract	only	that	track	by	the	following.	
	
track	=	exp.getTrackByID(90);	
	



Riedel-Kruse	Lab,	Stanford	Bioengineering,	2016	

A	single	track	is	basically	a	collection	of	rectangular	boxes	that	are	oriented	at	an	angle.	We	can	
get	all	the	geometry	information	of	this	track	by	simply:	
	
[x,y,width,height,angles,frames]	=	exp.extractTrackData(	track	);	
	
The	output	x,y,width,height,angles	and	frames	are	x	and	y	coordinates	of	the	center	of	all	the	
boxes,	 width	 and	 height	 of	 the	 boxes,	 angle	 of	 orientation	 and	 frame	 numbers	 where	 each	
boxes	appear.	Frames	are	the	video	frame	and	the	numbering	starts	from	1	like	anything	else	in	
Matlab.	If	there	are	N	number	of	boxes	(points)	in	this	track,	the	the	size	of	each	of	the	output	
variables	will	be	1xN.		
	

Visualizing	Tracks		
You	can	visualize	this	single	track	by	making	a	video	out	of	it:	
	
M	=	exp.movieFromTracks(	track	);	
	
Where	M	will	 is	a	giant	matrix	containing	all	the	video	frames.	You	can	save	this	video	on	the	
disk	by	
	
exp.movieSave(‘test’,M);	
	
which	will	save	a	video	named	test.avi	(the	extension	.avi	is	automatically	added)	in	the	current	
directory.	Or,	you	can	also	view	this	video	immediately	within	Matlab	by		
	
implay(M);	
	
Among	other	self	explanatory	annotations	on	the	video,	there	will	4	numbers	on	each	side	of	
the	video.	These	numbers	(0-100)	shows	the	LED	values	at	that	point	in	time.	
	
NOTE:	 The	 annotation	 on	 the	 video	 are	 unfortunately	 much	 less	 distinguishable	 on	 matlab	
version	R2012x.	Also,	 exp.movieFromTracks(	…	 )	 also	 take	 a	 list	 of	 tracks	 	 (Matlab	Cells)	 and	
generates	a	movie	from	all	of	them	at	once.	
	
Track	Selection	
Euglena	 tracks	can	be	selected	by	 the	 function	exp.findTracksBetweenFrames(	<startFrame>	 ,	
<endFrame>	),	for	example,	
	
selectedTracks	=	exp.findTracksBetweenFrames(	100	,200	);	
	
This	will	return	a	list	of	tracks	(in	Matlab	cell	format)	that	have	appeared	atleast	once	between	
frame	number	100	and	200	inclusive.	Meaning	some	track	may	have	started	earlier	than	frame	
100	or	some	may	have	ended	long	after	200	but	as	long	appeared	between	100	and	200	they	
will	be	selected.	
	



Riedel-Kruse	Lab,	Stanford	Bioengineering,	2016	

If	you	make	a	movie	out	of	 these	tracks	by	M	=	 	exp.movieFromTracks(	selectedTracks	 ),	you	
may	notice	that	the	video	starts	from	a	frame	number	before	100	and	ends	at	a	frame	number	
higher	than	200	because	it	draws	the	full	length	of	all	the	tracks.	
	
You	 can	 select	 frames	between	actual	 times	by	using	 the	helper	 function	exp.getFPS()	which	
returns	the	value	of	 frames	per	second.	This	can	be	used	to	convert	 times	to	 frame	numbers	
and	vice-versa.	
	
Clipping	
Tracks	can	be	clipped	along	frames,	i.e.	with	the	previous	selectedTracks	variable,	if	we	do	the	
following	
	
selectedTracks_clipped	=	exp.clipTracksBetweenFrames(track,100,200);	
	
This	time,	the	output	selectedTracks_clipped	will	have	the	same	selected	tracks	excepted	they	
will	be	clipped	exactly	at	the	frame	boundaries	of	100	and	200.	You	can	verify	this	by	making	a	
video	out	of	it,	exp.movieFromTracks(selectedTracks_clipped).		
	
Finally,	you	can	also	extract	all	geometry	information	from	the	clipped	tracks,	for	example	the	
following	is	extracting	the	geometry	from	the	first	clipped	track	
	
[x,y,width,height,angles,frames]	=	exp.extractTrackData(	selectedTracks_clipped{1}	);	
	
This	 is	one	way	of	extracting	all	 the	Euglena	geometries	between	two	frames	precisely	and	
compute	various	statistics.	
	

4. Helper	Functions	
There	are	a	bunch	of	helper	functions	but	here	are	some	of	the	important	ones:	

• exp.getNumTracks()	:	returns	the	total	number	of	tracks	
• exp.getNumFrames()	:	return	the	total	number	of	frames	in	the	experiment	video.	
• exp.getTotalTime()	:	returns	the	total	run	time	(in	seconds)	of	the	experiment.	
• exp.getFPS()	:	returns	the	frames-per-second;	can	be	used	to	convert	frame	number	

to	real	time	and	vice	and	vice-versa.	
• exp.getUMPP():	returns	the	length	scale	in	micro	meter	(um)	per	pixel.	


