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Abstract
Statistical properties of environments experienced by biological signaling systems in the real
world change, which necessitates adaptive responses to achieve high fidelity information
transmission. One form of such adaptive response is gain control. Here, we argue that a certain
simple mechanism of gain control, understood well in the context of systems neuroscience,
also works for molecular signaling. The mechanism allows us to transmit more than 1 bit (on
or off) of information about the signal independent of the signal variance. It does not require
additional molecular circuitry beyond that already present in many molecular systems, and in
particular, it does not depend on existence of feedback loops. The mechanism provides a
potential explanation for abundance of ultrasensitive response curves in biological regulatory
networks.

1. Introduction

An important function of all biological systems is responding
to signals from the surrounding environment. These signals
(hereafter assumed to be scalars) s(t) are often probabilistic,
described by some probability distribution P[s(t)]. They have
non-trivial temporal dynamics so that the probability of a
certain value of the signal at a given time is dependent on
its entire history.

Often the response r(t) is produced from s by (possibly
nonlinear and noisy) temporal filtering. For example, in a
deterministic molecular circuit, we may have

dr

dt
= f (s (t)) − kr, (1)

where f is the response molecule production rate, which
depends on the current value of the signal. Here, k is the
rate of the first-order degradation of the molecule. Note that
r(t) depends on the entire history of s(t ′), t ′ < t, and hence
carries information about it. For more complicated, nonlinear
degradation or for r-dependent production, equation (1) may
be interpreted as linearization around the mean response. We
point out that this equation can also describe dynamics of a
continuous firing rate in neural systems, and this realization is
one of the main motivations for the current paper.

The distribution of stimuli P[s(t)] places severe
constraints on the forms of f that can transduce the stimuli

with high fidelity. To see this, for quasi-static signals (i.e.
when the signal correlation time τ is large, τ � 1/k), we use
equation (1) to write the steady-state dose–response curve

rss = f (s(t)) /k. (2)

A typical monotonic, sigmoidal f is characterized by only a
few large-scale parameters: the range [ fmin, fmax], the mid-
point s1/2 and the width of the transition region �s (cf
figure 1). If the signal mean μ � s1/2, then, for most signals,
rss ≈ fmax/k. Then, responses to two different signals s1 and
s2 are indistinguishable as long as

drss(s)

ds

∣∣∣∣
s=s1

(s2 − s1) < δr, (3)

where δr is the precision of the response resolution. Similarly,
when μ � s1/2, then rss ≈ fmin/k. Thus, for reliably
communicating information about the signal, f should be
tuned, such that s1/2 ≈ μ. If a biological system can change
its s1/2 to follow changes in μ, this is called adapting to the
mean of the signal, and if s1/2(μ) = μ, then the adaptation is
perfect [1, 2]. Similarly, if the quasi-static signal is taken from
the distribution with σ ≡ (〈s(t)2〉t − μ2)1/2 � �s, then the
response to most of the signals will be indistinguishable from
the extrema. It will be near ∼ (rmax+rmin)/2 if σ � �s. Thus,
to use the full dynamic range of the response, a biological
system must tune the width of the sigmoidal dose–response
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Figure 1. Parameters characterizing response to a signal. Left panel: the probability distribution of the signal, P(s) (blue), and the
best-matched steady-state dose–response curve rss (green). Top right: if the mid-point of the dose–response curve, s1/2, is far away from the
mean of the signal, a typical response will be extremal. Bottom right: if the width of the dose–response curve, �s, is considerably different
from the standard deviation of the signal, then the typical response is either extremal, or at its mid-point. These mismatches prevent using
the entire dynamic range of the response to convey information about the signal.

curve to �s ≈ σ ; this is called the variance adaptation or
gain control [2].

Both of these adaptation behaviors can be traced to
the same theoretical argument [3]: for sufficiently general
conditions on the response resolution δr, the response that
optimizes the fidelity of a signaling system, as measured by
its information-theoretic channel capacity [4], is r∗

ss(s) =∫ s
−∞ P(s′)ds′, where P(s′) is the probability distribution of

an instantaneous signal value, obtained from P[s(t)]. In some
situations, when the mean and the variability of the signal scale
proportionally, like in fold-change detection problems [5, 6],
the two adaptations are deeply intertwined. However, more
generally environmental changes that lead to varying μ and
σ , as well as the mechanisms of the adaptation, are distinct.
Thus, it often makes sense to consider the two adaptations as
separate phenomena [2].

Adaptation to the mean, sometimes also called
desensitization, has been observed and studied in a wide
variety of biological sensory systems [1, 3, 7–9], with active
work persisting to date1. In contrast, while gain control has
been investigated in neurobiology [10–12], we are not aware
of its systematic analysis in molecular sensing. In this paper,
we start filling in the gap. Our main contribution is the

1 To illuminate the relation between the classic perfect adaptation (in
Escherichia coli chemotaxis or elsewhere) and our terminology, we point
out that we consider slowly varying chemical concentrations inputs in such
experiments not as signals, but as mean signals. Fluctuations create additional
fast signals on top of these slowly changing means. Feedback then ensures
that the mean signal elicits the mean response.

observation that a mechanism for gain control, observed in
a fly motion estimation system by Borst et al [12], can be
transferred to molecular information processing with minimal
modifications. Importantly, unlike adaptation to the mean,
which is implemented typically using extra feedback circuitry
[1, 9, 13], the gain control mechanism we analyze requires
no additional regulation. It is built-in into many molecular
signaling systems. The main ingredients of the gain control
mechanism in [12] is a strongly nonlinear, sigmoidal response
function f (s) and a realization that real-world signals are
dynamic with a nontrivial temporal structure. Thus, one must
move away from the steady-state response analysis, and
autocorrelations within the signals will allow the response to
carry more information about the signal than seems possible
naı̈vely.

In this context, we show that, just like the neural circuits in
[12], a simple biochemical circuit described in equation (1) can
be made insensitive to changes in σ with no extra regulatory
features. That is, for an arbitrary choice of σ , and for a wide
range of other parameters, the circuit can generate an output
that is informative of the input and, in particular, carries more
than a single bit of information about it. For brevity, we will
not review the original work on gain control in neural systems
[12], but will instead develop the methodology directly in the
molecular context.
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Figure 2. Examples of signals and responses for dynamics in equations (1), (4), (5). On the vertical axis, we plot normalized signals
ss = (s − m)/ max(s) (green) and normalized responses r = r/ max(r) (blue). On the horizontal axis, the time is rescaled by the correlation
time of the signal, τ . Panels (a)–(c) have kτ = 0.1, 1, 10, respectively (recall that 1/k is the response time of the circuit, equation (1)). In
panel (d), we show, for comparison, the firing rate of a blow fly motion-sensitive neuron H1 and its driving stimulus, both rescaled to 1 (see
[15] for details of this experiment). The stimulus had little power at high frequencies, but the single-exponential correlation structure held
for long times. Note the similarity between the telegraph-series-like structure of the responses in panels (c) and (d). Since the H1 neuron
served as a model neural system for the feedback-free gain adaptation in [12], this similarity suggests to look for gain-controlled responses
in molecular signaling, equation (1), as well.

2. Results: gain control with no additional
regulatory structures

Let us assume for simplicity that the signal in equation (1) has
the Ornstein–Uhlenbeck dynamics with

〈s(t)〉 = μ, 〈s(t + t ′)s(t)〉 = σ 2e−t ′/τ . (4)

We will assume that the response has been adapted to the
mean value of this signal (likely by additional feedback control
circuitry, not considered here explicitly), so that the response
to s = μ is half maximal. Now, we explore how insensitivity
to σ can be achieved as well.

We start with a step-function approximation to the
sigmoidal response production rate

f = f0θ (s − μ) = f0 ×
⎧⎨
⎩

0, s < μ,

1/2, s = μ′,
1, s > μ,

(5)

where f0 is some constant. This is a limiting case of very high
Hill number dose–response curves, which have been observed
in nature [14]. Figure 2 shows sample signals and responses
produced by this system. Note that such f makes the system
manifestly insensitive to σ . Any changes in σ will not result in
changes to the response; hence, the gain is controlled perfectly.

Nevertheless, this choice of f is pathological, resulting in a
binary steady-state response (rss = 0 for s < μ, and rss = f0/k
otherwise). That is, the response cannot carry more than 1 bit
of information about the stimulus. However, as illustrated in
figure 2, a dynamic response is not binary and varies over its
entire dynamic range. Can this make a difference and produce a
dose–response relation that is both high fidelity and insensitive
to the variance of the signal?

To answer this, we first specify what we mean by the dose–
response curve or the input–output relation when there is no
steady-state response. For the response at a single time point
t, we can write P(r(t)|{s(t ′ � t)}) = δ(r − r[s]), where δ(· · ·)

is the Dirac δ-function, and the functional r[s] is obtained
by solving equation (1). Since the signal is probabilistic,
marginalizing over all but the instantaneous value of it at time
t − t ′, one obtains P(r(t)|s(t − t ′)), the distribution of the
response at time t conditional on the value of the signal at
t − t ′. Furthermore, for the distribution of the signal given
by equation (4), one can numerically integrate equation (1)
and evaluate the correlation c(t ′) = 〈r(t)s(t − t ′)〉t .2 Since
equation (1) is causal, c(t ′) has a maximum at some t ′ =
�(τ, k) � 0, illustrated in figure 3. Correspondingly, in
this paper, we replace the familiar notion of the dose–
response curve by the delayed probabilistic input–output
relation P(r(t)|s(t − �)). This is a relatively common choice
in molecular signaling [16] and in neuroscience [10].

We emphasize that, since f is a step function, f (s) ≡
f (αs) for any positive scalar α. Therefore, for two signals that
can be mapped into each other by rescaling, P(r(t)|s(t−�)/σ )

is manifestly independent of σ . In other words, the system
is gain compensating by construction. Correspondingly, in
figure 4, we plot the input–output relation for kτ = 10,
where s is measured in the units of σ . A smooth, probabilistic,
sigmoidal response with a width of the transition region � ∼ σ

is clearly visible. This is because, for a step function f , the
value of r(t) depends not on s(t), but on how long the signal has
been positive prior to the current time. In its turn, this duration
is correlated with s/σ , producing a probabilistic dependence
between r and s/σ . The latter is manifestly invariant to variance
changes.

These arguments make it clear that the fidelity of the
response curve should depend on the ratio of characteristic
times of the signal and the response, kτ . Indeed, as shown in

2 All simulations were performed using Matlab v 7.6 and Octave v 3.0.2
using Apple Macbook Air. The correlation time of the signal was τ = 300
integration time steps, and averages were taken over 3 × 106 time steps. To
change the value of kτ , only k was adjusted.
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Figure 3. Dependence of the delay between the signal and the
response, �, which achieves the maximum correlation between s
and r. Here, � is expressed in units of the signal correlation time τ ,
and it is studied as a function of kτ , the ratio of characteristic time
scales of the signal and the response dynamics.
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Figure 4. Conditional distribution P(r(t)|s(t − �)) for kτ = 10.
The distributions depend only on s/σ , manifesting
gain-compensating nature of the system. The signals are discretized
into 30 values in the range of [−3σ,+3σ ]. For each s(t − �), a
histogram of r(t) is built with 100 distinct r values. The normalized
histograms are gray-scale coded as columns in the figure, with dark
representing the higher conditional probability P ∼ 1. We use a
nonlinear color scale to enhance the plot.

figure 2, for kτ → 0, the response integrates the signal over
long times. It is little affected by the current value of the signal
and does not span the full available dynamic range. At the
other extreme of a very fast response, kτ → ∞, the system is
always almost in a steady state. Then, the step nature of f is
evident, and the response quickly swings between two limiting
values ( f0/k and 0).

We illustrate the dependence of the response conditional
distribution on the integration time in figure 5 by plotting
r̄(�, s) = ∫

dr r(t + �)P(r(t + �)|s(t)), the conditional-

Figure 5. Mean conditional response r̄(�, s) for different
combinations of the signal and the response characteristic times, kτ .

Figure 6. The signal–response mutual information at the optimal
temporal delay as a function of kτ . The solid line represents
Ik[r(t + �), s(t)], the information for the Ornstein–Uhlenbeck
signal, and the maximum of the information here is Imax = 1.37 bits,
achieved at k∗ ≈ 20/τ . The dashed line stands for the same
information for the smoothed signal. It is maximized at k∗ ≈ 3/τ
with Imax = 1.35 bits.

averaged response for different values of kτ . Neither kτ → 0
nor kτ → ∞ are optimal for signal transmission. One expects
existence of an optimal k∗, for which most of the dynamic
range of r gets used, but the response is not completely binary.
To find this optimum, we evaluate the mutual information
[4] between the signal and the response at the optimal
delay, Ik[r(t + �), s(t)], as a function of kτ , cf figure 6. A
broad maximum in information transmission is observed near
k∗ ≈ 20/τ , which is not too far from the quasi-static limit.
However, Imax ≡ Ik∗ = 1.37 bits, which is substantially larger
than 1. Thus, temporal correlations in the stimulus allow one to
transmit 37% more information about it than the step response
would suggest naı̈vely. This information is transmitted in a
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gain-controlled manner so that changes in σ have no effect on
the transmitted information amount. The value should remain
above 1 bit even for non-step-like f , as long as f is sigmoidal
and �s/σ � 1.

We emphasize that the information here is per signaling
event, i.e. per independent value of the signal. Indeed, since we
consider responses that change much faster than the signals,
the system is always near a steady state, and each ‘new’
value of the signal is encoded by an independent response
value. This also make sense experimentally: measuring joint
distributions of time series of stimuli and responses is very
hard, and experiments often focus on information between
one signal value and one response value [16]. Our analysis is
relevant for interpretation of such experiments.

Effects of the signal structure. The gain insensitivity of the
constructed molecular circuit model depends only weakly
on details of the temporal structure of the signal. As long
as there are autocorrelations, one can use them to transmit
more than 1 bit about the signal in a gain-independent fashion
using the strong nonlinearity of f . To verify this, we replace
the Ornstein–Uhlenbeck signal, equation (4), with its low-
pass filtered version, s′(t) = 1/k

∫ t dt ′s(t ′)e−k(t−t ′ ), and k
is the same as in equation (1). This new signal is smoother
and has less structure at high frequencies. We repeat the
same analysis as above to find �, estimate the conditional
response distribution, and then evaluate Ik, the stimulus–
response information. We find that the maximum information
in this case is Imax = 1.35 bits, statistically indistinguishable
from the Ornstein–Uhlenbeck case. However, the maximum is
now at kτ ≈ 3. This is because the smooth signal changes its
sign a lot less often, and smaller integration times are needed
to approach the extreme values of the response.

Knowing σ in a gain-insensitive response. When gain-
insensitive, the system looses information about the actual
signal variance. This rarely happens in biology. For example,
while we see well at different ambient light levels, we
nonetheless know how bright it is outside. For the fly visual
system, it was shown that variance independence of the
response breaks on long time scales. The signal variance
can be inferred from long-term features of the neural code
[10, 17]. Correspondingly, we ask if long term observation of
the response of an approximately gain-controlled molecular
signaling circuit allows one to infer the signal variance σ .

To this extent, consider f as a narrow sigmoid, with the
width of the crossover region �s/σ � 1. The effect of the
variance on the response is still negligible. For concreteness,
we take f = f0[tanh((s − μ)/�s) + 1]. Consider now
the fraction of time during which the rate of change of
the response is near max( f ). This requires that r ≈ 0 (so
that the degradation kr is negligible), but s is already large,
(s − μ)/�s � 1. The probability of this happening depends
on the signal variance and hence on the speed with which
the signal crosses over the threshold region. Thus, one can
estimate σ by observing a molecular circuit for a long time
and counting how often the rate of change of the response is
large. The probability of a large derivative will depend on the

exact shape of f . However, for a signal defined by equation (4),
the statistical error of any such counting estimator will scale
as ∝ √

τ/T . Hence, the system can be almost insensitive to
σ on short time scales, but allow its determination from long
observations periods T � τ .

To verify this, we simulate the signal determined by
equation (4) with kτ = 20, which maximizes the signal–
response mutual information. We arbitrarily choose the cutoff
of 80% of the maximum possible rate of change of the
response, and we calculate the mean fraction of time φ

when the rate is above the cutoff. We further calculate the
standard deviation of this fraction, σφ . We repeat this for
signals with various �s/σ and for experiments of different
duration, obtaining a time dependence of the Z-score for
disambiguating two signals with different variances Z =
(φ2 − φ1)/

√
σ 2

φ1
+ σ 2

φ2
, where the indices 1, 2 denote the

signals being disambiguated. For example, for distinguishing
signals with �s/σ = 1/10 and 1/20, the data result in the fit
Z ≈ 0.8(T/τ )0.48±0.04. This is consistent with the square root
scaling (the error bars indicate the 95% confidence interval).
That is, for T/τ as little as 10, Z > 2, and the two signals
are distinguishable. Signals with larger variances are harder
to disambiguate. For example, for attempting to distinguish
�s/σ = 1/90 from 1/100, Z ≈ 9.4×10−3(T/τ )0.56±0.08, and
Z crosses 2 for T ≈ 15 000τ .

This long-term variance determination can be performed
molecularly. For example, one can use a feed-forward
incoherent loop with r as an input [18]. The loop acts as
an approximate differentiator for signals that change slowly
compared to its internal relaxation times [19]. The output
of the loop can then activate a subsequent chemical species
by a Hill-like dynamics, with the activation threshold close
to the maximum of f . If this species degrades slowly, it will
integrate the fraction of time when dr/dt is above the threshold,
providing the readout of the signal variance.

3. Discussion

In this work, we were able to translate the arguments of [12]
to the context of simple continuous biochemical dynamics,
equation (1). We have argued that, just like neural circuits,
simple molecular systems can respond to signals in a gain-
insensitive way without a need for explicit adaptation and
feedback loops (though such loops may be needed to choose
s1/2 and k appropriately). That is, they can be sensitive only to
the signal value relative to its standard deviation. To make
the mechanism work, the signaling system must obey the
following criteria:

• a nonlinear–linear (NL) response, i.e. a strongly nonlinear,
sigmoidal response production rate f integrated (linearly)
over time,

• properly matched time scales of the signal and the
response dynamics.

In addition, the information about the signal variance can
be recovered if

• episodes of large values of the rate of change of the
response are counted over long times.
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We have also argued that our results hold for a broad class
of probability distributions of the signals.

Naı̈vely transmitted information of only 1 bit (on or
off) would be possible with a step function f . However, the
response in this system is a time average of a nonlinear function
of the signal. This allows one to use temporal correlations
in the signal to transmit more than 1 bit of information for
broad classes of signals. While 1.35 bits may not seem like
much more than 1, the question of whether molecular signaling
systems can achieve more than 1 bit at all is still a topic of active
research [16, 20, 21]. Similar use of temporal correlations has
been reported to increase information transmission in other
circuits, such as clocks [22]. In practice, in our case, there is a
tradeoff between variance independence and high information
transmission through the circuit: a wider production rate would
give a higher maximal information for properly tuned signals,
but then the information would drop down to zero if �s � σ .
It would be interesting to explore the optimal operational point
for this tradeoff under various optimization hypotheses.

While our analysis is applicable to any molecular system,
molecular or neural, that satisfies the three conditions listed
above, there are specific examples where we believe it may
be especially relevant. The E. coli chemotaxis flagellar motor
has a very sharp response curve (the Hill coefficient of about
10) [14]. This system is possibly the best studied example
of biological adaptation to the mean of the signal. However,
the question of whether the system is insensitive to the signal
variance changes has not been addressed. The ultrasensitivity
of the motor suggests that it might be. Similarly, in eukaryotic
signaling, push–pull enzymatic amplifiers, including MAP
kinase mediated signaling pathways, are also known for
their ultrasensitivity [23–25]. And yet the ability of these
circuits to respond to temporally varying signals in a variance-
independent way has not been explored.

We end this paper with a simple observation. While
the number of biological information-processing systems is
astonishing, the types of computations they perform are
limited. Focusing on the computation would allow cross-
fertilization between seemingly disparate fields of quantitative
biology. The phenomenon studied here, lifted wholesale
from neurobiology literature, is an example. Arguably,
computational neuroscience has had a head start compared
to computational molecular systems biology. The latter can
benefit immensely by embracing well-developed results and
concepts from the former.
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