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Abstract—We develop a systematic approach to calculating the electrostatic force between point charges in an
arbitrary domain with arbitrary boundary conditions. When the boundary is present, the simple expression for
the force acting on a charge as “the charge times the field it is placed in” becomes ill-defined. However, this rule
can be salvaged if the field in question is redefined to only include all terms that do not diverge at the charge
position, in particular, those due to the charge itself. The proof requires handling the self-action energy diver-
gence for point charges, which is accomplished by means of a geometrical regularization. © 2003 MAIK
“Nauka/Interperiodica”.
I. INTRODUCTION

It is trivial to determine the force exerted by an
external field1 on a point charge in an otherwise empty
space: by definition, “the force is equal to the charge
times the field it is placed in.” In particular, if the field
in question is created by some other point charges, this
rule, known by many from high school, still holds.

However, the situation changes drastically when a
set of point charges creates the field inside an arbitrary
domain with a boundary of some physical origin
(reflected in the appropriate boundary conditions). Now
the very notion of “the field the charge is placed in”
becomes ill-defined. For example, a naive treatment of
a single-charge problem might lead one to the entirely
wrong conclusion that, since the entire field in the prob-
lem is due to the charge itself (there are no other
sources!), “the field it is placed in” is zero, so there is
no force at all.

A slightly more sophisticated physicist would argue
that only that part of the field which diverges as 1/r2

near the charge is really created by it, while the rest is
due to the boundary conditions, which represent math-
ematically the rearrangement of other physical charges
at the boundary. Therefore, it is precisely what remains
after subtracting the singular part that now gives “the
field the charge is placed in.” Unfortunately, such treat-
ment leaves one in a somewhat awkward position of,
first, calculating potentials and fields rigorously and,
then, lowering the plank and using hand-waving argu-
ments to derive forces from them. It is also not clear
whether the conjecture about which part of the total
field contributes to the force is always valid.

1 In fact, the word “external” means that the field is produced by
some independent sources, and the boundaries, if any, are far
away from the charge.
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Thus, it seems appealing to show that the physical
arguments can be backed by an accurate mathematical
proof demonstrating that the adjusted rule, “the force is
equal to the charge times the part of the field that does
not diverge at the charge’s location,” is either universal
or limited by certain conditions. To do this, one should
turn to the most fundamental energy conservation argu-
ment which gives the force as the negative gradient of
the energy in the charge’s position. This approach also
does not turn out to be straightforward, since the energy
is infinite in the presence of point charges due to their
self-action.

Perhaps because of these difficulties, as well as the
misleading apparent simplicity of the problem, our lit-
erature search, which encompassed, in particular, [1–10]
and many other books on the subject, revealed no ready
result (except in [6], which we discuss in Section 4). So
we give a careful derivation of the general expression
for the force on point charges in this paper. It consists
of the regularization of the problem, calculation of the
force from the (regularized and finite) energy, and then
taking the singular limit. The result agrees with one’s
intuitive expectations.

II. ELECTROSTATICS PROBLEM WITH VOLUME 
POINT CHARGES: POTENTIAL AND ENERGY

Consider an arbitrary three-dimensional domain D
with a perfectly conducting boundary S and some N
point electrical charges inside. The electrical potential
ψ(r), in this case, is determined by the following
Dirichlet boundary value problem (we use SI units
throughout the paper):

(1)

(2)

∆ψ 1
ε0
---- qiδ r ri–( ), r ri D;∈,

i 1=

N

∑–=

ψ S 0.=
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Here, r = xex + yey + zez is the vector radius of a point,
and ri = xiex + yiey + ziez specifies the ith charge position,
with eα, α = x, y, z, being the unit vectors in the direction
of the corresponding Cartesian axes.

By the superposition principle, the potential ψ(r) is
merely the sum of the potentials induced by each
charge separately,

              (3)

              (4)

where κ = 1/4πε0, and GR(r, rj) is the regular part of the
Green’s function G(r, rj) of the corresponding bound-
ary value problem [set qj = 1, qi = 0, i ≠ j in Eq. (1)].
Both functions are, of course, symmetric in their argu-
ments,

(5)

Furthermore, we can rewrite Eq. (4), splitting the
potential in a sum of its singular and regular parts,

(6)

(7)

where ψR(r) is a regular function satisfying the Laplace
equation everywhere in D [by continuity, this holds also
at any regular point2 of the boundary S, although this is
irrelevant to our discussion]. Note that both the poten-
tial ψ and its regular part ψR actually depend on the
positions of the charges ri, as well as on the observation
point r, which is reflected in the full notation

(8)

(9)

We assume that the potential is known, and we are
interested in finding the force F i acting on the charge qi.
From the energy conservation for the considered prob-
lem, the force is given by (cf. [6])

(10)

where WD is the energy of the field in the volume D,

(11)

2 We allow for boundary singularities, such as sharp edges and
spikes, provided that the Meixner-type finite energy condition
[11] is satisfied near them; in particular, the domain D can be infi-
nite.

ψ r( ) κ q jG r r j,( ),
j 1=

N

∑=

κ q j
1

r r j–
--------------- GR r r j,( )+ ,

j 1=

N

∑≡

G r r j,( ) G r j r,( ), GR r r j,( ) GR r j r,( ).= =

ψ r( ) κ
q j

r r j–
---------------

j 1=

N

∑ ψR r( ),+=

ψR r( ) κ q jGR r r j,( ),
j 1=

N

∑≡

ψ r( ) ψ r r1 … ri … rN, , , , ,( ),≡

ψR r( ) ψR r r1 … ri … rN, , , , ,( ).≡

Fi ∂
∂ri

-------WD,
∂

∂ri

-------–
∂

∂xi

-------ex
∂

∂yi

-------ey
∂

∂zi

------ez,+ += =

WD

ε0

2
---- —ψ( )2 V .d

D

∫=
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Note that we alternatively write — or ∂/∂r for the gradi-
ent, whatever seems proper in a particular expression.

The problem is, however, that the above integral
obviously diverges due to self-interaction of the point
charges (the energy of a single point charge is infinite).
We are going to show that even though the energy for a
given point charge distribution is infinite, the difference
between its two values corresponding to any two charge
configurations is finite (for an arbitrary boundary
shape) and goes to zero when one charge distribution
tends to the other. Hence, the force is also finite, in
accordance with common intuition. The situation with
energy here is similar to the one arising in the calcula-
tion of the Casimir effect [12], which also requires
some generalization.

III. REGULARIZED ENERGY AND THE FORCE 
ON THE CHARGES

We surround each volume charge qi by a small

sphere  of radius e; we write  for the ball inside it.

We define De as D without all domains , and Se as a

union of S and all spherical surfaces  (see Fig. 1). In
effect, Se is the boundary of the domain De and De 
D, Se  S when e  0.

Using Eq. (10), we may now define the force acting
on the charge qi as

(12)

where  is the regularized energy, that is, the energy
of the field in De, which is finite. It is important to note
the order of operations in Eq. (12): first, take the gradi-
ent of the regularized energy in the charge position,
then, take the (singular) limit. In principle, we also have
to show that the final result does not depend on the reg-
ularization chosen, but this task is not easy. We will
return to this problem briefly later in this paper.

In view of Eq. (11) and the fact that the total poten-
tial given by Eq. (3) or Eq. (6) is regular in De, the reg-

Si
e Di

e
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e

Si
e

Fi Fe
i

e 0→
lim  

∂
∂ri

-------WD
e ,

e 0→
lim–= =
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e
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n

Di
ε

qi

ε

Fig. 1. Volumes, surfaces, and normal directions involved.
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ularized energy is

where n is the direction of the outward normal to Se

(and thus the inward normal to the spheres ). For an
infinite domain D, it is assumed here that the potential
and its gradient drop at infinity fast enough to make the
contribution of integrating over the sphere of a large
radius vanishing in the limit, an assumption which has
to be verified in each particular case.

Since ψ is harmonic everywhere in De, the volume
integral on the right of the previous equality vanishes;
the remaining surface integral is represented as

(15)

and then, because of the boundary condition, Eq. (2), as

(16)

We are ultimately interested in the limit e  0, so
we need to calculate only the quantities which do not
vanish in this limit. The area of integration in each term
of the above sum is O(e2); therefore, we need to keep
track of the integrands that grow at least quadratically
in e–1. Bearing this in mind and using Eq. (6) for the
potential, we can write the surface integral in Eq. (16)
as

(17)

The first term in the above expression is, in fact, the

regularized self-energy of the kth charge, . Per-
forming elementary integration, we immediately find
that

(18)

The only feature of the regularized self-energy given
by Eq. (18) that is important for our derivation is that it
does not depend on the position of the charge qk, i.e., on
the vector radius rk.

WD
e ε0

2
---- —ψ( )2 Vd

D
e

∫≡

=  
ε0

2
---- ψ∂ψ

∂n
------- Ad

S
e

∫
ε0

2
---- ψ∆ψ V ,d

D
e

∫–

13( )

 

14( )

Si
e

WD
e ε0

2
---- ψ∂ψ

∂n
------- A

ε0

2
---- ψ∂ψ

∂n
------- Ad

S

∫+d

Sk
e

∫
k 1=

N

∑=

WD
e ε0

2
---- ψ∂ψ

∂n
------- A.d

Sk
e

∫
k 1=

N

∑=

ψ∂ψ
∂n
------- Ad

Sk
e

∫
κqk

r rk–
---------------- ∂

∂n
------

κqk

r rk–
---------------- 

  Ad

Sk
e

∫=

+ ψR r( )
κq j

r r j–
---------------

j 1= j k≠,

N

∑+
∂

∂n
------

κqk

r rk–
---------------- 

  dA + O e( ).

Sk
e

∫

Wk self,
e

Wk self,
e ε0

2
----κ24πqk

2

e
------------

κqk
2

2e
--------.= =
The second term of the right-hand side of Eq. (17)
can also be simplified if one notices that both ψR and

1/|r – rj |, j ≠ k, are regular on  and in . Therefore,

their change within the small surface  is of order e.
Thus, Eq. (17) may be rewritten as

(19)

and the integration here yielding the factor 4π is again
elementary. This asymptotic equality may be differen-
tiated in ri with the same estimate of the remaining
term.

Introducing now the previous expression into
Eq. (16), we obtain

(20)

Equation (20), in its turn, is inserted in Eq. (12) for
the force; as shown, the self-energies do not depend on
the charge positions; hence, although diverging in the
limit e  0, they do not contribute to the force. The
rest is pretty straightforward, except that one has to be
careful when differentiating the last term on the right of
Eq. (20) with k = i: as is seen from Eq. (8), in this case
ri stands for two (and not one!) arguments of ψR,
namely, ψR(ri) ≡ ψR(ri, r1, …, ri, …, rN), and both of
them have to be differentiated. Bearing this in mind, the
expression for the force finally becomes

(21)

Sk
e Dk

e

Sk
e

ε0

2
---- ψ∂ψ

∂n
------- Ad

Sk
e

∫ Wk self,
e ε0

2
---- ψR rk( )

κq j

rk r j–
-----------------

j 1= j k≠,

N

∑++=

× ∂
∂n
------

κqk

r rk–
---------------- 

  A O e( )+d

Sk
e

∫

=  Wk self,
e qk

2
---- ψR rk( )

κq j

rk r j–
-----------------

j 1= j k≠,

N

∑+ O e( ),+ +

WD
e Wk self,

e κ
2
---

q jqk

r j rk–
-----------------

j 1= j k≠,

N

∑
k 1=

N

∑+
k 1=

N

∑=

+
1
2
--- qkψR rk( )

k 1=

N

∑ O e( ).+

Fi κqi
∂

∂ri

-------
qk

ri rk–
-----------------

k 1= k i≠,

N

∑–=

–
1
2
--- qk

∂
∂ri

-------ψR r( ) r rk=

k 1=

N

∑ qi
∂
∂r
-----ψR r( ) r ri=+

=  κqi qk

ri rk–

ri rk– 3
-------------------

k 1= k i≠,

N

∑
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This is the general result for the electrostatics which
can be transformed further. Indeed, the direct substitu-
tion of the expression for ψR from Eq. (6) into Eq. (21)
provides the force in the form

(22)

and here we have used the symmetry property of Eq. (5)
to obtain the second equality. To make the result even
more physically transparent, we rewrite Eq. (22), in its
turn, in the following way:

(23)

Note that the last expression, indeed, coincides with
our intuitive conjecture about the form of the force.

IV. DISCUSSION

Our first remark on the expressions for the force in
Eqs. (21)–(23) is that for the charges in a free space
(volume D is the whole space, no boundaries are
present), apparently, GR(r, rk) ≡ 0, ψR ≡ 0, and the clas-
sical Coulomb formula for the force is restored.

Next, Eq. (23) shows that the rule “the force is the
charge times the field it is placed in” does work if one
counts the regular part of the field produced by the
charge in question as a part of the “field the charge is
placed in.” It also allows for a certain “minimal princi-
ple”; namely, to get the right answer for the force, one
should remove from the field only the part which other-
wise makes the result infinite, and nothing beyond that.
As we mentioned in the Introduction, this result is sup-
ported by physical intuition. It becomes even more
obvious if one notes that the singular part of the field
removed is radial, and a radial field produces no force.

The contribution of the regular part of the field cre-
ated by a charge to the force acting on it is especially
important in the case of a single charge, as one may see
from the simplest example of a charge near a conduct-

–
1
2
--- qk

∂
∂ri

-------ψR r( ) r rk=

k 1=

N

∑ qi
∂
∂r
-----ψR r( ) r ri=+ .

Fi κqi
∂

∂ri

-------
qk

ri rk–
-----------------

k 1= k i≠,

N

∑–=

–
κqi

2
------- qk

∂
∂ri

------GR r ri,( ) r rk=

k 1=

N

∑ qj

j 1=

N

∑ ∂
∂r
-----GR r r j,( ) r ri=+

=  κ– qi
∂

∂ri

-------
qk

ri rk–
-----------------

k 1= k i≠,

N

∑ qk

k 1=

N

∑ ∂
∂r
-----GR r rk,( ) r ri=+ ,

Fi κqi— qk
1

r rk–
---------------- GR r rk,( )+

k 1=

N

∑




–=

–
qi

r ri–
---------------





r ri=

qi— ψ r( )
κqi

r ri–
---------------–

r ri=

.–=
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ing plane. It is precisely the regular part of the field pro-
duced by the charge in question (equal to the field of the
image charge) that gives the whole answer when no
other charges are present. Finally, an important ques-
tion is how robust our regularization of the problem is,
i.e., whether the result for the force changes or not if
one uses a different regularization. There are two sig-
nificant points demonstrating such robustness.

The first one is concerned with the geometrical reg-

ularization that we used. If one chooses domain 
around qk to be not a ball but some differently shaped

volume bounded by a smooth surface  (“topological
ball”), then it is not difficult to see that all the terms in
Eq. (20) for the regularized energy remain unchanged,
and, hence, our result for the force is still valid. This can
be demonstrated in exactly the same way as above, only

the computation of the integral over the surface  in
Eq. (19) requires a well-known result from potential
theory (cf. [13], n. 193, or [14]).

As for the first integral on the right of Eq. (17),

which defines the self-energy , its explicit
expression is not required, and its only relevant prop-
erty, namely, its independence of rk, is obvious.

An alternative way of regularization, so widely used
during the whole “pre-Dirac delta-function” era, is
physical regularization, where the point charge qk is

replaced, within a small volume , with some smooth

charge distribution of the density (k) and the same
total charge qk, and e is taken to be zero in the answer.
From a technical point of view, this approach proves to
be more complicated in this particular case, but it leads
again to the same terms in Eq. (20) for the regularized
energy. The key point here is to start with the following
expression for the regularized energy,

(24)

and then, instead of Eq. (3), split the potential into a

sum of volume potentials of (r) over  (which
becomes singular in the limit) and a regular addition

(r).

In particular, this regularization is used by Smythe
in Section 3.08 of [6] for calculating the force on a sin-
gle point charge in a domain with zero potential at the
boundary. In that work, derivation is at the “physical
level of accuracy” and the answer is not brought down
to its physically most relevant form of Eq. (23). More-
over, the final answer [right-hand side of Eq. (2) in that
section] is, unfortunately, formally diverging because
of the inappropriate use of the notation for the total
potential in the place where its regular part should be.

Dk
e

Sk
e

Sk
e

Wk self,
e

Dk
e

ρk
e

WD
e 1

2
--- ρeψ Vd

D

∫≡ 1
2
--- ρk

eψ V ,d

Dk
e

∫
k 1=

N

∑=

ρk
e Dk

e

ψR
e
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Finally, we want to end our discussion by mention-
ing that the electrostatic problem we just solved, as well
as its generalizations (see Section 5), involve only vol-
ume charges. On the other hand, magnetostatic prob-
lems that deal, for example, with magnetic fluxes
trapped in superconducting media (cf. [15]) give rise to
surface charges. Analysis of these is of extreme impor-
tance for modern experimental physics [16]. No easy
solution for the force between surface charges should
be anticipated since the details of the boundary shape,
such as its curvature, are expected to play a role; the
interaction of such surface charges will be discussed
elsewhere.

V. GENERALIZATION: OTHER BOUNDARY 
CONDITIONS

We can now generalize our result for other condi-
tions at the boundary.

A modest but potentially useful generalization may
be applied to the case of electrodes, where an arbitrary
distribution of the potential V(r), and not just a zero, is
specified at the boundary:

(25)

Let us split the potential in two,

(26)

in which the first is caused by point charges without any
voltage applied to the boundary, and the second is
entirely due to the boundary voltage. Therefore, ψ(1)

satisfies the boundary value problem of Eqs. (1) and (2),

(27)

(28)

According to what was proven above, the force on a
charge from the field specified by the potential ψ(1) is
given according to Eq. (23),

(29)

On the other hand, the potential ψ(2), satisfying

(30)

describes a field external to all point charges, since it
does not depend on them and their positions. Therefore,
the force exerted by this field is

(31)

Using the superposition principle, we add these two
forces to reinstate the result of Eq. (23) in the consid-

ψ S V r( ), r S.∈=

ψ ψ 1( ) ψ 2( ),+=

∆ψ 1( ) 1
ε0
---- qiδ r ri–( ), r ri D;∈,

i 1=

N

∑–=

ψ 1( )
S 0.=

F 1( )
i qi— ψ 1( ) r( )

κqi

r ri–
---------------–

r ri=

.–=

∆ψ 2( ) 0, r D; ψ 2( )
S∈ V r( ),= =

F 2( )
i qi—ψ 2( ) r( ) r ri= .–=
ered case:

(32)

The mixed boundary conditions

(33)

where the surfaces S1, S2 are nonintersecting (S1 ∩ S2 =
∅ ) and comprise the whole boundary (S1 ∪  S2 = S), and
V(r), σ(r) are given functions, lead to the same standard
result for the force [Eq. (23)] without any new technical
difficulties. Indeed, we split the total potential in two as
in Eq. (26) and require that

(34)

(35)

and

(36)

(37)

The derivation of the force from ψ(1) is performed
exactly as in Section 3 and leads to Eq. (29). The field
that is external to the charges from ψ(2) produces the
force of Eq. (31), so by superposition the total force is
again the same as in Eq. (23) [or Eq. (32)].

The appropriate splitting of the potential into two
parts [Eq. (26)] is somewhat more difficult for the Neu-
mann boundary condition,

(38)

namely, the solvability criterion (the total charge must
be zero) requires that, when splitting the potential,
another charge Q (equal to the sum of the point charges
qi) be added and subtracted at some point r∗  of the
domain D to obtain

(39)

(40)

Fi F 1( )
i F 2( )

i+ qi— ψ r( )
κqi

r ri–
---------------–

r ri=

.–= =

ψ S1
V r( ), ε0

∂ψ
∂n
-------

S2

σ r( ),= =

∆ψ 1( ) 1
ε0
---- qiδ r ri–( ), r ri D;∈,

i 1=

N

∑–=

ψ 1( )
S1

0, ∂ψ 1( )

∂n
------------

S2

0= =

∆ψ 2( ) 0, r D;∈=

ψ 2( )
S1

 = V r( ), ε0
∂ψ 2( )

∂n
------------

S2

σ r( ).=

ε0
∂ψ
∂n
-------

S

σ r( ), σ r( ) Ad
S
∫ Q+ 0, Q q j;

j 1=

N

∑≡= =

∆ψ 1( ) 1
ε0
---- qiδ r ri–( )

i 1=

N

∑ Qδ r r*–( )– ,–=

r ri r*, , D;∈

∂ψ 1( )

∂n
------------

S

0,=
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as well as

(41)

(42)

with both problems solvable. Again, the derivation of
the force from ψ(1) satisfying the homogeneous bound-
ary condition is performed exactly as before and leads
to Eq. (29), the field ψ(2) external to the charges exerts
the force given in Eq. (31), and the result of Eq. (23)
holds by superposition. The problem itself, though, is
not too realistic, except for the case of an insulated
boundary, σ(r) ≡ 0.
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