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Molecular noise restricts the ability of an individual cell to 
resolve input signals of different strengths and gather 
information about the external environment. 
Transmitting information through complex signaling 
networks with redundancies can overcome this limitation. 
We developed an integrative theoretical and experimental 
framework, based on the formalism of information 
theory, to quantitatively predict and measure the amount 
of information transduced by molecular and cellular 
networks. Analyzing tumor necrosis factor (TNF) 
signaling revealed that individual TNF signaling pathways 
transduce information sufficient for accurate binary 
decisions, and an upstream bottleneck limits the 
information gained via multiple pathways together. 
Negative feedback to this bottleneck could both alleviate 
and enhance its limiting effect, despite decreasing noise. 
Bottlenecks likewise constrain information attained by 
networks signaling through multiple genes or cells. 

Signaling networks are biochemical systems dedicated to 
processing information about the environment provided by 
extracellular stimuli. Large populations of cells can 
accurately sense signaling inputs, such as the concentration of 
growth factors or other receptor ligands, but this task can be 
challenging for an individual cell affected by biochemical 
noise (1–3). Noise maps an input signal to a distribution of 
possible output responses which can cause loss of information 
about the input. For example, a cell cannot reliably 
distinguish different inputs that, due to noise, can generate the 
same output (Fig. 1A). 

Conventional metrics related to the standard deviation or 
variance of the response distribution measure noise 
magnitude (4–8), but fail to elucidate how noise 
quantitatively affects the accuracy of information processing 
in single cells. On the other hand, an information theoretic 
approach (Fig. 1B), and the metric of mutual information in 
particular, can quantify signaling fidelity in terms of the 
maximum number of input values that a cell can resolve in 
the presence of noise. Such methods have been commonly 
used to evaluate man-made telecommunication systems (9) 
and more recently in computational neuroscience and in 

analyses of transcriptional regulatory systems (10–14), but 
has not been applied to biochemical signaling networks. We 
developed a general integrative theoretical and experimental 
framework to predict and measure the mutual information 
transduced by one or more signaling pathways. Applying this 
framework to analyze a 4-dimensional compendium of single 
cell responses to tumor necrosis factor (TNF) (Fig. 1C, see 
also SOM Section 1), an inflammatory cytokine that initiates 
stochastic signaling at physiologic concentrations spanning 
~4 orders of magnitude (15–21), shows that signaling via a 
network rather than a single pathway can abate the 
information lost to noise. Furthermore, an information 
bottleneck can restrict the maximum information a network 
can capture, and negative feedback potentially but not always 
relieves this limitation. 

The mutual information, I(R;S), measured in bits, is the 
binary logarithm of the maximum number of input signal 
values (S), such as ligand concentrations, a signaling system 
can perfectly resolve on the basis of its noisy output 
responses (R) (9). One bit of information can resolve two 
different signal values, two bits resolves four values, etc. 
More generally, 
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The joint distribution P(R,S) determines the marginal 
distributions P(R) and P(S) and hence also the mutual 
information, and can be decomposed as P(R,S) = P(S) P(R|S). 
The response distribution, P(R|S), is experimentally 
accessible by sampling responses of individual isogenic cells 
to various signal levels (Fig. 1C) and its spread reflects the 
noise magnitude given any specific input. The signal 
distribution, P(S), reflects potentially context-specific 
frequencies at which a cell experiences different signal 
values. Although the amount of information might thus vary 
from case to case, one can also determine the maximal 
amount of transducible information, given the observed noise 
(see SOM Section 2). This quantity, known as the channel 
capacity (9), is a general characteristic of the signaling system 
and the signal-response pair of interest, and can thereby be 
experimentally measured without making assumptions about 
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the (possibly nonlinear) relationship between R and S, signal 
power, or noise properties. 

Using immunocytochemistry, we assayed nuclear 
concentrations of the transcription factor NF-κB in thousands 
of individual mouse fibroblasts 30 min. after exposure to 
various TNF concentrations (Fig. 1D), choosing this time 
point because NF-κB translocation peaks at 30 min. 
regardless of the concentration used, initiating expression of 
early response inflammatory genes (19–22). The NF-κB 
response value in a single cell could yield at most 0.92 ± 0.01 
bits of information which is equivalent to resolving 20.92 = 
1.9, or about 2, concentrations of the TNF signal, thus 
essentially only reliably indicating whether TNF is present or 
not. (See SOM, Sections 2.2 and 3, regarding the low 
experimental uncertainty.) A bimodal input signal 
distribution, P(S), with peaks at low and high TNF 
concentrations maximizes the information (fig. S1), 
supporting the notion of essentially binary (digital) sensing 
capabilities of this pathway (18), although we did not observe 
bimodal output responses, P(R|S). 

Noise also limits other canonical pathways, including 
signaling by platelet derived growth factor (PDGF), 
epidermal growth factor (23), and G-protein coupled 
receptors (24) to ~1 bit (fig. S2A-C, table S1). Even the most 
reliable system we examined, morphogen gradient signaling 
through the receptor Torso in Drosophila embryos (25), was 
limited to 1.61 bits (fig. S2D, table S1), corresponding to just 
~3 distinguishable signal levels. 

The pathways examined above are examples of individual 
biochemical communication channels (Fig. 1B) that capture 
relatively low amounts of information about signal intensity, 
which would allow only limited reliable decision making by a 
cell. However, information in biological systems is typically 
processed by networks comprising multiple communication 
channels, each transducing information about the signal. For 
instance, a transcription factor often regulates many genes, a 
receptor many transcription factors, and a diffusible ligand 
many cells. The outputs of such multiple channels together 
can provide more information about the signal than the output 
of any one channel (see SOM Section 4). Subsequently, 
downstream signaling processes that converge to co-regulate 
common effectors, biological processes, or physiologic 
functions can provide the point needed to integrate the 
multiple outputs to realize the benefit of increased aggregate 
information (fig. S3). To provide a unified framework for 
analyzing such various networks, we first theoretically 
investigated the information gained by network signaling in 
general, then experimentally tested the predictions made by 
the theory when applied to a specific system. 

We considered two information theoretic models, similar 
to models of population coding in neural systems (26–28), for 
transmitting a signal S through multiple channels to the 

responses R1, R2, …, Rn, under the assumption of Gaussian 
variables (see SOM Section 5). The bush model utilizes 
independent channels (topologically resembling an upside 
down shrub) (Fig. 2A), whereas the tree model signals 
through a common channel (“trunk”) to the intermediate, C, 
before diverging into independent branches (Fig. 2B). The 
information resulting from the bush model is 
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where 2
Sσ  is the variance of the signal distribution, and 2

S R→σ  
is the noise (variance) introduced in each branch. Thus, the 
information can grow logarithmically with the number of 
branches without an upper bound. In contrast, the information 
resulting from the tree model is 
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where 2
S C→σ  and 2

C R→σ  are the trunk and branch noises, 
respectively (see SOM, Section 3.3). As the number of 
branches increases, the information asymptotically 
approaches an upper limit equal to the mutual information 
between the input signal and the common intermediate, thus 
the information lost to noise in the trunk determines the 
maximum throughput of a tree network. 

The key difference between bush and tree networks is the 
absence or presence of this trunk-based information 
bottleneck. The biochemical structure of a network can 
resemble a tree, but if the trunk presents little information 
limitation, the bush model lacking a bottleneck might best 
estimate the capacity of the network. Additionally, the bush 
and tree models make various semi-quantitative predictions 
(see SOM, Section 6), such as the information captured by a 
network based on the capacities of its component pathways. 
For example, for a bush network comprising two pathways 
each with 1 bit responses, Eq. 2 implies 2 2/ 3S S R→ =σ σ  and that 
together they should yield ( )( )1

22 log 1 2 3 1.4 bits+ = . 

TNF activates the NF-κB and c-Jun N-terminal kinase (JNK) 
pathways, stimulating nuclear localization of NF-κB and 
phosphorylated activating transcription factor-2 (ATF-2) (fig. 
S4), respectively (29). To determine if the TNF signaling 
network contains a significant upstream information 
bottleneck limiting the information captured by these 
pathways, we examined whether the bush (bottleneck absent) 
or tree (bottleneck present) network model better 
approximates the network (fig. S5). The models are 
applicable because the NF-κB (Fig. 1D) and ATF-2 (fig. S6) 
response distributions are approximately Gaussian at all TNF 
concentrations. We found that NF-κB alone yielded at most 
0.92 bits of information about TNF concentration, and ATF-2 
alone yielded at most 0.85 ± 0.02 bits (fig. S1B, table S1). 
Together, the bush model predicts that these pathways jointly 

 o
n 

S
ep

te
m

be
r 

27
, 2

01
1

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

http://www.sciencemag.org/


 

 / www.sciencexpress.org / 15 September 2011 / Page 3 / 10.1126/science.1204553 

yield 1.27 ± 0.01 bits (Fig. 2C) and a similar model assuming 
independent pathway responses that are not necessarily 
Gaussian likewise predicts an increase to 1.13 ± 0.01 bits. 
The actual information determined by dual staining 
immunocytochemistry (Fig. 2D) was 1.05 ± 0.02 bits, much 
lower than both predictions (Fig. 2C), demonstrating that the 
bush model does not approximate the TNF network well. In 
contrast, the tree model predicts 1.03 ± 0.01 bits, matching 
the experimental value within error (Fig. 2C), and also 
correctly predicts the statistical dependency between the 
responses given the signal (fig. S7). 

The correspondence between the tree model predictions 
and experimental measurements strongly indicates that the 
network contains an information bottleneck. The tree model 
predicts the maximum information that can pass through the 
bottleneck is 1.26 ± 0.13 bits (Fig. 2C), corresponding to just 
21.26 = 2.3 distinguishable TNF concentrations. The known 
biochemistry of TNF signaling implies the bottleneck (trunk) 
comprises the steps of TNF receptor complex activation 
common to both pathways, including ligand binding, receptor 
trimerization, and complex formation and activation. Since all 
TNF signaling passes through the receptor complex, multiple 
pathways in the TNF signaling network, activated at the 30 
min. time point, only modestly increase the information about 
TNF concentration regardless of the number of pathways or 
their fidelity. 

We next explored whether negative feedback, which can 
reduce noise (12, 30, 31), might alleviate the receptor level 
signaling bottleneck. The information captured by a single 
channel (Eq. 2, n = 1) can be written as ( )2 21

22 log /R S R→σ σ . 

Thus negative feedback can have equivocal effects on 
information, depending on the balance of the tendencies for 
negative feedback to reduce both the dynamic range of the 
signaling response (32), represented by the response variance 

2
Rσ  and noise represented by 2

S R→σ . Indeed, comparison of 
wildtype cells and cells lacking A20 (fig. S8), an inhibitor of 
TNF receptor complexes whose expression is upregulated by 
NF-κB (33) (Fig. 3A), showed that A20-mediated negative 
feedback increases information at the 30 min. time point, but 
decreases it at 4 hrs (Fig. 3B). 

To understand these different outcomes, we examined how 
A20 affects the dynamic range and noise at either time point. 
At the early time point, constitutively expressed A20 inhibits 
basal NF-κB activity, but TNF does not induce A20 
expression rapidly enough to affect saturating levels of NF-
κB at 30 min (Fig. 3C-D, fig. S9) (17, 34). Hence, A20 
negative feedback decreases noise, primarily at low TNF 
concentrations, and also increases the dynamic range by 
lowering basal NF-κB levels (Fig. 3E, fig. S10A), explaining 
why information at 30 min. is higher for wildtype than for 
A20-/- cells (Fig. 3B). In contrast, at the late time point, A20 
is increased in wildtype cells (17, 34). The negative feedback 

decreases noise at all TNF concentrations but also decreases 
the dynamic range by strongly suppressing the maximum 
inducible NF-κB activity (Fig. 3E, fig. S10A). The net effect 
is lower information for wildtype versus A20-/- cells at 4 hrs 
(Fig. 3B). 

We observed that A20 negative feedback similarly both 
improves and limits information at the early and late time 
points respectively for ATF-2 alone, or together with NF-κB 
(Fig. 3B, fig. S10B), consistent with A20 affecting the 
portion of the network common to both pathways. 
Nevertheless, the maximal information about TNF 
concentration acquired with or without A20-mediated 
negative feedback was still ~1 bit, suggesting limited 
advantages for mitigating the information bottleneck in this 
pathway using negative feedback. 

We next considered whether networks comprising multiple 
target genes can capture substantial amounts of information 
through time integration. If the target gene product lifetime is 
long compared to its transcription and translation time scales, 
the accumulated protein concentration is approximately 
proportional to the time integral of signaling activity, thereby 
averaging out temporal fluctuations (35, 36). However, the 
biochemical readout of protein synthesis can introduce extra 
noise confounding determination of the information contained 
in the time integral. Fortunately, the maximum information 
captured by a tree network, in which the time integral of 
transcription factor activity is the intermediate signal 
activating multiple independent target genes (Fig. 4A, inset), 
is determined by the trunk (time integration) rather than 
branch noise (readout mechanism). We measured the 
information captured by such tree networks in cells stably 
transfected with different copy numbers (1.8 fold difference, 
as determined by polymerase chain reaction) of a gene for a 
stable green fluorescent protein (GFP) (37) reporting on NF-
κB activity (Fig. 4B). Using the tree model to extrapolate the 
extent of the bottleneck, under the assumption that ~10 hrs 
TNF exposure induces similar expression level and noise for 
each gene, indicates that 1.64 ± 0.36 bits is the maximum 
information that integrating NF-κB activity over the 
experimental time period can yield about TNF concentration 
(Fig. 4A), regardless of the readout mechanism. 

To understand why information was only moderately 
higher compared to a single time point (1.64 versus 0.92 bits), 
we monitored GFP expression in individual cells, finding 
that, for any given cell, GFP accumulated linearly in time in a 
nearly deterministic fashion, although its onset and 
accumulation rate varied from cell to cell (Fig. 4C). This is 
consistent with observations made using live cell probes (18–
20) showing NF-κB dynamics to be essentially deterministic 
over the experimental time scale within each cell, but distinct 
across cells. We thus conclude that the ability of time 
integration to increase the information about TNF 
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concentration is limited by the lack of rapid temporal 
fluctuations that would otherwise be suppressed by 
integration over the 10 hour response. 

Finally, we considered signaling via multiple cells, each 
considered as separate information channels within a network 
(Fig. 5A, inset). An ensemble of cells resembles a bush 
network if each cell directly and independently accesses the 
same signal, and since bush networks do not contain 
bottlenecks, substantial increases in information might be 
obtained. To test this hypothesis, we analyzed the collective 
TNF response of different numbers of cells, as measured by 
immunocytochemistry. We varied cell number by considering 
cells within non-overlapping circular regions of variable 
diameter (Fig. 5B), and used the average NF-κB response 
within each region to simulate cells contributing to a 
collective response in proportion to their NF-κB activity. The 
bush model predicts (Eq. 2), and the data confirms (Fig. 5A), 
that the information should increase logarithmically with the 
number of independently signaling cells functioning 
collectively. 

Moreover, we found that networks of just 14 cells can 
yield up to 1.8 bits of information, far greater than the other 
network types analyzed above. Since ensembles of this size 
can plausibly experience a similar concentration of a 
diffusing signal such as TNF and function collectively (21, 
38) (e.g., TNF-activated blood vessel endothelial cells (39)), 
collective cell behavior can effectively increase the 
information gained and produce responses that can 
discriminate between many TNF concentrations. Nonetheless, 
networks relying on cell-cell communication can still contain 
bottlenecks. For instance, TNF can be secreted by 
macrophages stimulated by lipo-polysaccharide (LPS) from 
invading bacteria, with the information about the initial LPS 
dose lost within the macrophage signaling networks prior to 
secretion of TNF. 

By treating biochemical signaling systems as information 
theoretic communication channels, we have rigorously and 
quantitatively shown that in a single cell noise can 
substantially restrict the amount of information transduced 
about input intensity, particularly within individual signaling 
pathways. The bush and tree network models, which provide 
a unified theoretical framework for analyzing branched 
motifs widespread in natural and synthetic signaling 
networks, further demonstrated that signaling networks can 
be more effective in information transfer, although 
bottlenecks can also severely limit the information gained. 
Receptor level bottlenecks restrict the TNF and also PDGF 
signaling networks (fig. S11) and may be prevalent in other 
signaling systems. 

We explored several strategies that a cell might employ to 
overcome restrictions due to noise. We found that negative 
feedback can suppress bottleneck noise, which can be offset 

by concomitantly reduced dynamic range of the response. 
Time integration can increase the information transferred, to 
the extent that the response undergoes substantial dynamic 
fluctuations in a single cell over the physiologically relevant 
time course. The advantage of collective cell responses can 
also be substantial, but limited by the number of cells 
exposed to the same signal or by the information present in 
the initiating signal itself. 

Responses incorporating the signaling history of the cell 
might also increase the information (40, 41). For instance, 
responses relative to the basal state (fold-change response) 
might be less susceptible to noise arising from diverse initial 
states (23), although this does not necessarily translate into 
large amounts of transferred information (table S1). 
Similarly, for the reporter gene system described here (fig. 
S12), ~0.5 bits of additional information can be obtained if a 
cell can determine expression levels at both early and late 
time points. However, noise in the biochemical networks a 
cell uses to record earlier output levels and to later compute 
the final response may nullify the information gain potentially 
provided by this strategy. Overall, we anticipate that the 
information theory paradigm can extend to the analysis of 
noise mitigation strategies and information transfer 
mechanisms beyond those explored here, in order to 
determine what specific signaling systems can do reliably 
despite noise. 
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Fig. 1. Information theoretic analysis of cell signaling 
fidelity. (A) Schematic showing information loss due to 
overlapping noisy response distributions. (B) Diagram of the 
TNF-NF-κB signaling pathway represented in biochemical 
form (left) and as a noisy communication channel (right). (C) 
Experimental flowchart for sampling the conditional response 
distribution at single cell resolution using 
immunocytochemistry, and resulting 4-dimensional 
compendium of multiple responses in cells of multiple 
genetic backgrounds to multiple TNF concentrations, at 
multiple time points. The data was collected in a single 
experiment, allowing controlled, quantitative comparisons 
along each dimension. (D) Distributions of noisy NF-κB 
nuclear translocation responses to 30 min. TNF (examples 
shown at top) used to compute the channel capacity of the 
TNF-NF-κB pathway. (Scale bars, 20 μm) 

Fig. 2. Information gained by signaling through a network 
comprising multiple communication channels. (A) Schematic 
of a bush network with independent channels lacking an 
information bottleneck. (B) Schematic of a tree network with 
channels sharing a common trunk that forms an information 
bottleneck. (C) Comparison of bush and tree model 
predictions for the capacity of the TNF network to 
experimental values. At 30 min., the NF-κB and ATF-2 
pathways together capture more information about TNF 
concentration than either pathway alone (bars 1-3), and the 
tree rather than bush model accurately predicts this increase 
(bars 3-5). The tree model further predicts a receptor level 
bottleneck of 1.26 ± 0.13 bits (bar 6). In all panels, circles 
represent noise introduced in the indicated portions of the 
signaling network; see text for definition of symbols. (D) 
Joint distribution of NF-κB and ATF-2 responses to 30 min. 
stimulation of TNF. Each datapoint represents a single cell, 
and each concentration of TNF examined is shown using a 
distinct color. 

Fig. 3. Impact of negative feedback to the bottleneck on 
information transfer. (A) TNF signaling network diagram 
showing A20-mediated negative feedback to the information 
bottleneck. (B) Comparison of information about TNF 
concentration captured with and without A20 negative 
feedback. The information is larger at 30 min. but smaller at 4 
hrs. in wildtype cells compared to A20-/- cells. (C, D) 
Schematic of NF-κB dynamics in wildtype and A20-/- mouse 
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fibroblasts exposed to saturating concentrations of TNF. 
Average dynamics (black) and the expected magnitudes of 
the dynamic range (double arrow) and noise (single arrow) 
are shown. See fig. S9 for experimental support. (E) 
Comparison of NF-κB responses to zero (basal) or saturating 
concentrations of TNF. Differences in the means with and 
without TNF indicate the dynamic range, and error bars 
indicate the noise. 

Fig. 4. Information gained by signaling through networks of 
multiple genes. (A) Plot shows the unique curve (solid black) 
determined by the tree model (inset), passing through the 
experimentally determined values (circles), for information as 
a function of the number of copies of a NF-κB reporter gene. 
The upper limit, corresponding to the maximum information 
captured by integrating NF-κB activity over time, is 1.64 ± 
0.36 bits (blue dashed line). (B) Expression level distributions 
of clonal cell lines containing different numbers of copies of 
an NF-κB reporter gene in response to ~10 hrs of TNF. (C) 
Time courses corresponding to individual cells showing cell-
to-cell differences in the onset and rate of NF-κB reporter 
gene expression (left). In each cell, expression is nearly linear 
and deterministic in time, as quantified by the correlation 
coefficient (right) of the time course following onset of 
expression (shown schematically in inset on left). 

Fig. 5. Information gained by signaling through networks of 
multiple cells. (A) Comparison of experimentally measured 
information obtained by collective cell responses (circles) 
versus logarithmic trend (solid black line) predicted the bush 
model (inset). (B) Schematic of methodology used to measure 
collective cell responses. 
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