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Gradient sensing requires at least two measurements at different points in space. These measure-
ments must then be communicated to a common location to be compared, which is unavoidably
noisy. While much is known about the limits of measurement precision by cells, the limits placed
by the communication are not understood. Motivated by recent experiments, we derive the funda-
mental limits to the precision of gradient sensing in a multicellular system, accounting for commu-
nication and temporal integration. The gradient is estimated by comparing a “local” and a “global”
molecular reporter of the external concentration, where the global reporter is exchanged between
neighboring cells. Using the fluctuation-dissipation framework, we find, in contrast to the case when
communication is ignored, that precision saturates with the number of cells independently of the
measurement time duration, since communication establishes a maximum lengthscale over which
sensory information can be reliably conveyed. Surprisingly, we also find that precision is improved
if the local reporter is exchanged between cells as well, albeit more slowly than the global reporter.
The reason is that while exchange of the local reporter weakens the comparison, it decreases the
measurement noise. We term such a model “regional excitation–global inhibition” (REGI). Our
results demonstrate that fundamental sensing limits are necessarily sharpened when the need to
communicate information is taken into account.

Cells sense spatial gradients in environmental chemi-
cals with remarkable precision. A single amoeba, for ex-
ample, can respond to a difference of roughly ten attrac-
tant molecules between the front and back of the cell [1].
Cells are even more sensitive when they are in a group:
cultures of many neurons respond to chemical gradients
equivalent to a difference of only one molecule across an
individual neuron’s axonal growth cone [2]; clusters of
malignant lymphocytes have a wider chemotactic sensi-
tivity than single cells [3]; and groups of communicat-
ing epithelial cells detect gradients that are too weak
for a single cell to detect [4]. More generally, collec-
tive chemosensing properties are often very distinct from
those in individual cells [3, 5–7]. These observations have
generated a renewed interest in the question of what sets
the fundamental limit to the precision of gradient sens-
ing in large, spatially extended, often collective sensory
systems.

Fundamentally, sensing a stationary gradient requires
at least two measurements to be made at different points
in space. The precision of these two or more individ-
ual measurements bounds the gradient sensing precision
[8, 9]. In their turn, each individual measurement is lim-
ited by the finite number of molecules within the detector
volume and the ability of the detector to integrate over
time, a point first made by Berg and Purcell (BP) [8].
More detailed calculations of gradient sensing by spe-
cific geometries of receptors have since confirmed that
the precision of gradient sensing remains limited by an
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expression of the BP type [10–12].

However, absent in this description is the fundamental
recognition that in order for the gradient to be measured,
information about multiple spatially separated measure-
ments must be communicated to a common location.
This point is particularly evident in the case of multi-
cellular sensing: if two cells at either edge of a popu-
lation measure concentrations that are different, neither
cell “knows” this fact until the information is shared.
This is also important for a single cell: information from
receptors on either side of a cell must be transported,
e.g., via diffusive messenger molecules, to the location of
the molecular machinery that initiates the phenotypic re-
sponse. How is the precision of gradient sensing affected
by this fundamental communication requirement?

As discussed recently in the context of instantaneous
measurements [4], the communication imposes important
limitations. First, detection of an internal diffusive mes-
senger by cellular machinery introduces its own BP-type
limit on gradient sensing. Since the volume of an in-
ternal detector must be smaller than that of the whole
system, and diffusion in the cytoplasm is often slow, such
an intrinsic BP limitation could be dramatic. Second, in
addition to the detection noise, the strength of the com-
munication itself may be hampered over long distances
by messenger turnover. This imposes a finite lengthscale
over which communication is reliable, with respect to the
molecular noise. However, the communicating cells can
integrate the signals over time [8], improving detection
of even very weak messages. Whether such integration
can lift the communication constraints has not yet been
addressed.

To analyze constraints on gradient sensing in spatially
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extended systems with temporal integration, we use a
minimal model of collective sensing based on the lo-
cal excitation–global inhibition (LEGI) approach [13].
This sensory mechanism uses a local and a global inter-
nal reporter of the external concentration, where only
the global reporter is exchanged and averaged among
neighboring cells. Comparison of the two reporters then
measures if the local concentration is above or below
the average, and hence whether the cell is on the high-
concentration edge of the population. We analyze the
model using a fluctuation-dissipation framework [14], to
derive the precision with which a chemical gradient can
be estimated over long observation times. In the case
where the need to communicate is ignored, the preci-
sion would grow indefinitely with the number of cells. In
contrast, we find that, communication imposes limits on
sensing even for long measurement times. Furthermore,
the analysis reveals a counterintuitive strategy for opti-
mizing the precision. We find that if the local reporter is
also exchanged, at a fraction of the rate of the global re-
porter, the precision can be significantly enhanced. Even
though such exchange makes the two compared concen-
trations more similar, which weakens the comparison, it
reduces the measurement noise of the local reporter. This
tradeoff leads to an optimal ratio of exchange rates that
maximizes sensory precision. We discuss how the predic-
tions of our analysis could be tested experimentally.

I. RESULTS

We discretize the spatially-extended gradient sensor
into compartments. These can be whole cells or their
parts, but we will refer to them as cells from now on.
There is a diffusible chemical whose concentration varies
linearly in space. The chemical gradient defines a direc-
tion within the sensor, and we focus on a chain of cells
along this direction (Fig. 1A). Numbering the cells from
n = 1 to N , each cell experiences a local concentration
cn = cN − (N − n)ag, where cN is the background con-
centration, g is the concentration gradient, and a is the
linear size of each cell. We choose without loss of gen-
erality to have g ≥ 0 and to reference the background
concentration at cell N , which is then at the higher edge
of the gradient. We focus on this cell because we imagine
it will be the first to initiate a phenotypic response, such
as proliferating or directed motility. Finally, we focus on
the limit ag/cN � 1 because limits on the sensory preci-
sion will be the most important for such small, hard to
measure gradients.

A. An idealized detector

First, we consider the case when the two edge cells
form an idealized detector, in the sense that each cell
counts every external molecule in its vicinity, and one
cell “knows” instantly and perfectly the count of the
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FIG. 1: Spatially extended gradient sensing. (A) A
chain of N compartments or cells is exposed to a linear pro-
file of a diffusible chemical. (B) In an idealized detector, the
two edge cells communicate their measurements perfectly and
instantly. (C) In our model, bound receptors (R) activate a lo-
cal (X) and global reporter molecules (Y), and Y is exchanged
between cells for the communication.

other (Fig. 1B). The gradient could then be estimated by
the difference in the concentration measurements made
by the two cells [8, 9]. The mean of this difference
is ∆̄ = c̄N − c̄1 = (N − 1)ag, and its error is given
by the corresponding errors in the two measurements,
(δ∆)2 = (δc1)2 + (δcN )2, under the assumption that the
measurements are independent.

Berg and Purcell showed [8] that the fractional er-
ror in each measurement is not smaller than (δc/c̄)2 ∼
1/(aDT c̄), where D is the diffusion constant of the lig-
and, and T is the time over which the measurement is
integrated. This expression has an intuitive interpreta-
tion: the fractional error is at least as large as the Poisson
counting noise, which scales inversely with the number
of molecular counts. The number of counts that can be
made in a time T is given by the number of molecules in
the vicinity of a cell at a given time, roughly c̄a3, multi-
plied by the number of times the diffusion renews these
molecules, T/τ , where τ ∼ a2/D. This product is aDT c̄.

The error in the gradient estimate is then given by
(δ∆)2 ∼ c̄1/(aDT ) + c̄N/(aDT ). For sufficiently small
gradients, such that c̄1 ≈ c̄N , this becomes(

δ∆

c̄N

)2

∼ 1

aDT c̄N
. (1)

Thus, for an idealized detector, the error in the gradient
estimate is limited entirely by the error in the measure-
ments made by each of the edge cells. In general, we
could think of the measurement at either edge being per-
formed by a region that is larger than a single cell. Since
each region could not be larger than the whole system,
the highest precision is obtained when ∼Na replaces a
in Eqn. 1. This result has been derived more rigorously
[10], and apart from a constant prefactor, Eqn. 1 indeed
provides the estimation error in the limit of large detector
separation and fast detection kinetics. More complex ge-
ometries, such as rings of detectors [10], or detectors dis-
tributed over the surface of a circle [11] or a sphere [12],
have also been considered, and Eqn. 1 again emerges as
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the corresponding bound, with the lengthscale a replaced
by that dictated by the specific geometry.

Eqn. 1 can be combined with the mean ∆̄ to produce
the signal-to-noise ratio (SNR) for gradient detection

1

SNR
≡
(
δ∆

∆̄

)2

∼ c̄N
[(N − 1)ag]2aDT

(2)

This expression again has a clear interpretation: the SNR
increases if the external molecules diffuse more quickly
(D) or are more sharply graded (g), or if the detectors are
larger (a), are better separated (N), or integrate longer
(T ). Yet, the SNR is worse for a larger background con-
centration (c̄N ), since it is more difficult to detect a small
gradient on top of a larger background. The measures de-
fined in Eqns. 1 and 2 are conceptually equivalent only in
the case of low background concentration, when the dif-
ference ∆ is comparable to the background concentration
cN (i. e. c1 ≈ 0). While much of the field has focused on
Eqn. 1, here we are concerned with the opposite case: the
fundamental limits to the detection of small gradients on
a large background. Therefore from here on we focus on
the SNR, Eqn. 2.

B. Accounting for the need to communicate

Eqn. 2 cannot be a fundamental limit because it ne-
glects a critical aspect of gradient sensing: the need to
communicate information from multiple detectors to a
common location. Indeed, the idealized detector implies
the existence of a “spooky action at a distance” [15], i. e.
an unknown, instantaneous, and error-free communica-
tion mechanism. What are the limits to gradient sensing
when communication is properly accounted for?

To answer this, a model of gradient sensing must be
assumed. A naive model would allow each cell access to
information about the input measured and broadcast by
every other cell. This would require a number of private
communication channels that grows with the number of
cells, which is not plausible. A realistic alternative that
would involve just one message being communicated is for
each cell to have access to some aggregate, average infor-
mation, to which all comparisons are made. There are
a few such models [16–18], and our choice among them
is guided by the fact that collective detection of weak
gradients is observed in steady state, and over a wide
range of background concentration in both neurons [2]
and epithelial cells [4]. This supports an adaptive spatial
(rather than temporal) sensing, such as can be imple-
mented by the local excitation–global inhibition (LEGI)
mechanism [13].

The LEGI model is illustrated in Fig. 1C. Each
cell contains receptors that bind and unbind external
molecules with rates α and µ, respectively. Bound re-
ceptors (R) activate both a local (X) and a global (Y)
intracellular species with rate β. Deactivation of X and
Y occurs spontaneously with rate ν. Whereas X is con-
fined to each cell, Y is exchanged between neighboring

cells with rate γ, which provides the cell-cell communi-
cation. X then excites a downstream species while Y
inhibits it (LEGI). Conceptually, X measures the local
concentration of external molecules, while Y represents
their spatially-averaged concentration. If the local con-
centration is higher than the average (i.e., the excitation
exceeds the inhibition), then the cell is at the higher edge
of the gradient. While such comparison of the excitation
and the inhibition can be done by many different molec-
ular mechanisms [13], here we are interested in the limit
of shallow gradients. In this limit, biochemical reactions
doing the comparison can be linearized around the small
difference of X and Y, and the comparison is equivalent
to subtracting Y from X [4]. Therefore, we take this
difference, ∆, as the readout of the model.

Because we are interested in the limits to sensory pre-
cision, we focus on the most sensitive regime, the linear
response regime, where the effects of saturation are ne-
glected. Introducing rn, xn, and yn as the molecule num-
bers of R, X, and Y in the nth cell, the stochastic model
dynamics are

ċ = D∇2c−
N∑
n=1

δ(~x− ~xn)ṙn,

ṙn = αcn − µrn + ηn,

ẋn = βrn − νxn + ξn,

ẏn = βrn − ν
N∑

n′=1

Mnn′yn′ + χn, (3)

where c(~x, t) is the external concentration, and cn ≡
c(~xn, t) is the concentration at the location ~xn of the nth
cell. The matrix Mnn′ ≡ (1+2γ/ν)δnn′−(γ/ν)(δn′,n−1+
δn′,n+1) includes the neighbor-to-neighbor exchange
terms and is appropriately modified at the endpoints
n ∈ {1, N}. ηn, ξn, and χn are the noise terms. Specif-
ically, ηn arises from the equilibrium binding and un-
binding of external molecules to receptors and can be
expressed in terms of fluctuations in the free energy dif-
ference Fn associated with one molecule unbinding from
the nth cell [14], ηn = αc̄nδFn (here Fn is in units of the
Boltzmann constant times temperature). The Langevin
terms ξn and χn account for noise in the activation, deac-
tivation, and exchange reactions. They have zero mean
and obey [19]

〈ξn(t)ξn′(t′)〉 = δn′n(βr̄n + νx̄n)δ(t− t′),
〈χn(t)χn′(t′)〉 = [δn′n(βr̄n + νȳn + 2γȳn + γȳn−1 + γȳn+1)

− δn′,n−1(γȳn−1 + γȳn)

− δn′,n+1(γȳn+1 + γȳn)]δ(t− t′), (4)

where positive terms account for the Poisson noise cor-
responding to each reaction, and negative terms account
for the anti-correlations introduced by the exchange. We
are particularly interested in the SNR for the difference
between local and global molecule numbers in the edge
cell, ∆N = xN − yN , which is the analog of Eqn. 2 for
the idealized detector.
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∆̄ is given by the means x̄N and ȳN , which follow from
Eqn. 3 in steady state: x̄N = (β/ν)r̄N = [αβ/(µν)]c̄N
and ȳN = (β/ν)

∑
nM

−1
Nnr̄n = [αβ/(µν)]

∑
nM

−1
Nnc̄n,

such that

∆̄N =
αβ

µν

(
c̄N −

N−1∑
n=0

Knc̄N−n

)
. (5)

Here Kn ≡ M−1
N,N−n is the communication “kernel”,

which determines how neighboring cells’ concentration
measurements are weighed in producing the global
molecule number in the edge cell. Previously we showed
[4] that Kn is

Kn =

∑N−n−1
j=0

(
N−n−1+j

2j

)
(ν/γ)j∑N−1

`=0

(
N+`
2`+1

)
(ν/γ)`

. (6)

To find the noise, we calculate the power spectra of
xN and yN . As explained below, we assume that the
measurement integration time T is longer than the re-
ceptor equilibration time (τ1), the messenger turnover
time (τ2), and the messenger exchange time (τ3). Un-
der this assumption, covariances in long-time averages
are given by the low-frequency limits of the power spec-

tra, Cxynn′ = limω→0[Sxynn′(ω) ≡ 〈δ̃x
∗
nδ̃yn′〉]/T . Linearizing

Eqn. 3 around its means and Fourier transforming (de-
noted by ˜) in time and space obtains

−iωδ̃c = −Dk2δ̃c+ iω
∑
n

δ̃rne
i~k·~xn ,

−iωδ̃rn = αδ̂c(~xn, ω)− µδ̃rn + αc̄n ˜δFn,

−iωδ̃xn = βδ̃rn − νδ̃xn + ξ̃n,

−iωδ̃yn = βδ̃rn − ν
∑
n′

Mnn′ δ̃yn′ + χ̃n, (7)

where δ̂c(~x, ω) ≡
∫
d3k (2π)−3δ̃c(~k, ω)e−i

~k·~x. The first
step in finding the noise is to calculate the power spec-
trum for rn, which we do using the fluctuation-dissipation
theorem (FDT) as in [14]. FDT relates the power spec-
trum Srrnn′(ω) (fluctuations) to the imaginary part of the
generalized susceptibility Gnn′(ω) (dissipation),

Srrnn′(ω) =
2

ω
Im[Gnn′(ω)], (8)

whereGnn′(ω) describes how the receptor binding relaxes
to small changes in the free energy,

δ̃rn =
∑
n′

Gnn′(ω) ˜δFn′ . (9)

We solve for Gnn′(ω) by eliminating δ̃c from the first
two lines of Eqn. 7, which yields a relationship between
δ̃rn and ˜δFn. As detailed in Appendix A, writing this
relationship in the form of Eqn. 9 requires inverting a
Toeplitz marix (a matrix with constant diagonals), which
has a known inversion algorithm [20]. The result is

Srrnn′(ω) =
2αc̄n′

µ2

{(
1 + α

2πaD

)
n′ = n,

α
4πaD

1
|n−n′| n′ 6= n.

(10)

Here the cell diameter a appears because we cut off the
wavevector integrals at the maximal value k ∼ π/a, as
in [14]. This regularizes unphysical divergences caused
by the δ-correlated noises in the Langevin approxima-
tion in Eqn. 3. In deriving Eqn. 10, we have made the
first of our timescale assumptions, namely T � τ1 ≡
µ−1 +K/4πσD, where K ≡ α/µ is the equilibrium con-
stant, and σ ≡ a/2 is the cell radius. τ1 is the receptor
equilibration timescale: it is the time it takes for a signal
molecule to unbind from the receptors and diffuse away
from the cell into the bulk [21]. Its first term is the intrin-
sic receptor unbinding time, and its second term accounts
for rebinding events before the molecule diffuses far away
[22].

The second step is to calculate power spectra for xN
and yN using the last two lines of Eqn. 7,

SxxNN (ω) =
1

ν2 + ω2

[
β2SrNN (ω) +

〈
ξ̃∗N ξ̃N

〉]
,

SyyNN (ω) =
1

ν2

∑
nn′

M̃−1∗
Nn M̃

−1
Nn′

[
β2Srnn′(ω) + 〈χ̃∗nχ̃n′〉

]
,

SxyNN (ω) =
1

ν(ν + iω)

∑
n

M̃−1
Nnβ

2SrNn(ω), (11)

where M̃nn′ ≡ Mnn′ − i(ω/ν)δnn′ . Now taking the low-
frequency limit imposes our second timescale assumption,
namely T � τ2 ≡ 1/ν, where τ2 is the timescale of mes-
senger turnover by degradation. The noise spectra in
Eqn. 11 follow directly from Fourier transforming Eqn. 4
and using the steady state means of Eqn. 3 to eliminate
βr̄n, 〈

ξ̃∗N ξ̃N

〉
= 2νx̄N ,

〈χ̃∗nχ̃n′〉 = ν(Mnn′ ȳn′ +Mn′nȳn). (12)

The appearance of Mnn′ in Eqn. 12 is expected, since
the noise arises in reactions in every cell, and then prop-
agates to other cells via the same matrix as the means
[23]. Indeed, this simplifies the second line in Eqn. 11

for ω → 0, since then Mnn′ = M̃nn′(ω = 0) hits its
own inverse. The result is an expression for the vari-
ance (δ∆N )2 = (δxN )2 + (δyN )2 − 2CxyNN = [SxxNN (0) +
SyyNN (0)− 2SxyNN (0)]/T , namely

(δ∆N )2 =
β2

ν2

[
SrrNN (0)

T
+
∑
nn′

KN−nKN−n′
Srrnn′(0)

T

− 2
∑
n

KN−n
SrrNn(0)

T

]
+

2

νT
(x̄N +K0ȳN ) . (13)

Eqns. 5 and 13, together with Eqns. 6 and 10, give the
SNR = (∆̄N/δ∆N )2, which we do not write here for
brevity.

The SNR is compared with the result for the ideal-
ized detector (Eqn. 2) in Fig. 2. We see that whereas
the SNR for the idealized detector increases indefinitely
with the number of cells N , the SNR for the model with
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FIG. 2: Precision of gradient sensing with temporal
integration. Signal-to-noise ratio (SNR) vs. number of cells
N is shown for the idealized detector (Eqn. 2 with prefactor
1/π) and for our model with communication (Eqs. 5, 6, 10,
and 13). Whereas the SNR for the idealized detector increases
indefinitely, the SNR for the model with communication satu-
rates for N � n0. The saturation level is bounded from above
by the fundamental limit, Eqn. 14. As shown, the bound is
reached in the high-gain regime α/a3µ = β/ν = 100, where
intrinsic noise is negligible. Other parameters are a = 10 µm,
c̄N = 1 nM, g = 1 nM/mm, D = 50 µm2/s, µ = ν = 1 s−1,

n0 =
√
γ/ν = 10, and the integration time scale is T = 10 s.

communication and temporal integration saturates, as in
the no-integration case [4]. This is our first main finding:
communication leads to a maximum precision of gradi-
ent sensing, which a multicellular system cannot surpass
no matter how large it grows or how long it integrates.
The reason is that communication is not infinitely precise
over large lengthscales. In the next section, we make this
point clear by deriving a simple fundamental expression
for the maximum value of the SNR.

C. Fundamental limit to sensory precision

The saturating value of the SNR is obtained in the
limit of large N . In this limit, and when communica-
tion is strong (γ � ν), the kernel (Eqn. 6) reduces to

K(n, n0) ≈ e−n/n0/n0 [4]. Here n0 ≡
√
γ/ν sets the

lengthscale of the kernel and therefore sets the number
of neighboring cells with which the edge cell effectively
communicates. The limit γ � ν and our assumption
T � τ2 = 1/ν imply our third timescale assumption,
T � τ3 ≡ 1/γ, i.e. that the integration time is longer
than the timescale of messenger exchange from cell to
cell. Inserting the expression for K(n, n0) into Eqn. 5,
and approximating the sum as an integral in the large N
limit, the mean becomes ∆̄N ≈ (αβ/µν)(c̄N − c̄N−n0

) =
αβn0ag/µν. Inserting K(n, n0) into Eqn. 13 results in

products of the exponential with the 1/|n − n′| depen-
dence of the bound receptor power spectrum (Eqn. 10),
leading to sums of the type

∑
j e
−j/j, which we evaluate

in Appendix B. The result is

1

SNR
=

(
δ∆N

∆̄N

)2

&
ceff

π(n0ag)2aDT
, where (14)

ceff ≡ c̄N +
log n0

2n0
(c̄N−n0/2 − 2c̄N ), (15)

and T � {τ1, τ2, τ3}. Eqn. 14 is fundamental in the sense
that it does not depend on the details of the internal sen-
sory mechanism. Rather, it only depends on the proper-
ties of the external signal (c, g,D), the physical dimen-
sions (a), and the fact that information is integrated (T )
and communicated (n0) by the cells. The inequality re-
flects the fact that the righthand side contains additional
positive terms arising from the finite number of bound
receptors and intracellular molecules (see Appendix B).
These terms represent intrinsic noise and can in principle
be made arbitrarily small by increasing the gain factors
α/a3µ and β/ν, which dictate the internal molecule num-
bers. What remains in Eqn. 14 is the communicated ex-
trinsic noise, which arises unavoidably from the diffusive
fluctuations in the numbers of the ligand molecules being
detected. Eqn. 14 is shown to bound the exact SNR in
Fig. 2.

Comparing Eqn. 14 to the expression for the ideal-
ized detector (Eqn. 2), we see that the expressions are
very similar but contain two important differences. First,
whereas Eqn. 2 decreases indefinitely with N , Eqn. 14 re-
mains bounded by n0 for large N (see Fig. 2). Evidently,
a very large detector is limited in its precision to that of a
smaller detector with effective size n0. This limitation re-
flects the fact that reliable communication is restricted to
a finite lengthscale. Importantly, Eqn. 14 demonstrates
that this noise is present independently of the number of
intrinsic signaling molecules in the communication chan-
nel. Thus the fundamental sensory limit is affected not
only by the measurement process (as in BP theory), but
also unavoidably by the communication process.

The second important difference is that Eqn. 2 depends
on c̄N , whereas Eqn. 14 depends on the effective concen-
tration ceff , defined in Eqn. 15. ceff is a sum of the con-
centration measured by the local species, by the global
species, and the covariance between them, respectively.
The local species measures the concentration only within
its local vicinity, c̄N . However, the global species effec-
tively measures the concentration in the vicinity of n0

cells. This fact reduces the noise associated with this
term (and the covariance term) by the factor of n0 in the
denominator of Eqn. 15. Because intercellular molecular
exchange also competes with extracellular molecular dif-
fusion, not all of the measurements made by these n0 cells
are independent. Therefore, the reduction is tempered by
the log n0 factor in the numerator of Eqn. 15. This log
arises from the interaction of the e−n exchange kernel
with the 1/|n − n′| diffusion kernel (Appendix B). The
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net result is that, because of the correlations imposed by
externals diffusion, the number of independent measure-
ments grows sublinearly with the system size. Nonethe-
less, it does grow, and, correspondingly, in Eqn. 15 the
measurement noise in the global species decreases with
the communication lengthscale n0. Crucially, this means
that Eqn. 14 is dominated by the measurement noise of
the local species, i.e. the first term in Eqn. 15.

In deriving the precision of gradient sensing, we have
also derived the precision of concentration sensing by
communicating cells. Specifically, by focusing only on
the global species terms, and following the steps leading
to Eqn. 14, we get(

δyN
ȳN

)2

&
1

2πaeffDTceff
, (16)

where aeff ≡ an0/ log n0 and ceff ≡ c̄2N−n0
/c̄N−n0/2.

This expression has the same form as the BP limit,
(δc/c̄)2 ∼ 1/(aDT c̄). Indeed, in the absence of a gra-
dient, c̄n = c̄N is constant, and ceff → c̄N . Importantly,
however, the effect of communication remains present in
aeff : messenger exchange expands the effective detection
lengthscale by a factor n0, while ligand diffusion once
again tempers the expansion by log n0. The net result
is that communication reduces error by increasing the
effective detector size, aeff > a.

D. Optimal sensing strategy

In the previous section, we saw that the limit to the
precision of multicellular gradient sensing is dominated
by the measurement noise of the local species in the edge
cell (Eqns. 14 and 15). In contrast, the measurement
noise of the global species is reduced by the intercellular
communication. This finding raises an interesting ques-
tion: could the total noise be further reduced if the local
species were also exchanged between cells? To explore
this possibility, we extend the model in Eqns. 3 and 4
to allow for exchange of the local species at rate γx, and
we take γ → γy > γx for the global species. An imme-
diate consequence of this modification is that the signal
becomes ∆̄N ≈ αβ(ny−nx)ag/µν, where nx ≡ γx/ν and
ny = γy/ν. Thus the signal is reduced by local exchange,
since increasing γx decreases the difference ny−nx. This
is because the signal is defined by the difference between
the global and local readouts, and allowing for the local
species exchange makes the two readouts less different.
We thus anticipate that any useful local exchange rate
will satisfy γx � γy to maintain sufficiently high signal.
In this limit, we find that Eqn. 15 remains dominated
by the first term, even as local exchange reduces this
term according to cN → c̄N (log nx)/2nx. Eqn. 14 then
becomes

SNR .
2π(ag)2aDT

c̄N

(ny − nx)2nx
log nx

. (17)

Exchange rate ratio, γx/γy = n2
x/n

2
y

0 0.2 0.4 0.6 0.8 1

E
n
h
an

ce
m
en
t,

S
N
R

R
E
G
I/
S
N
R

L
E
G
I

0

1

2

3

4

5

6

7

8
ny = 5
ny = 10
ny = 15
LEGI

FIG. 3: Regional excitation–global inhibition (REGI).
Signal-to-noise ratio (SNR) is enhanced by allowing both mes-
sengers to be exchanged between cells. The optimal enhance-
ment over LEGI is substantial and occurs because exchange of
the local species reduces measurement noise, but also reduces
the signal. Parameters are as in Fig. 2, but with N = 100,
α/a3µ = β/ν = 5 and several values of ny ≡

√
γy/ν as indi-

cated.

For large ny, this expression has a maximum as a func-
tion of nx. The maximum arises due to a fundamental
tradeoff: exchange of the local species reduces the sig-
nal, but it also reduces the dominant local measurement
noise.

The optimal value n∗x depends on ny. Experiments in
epithelial cells suggest that the communication length-
scale ny is on the order of a few to ten cells [4]. In this
range, we find the optimum numerically from the exact
SNR, which comes from straightforwardly generalizing
Eqn. 13 (Appendix C). Fig. 3 shows that n∗x is about half
of ny for one specific set of parameters, leading to an op-
timal exchange rate ratio of γ∗x/γy = (n∗x/ny)2 ≈ 25%.
While the exact optimal ratio depends on the relative
strengths of different noises, and hence on the gains (see
Fig. 4 in Appendix C), the main finding is robust: a
multicellular system should exchange both antagonistic
messenger molecules, one at a fraction of the rate of the
other. We call this strategy regional excitation–global in-
hibition (REGI). Fig. 3 shows that the enhancement over
the one-messenger LEGI strategy can be substantial. For
example, with ny = 10 cells, the SNR is optimally en-
hanced by a factor of 5. With ny = 15, the enhancement
is almost 8-fold.

II. DISCUSSION

Cellular sensing of spatially inhomogeneous concentra-
tions is a fundamental biological computation, involved
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in a variety of processes in the development and behavior
of living systems. Like binocular vision and stereophonic
sound processing, it is a process where the sensing is
done by an array of spatially distributed sensors. Thus
the accuracy of sensing is limited in part by the phys-
ical properties of the biological machinery that brings
together the many spatially distributed measurements.
Understanding these limits is a difficult problem.

Here we solved this problem in the case where the com-
munication is diffusive, and one-dimensional distributed
measurements are used to calculate external concentra-
tion gradients within the LEGI paradigm. We allowed
for temporal integration, extending the results of Ref. [4].
Some of the features of the gradient sensing limit we de-
rived (Eqn. 14), such as the unbounded increase of the
SNR with the diffusion coefficient of the ligand or with
the integration time, carry over from the Berg-Purcell
theory of gradient sensing [12], which does not account
for communication. However, our most important find-
ing is that, in contrast to the BP theory, the growth
of the sensor array beyond a certain size stops increas-
ing the SNR. The effect is independent of the intrinsic
noise in the communication system and thus represents a
truly fundamental limitation of diffusive communication
for distributed sensing. In particular, it holds for mul-
ticellular systems, as well as for large individual cells.
Although we derived the limit for a linear signal pro-
file, we anticipate that the limit for a nonlinear profile
will be similar, Eqn. 14, but with a different effective
concentration ceff . It remains to be seen if similar lim-
its hold when the sensors are arranged in two- or three-
dimensional structures, or when concentration informa-
tion propagates super-diffusively, as is possible in wave-
based or Turing-type models of polarization establish-
ment [18]. Additionally, it will be important to relax
various assumptions of the model, such as allowing for
saturation of receptors or limiting the total number of
messengers, and coupling the model to the motility ap-
paratus to investigate how the improved sensory precision
affects downstream functions.

Our results illustrate two important features of tem-
poral averaging by distributed sensors. First, our deriva-
tion naturally reveals which timescales are relevant in
this process, namely receptor equilibration (τ1 = µ−1 +
K/4πσD), messenger turnover (τ2 = 1/ν), and messen-
ger exchange (τ3 = 1/γ). In principle, these timescales
could have depended on system-level properties, such
as the system size (N) or the communication length
(n0). Surprisingly, instead they depend only on single-
cell properties, meaning that efficient temporal averaging
is not slowed down by increasing the number of sensors.
Second, our results reveal the effects of over-counting due
to correlations between external and internal diffusion.
In both gradient sensing (Eqns. 14 and 15) and concen-
tration sensing (Eqn. 16), we see that the noise reduction
afforded by communication-based averaging is tempered
by a factor log n0. This log is not a mathematical cu-
riosity. Rather, it reflects the fact that not all measure-

ments communicated to a cell by its neighbors are inde-
pendent since the signal molecules also diffuse externally.
Coupling external diffusion with internal exchange intro-
duces correlations among measurements, which reduces
the benefit of internal averaging.

Another central prediction is that the gradient sens-
ing is improved by a system with two messengers, ex-
changed at different rates. We call this mechanism re-
gional excitation–global inhibition (REGI), a generaliza-
tion of the standard local excitation–global inhibition
(LEGI) model. Optimality of REGI follows directly from
the interplay between the ligand stochasticity and the
communication constraints. Therefore, REGI has not
been identified as an optimal strategy in previous stud-
ies that neglected either of these two effects. However,
evidence for REGI may already exist in large gradient-
sensing cells, where activated receptor complexes, which
diffuse in the membrane at a rate ∼10−100 times slower
than similar cytosolic molecules [24], may act as the re-
gional messengers.

REGI emerged from maximizing the SNR in our sys-
tem, which revealed the optimal rate ratio γx/γy. Maxi-
mization of the SNR also implies that the optimal value
of γy (or ny) is infinity, since the SNR grows indefinitely
with ny (see Fig. 3). Infinite ny corresponds to averaging
over as large a distance as possible. Such a strategy is
only optimal here because the concentration profile is lin-
ear, with constant gradient g. In contrast, more physical
nonlinear profiles (e.g. exponential, power-law, randomly
varying, or profiles with extrema) have spatially vary-
ing g. In these cases, if the size of the group of cells is
larger than the correlation length of g, then an infinite
ny would average out the signal together with the noise,
which would reduce the SNR. In contrast, a finite ny
would allow a subset of cells to detect the local gradient
in their vicinity, which is an essential task in morpho-
logical processes such as tissue branching and collective
migration.

REGI can be interpreted as performing a spatial
derivative. Specifically, the two-lobed filter K(n, nx) −
K(n, ny) reports the difference in concentrations mea-
sured over distances nx and ny near a given detector,
and the values nx and ny depend on the properties of
the environment. Thus REGI is similar to the temporal
differentiation in E. coli chemotaxis. Indeed, the tempo-
ral filter of the E. coli sensory module is also two-lobed,
with the short and long timescales set by ligand statis-
tics and rotational diffusion, respectively [25]. Thus, for
both spatial and temporal filtering, the choice of the two
optimal length- or timescales is determined by matching
the filter to the statistical properties of the signal and
the noise [26], which is understood well for E. coli [25].

Interpreting the REGI model as a spatiotemporal fil-
ter suggests experiments that would identify if a certain
biological system employs this mechanism. Such exper-
iments would involve concentration profiles that differ
substantially from steady-state linear gradients. For ex-
ample, subjecting cells to a concentration profile with a
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spatially localized maximum would allow one to measure
both γx and γy by observing the response of cells near
the concentration peak as a function of the peak width.
Alternatively, one can subject cells to a spatiotemporally
localized concentration pulse and observe if a response a
certain distance away from the pulse exhibits the signs of
only inhibition (LEGI, one messenger), or inhibition and
excitation on different scales (REGI, two messengers).
Understanding fundamental sensory limits for diffusive
communication in gradient sensing opens up possibilities
to propose and analyze these and other related experi-
ments.

Acknowledgments

We thank Matt Brennan for useful discussions. AM
and IN were supported in part by the James S. McDon-
nell Foundation grant 220020321, and the Human Fron-
tiers Science Program grant RGY0084/2011. IN was fur-
ther supported by the NSF grant PoLS-1410978. AL
was supported in part by NIH grants CA155758 and
GM072024, by NSF grant PoLS-1410545, and by the
Semiconductor Research Corporation’s SemiSynBio pro-
gram.

[1] Song L, et al. (2006) Dictyostelium discoideum chemo-
taxis: threshold for directed motion. Eur J Cell Biol
85:981–9.

[2] Rosoff WJ, et al. (2004) A new chemotaxis assay shows
the extreme sensitivity of axons to molecular gradients.
Nat Neurosci 7:678–82.

[3] Malet-Engra G, et al. (2015) Collective cell motility pro-
motes chemotactic prowess and resistance to chemorepul-
sion. Curr Biol 25:242–250.

[4] Ellison D, et al. (2015) Cell-cell communication can en-
hance the effect of shallow gradients of cues guiding cell
growth and morphogenesis. Submitted.

[5] Friedl P, Gilmour D (2009) Collective cell migration in
morphogenesis, regeneration and cancer. Nat Rev Mol
Cell Biol 10:445–457.
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Appendix A: Power spectrum of the bound receptor number

The dynamics of receptor binding are given in Fourier space by the first two lines of Eqn. 7,

−iωδ̃c = −Dk2δ̃c+ iω
∑
n

δ̃rne
i~k·~xn , (A1)

−iωδ̃rn = αδ̂c(~xn, ω)− µδ̃rn + αc̄n ˜δFn, (A2)

where

δ̂c(~x, ω) ≡
∫
d3k (2π)−3δ̃c(~k, ω)e−i

~k·~x. (A3)

We solve Eqn. A1 for δ̃c and, using Eqn. A3, insert it into Eqn. A2 to obtain

{µ− iω[1 + αΣ(ω)]}δ̃rn − iωα
∑
n′ 6=n

V (|~xn − ~xn′ |, ω)δ̃rn′ = αc̄n ˜δFn, (A4)

where

Σ(ω) ≡
∫

d3k

(2π)3

1

Dk2 − iω
=

1

2π2

∫ ∞
0

dk
k2

Dk2 − iω
, and (A5)

V (x, ω) ≡
∫

d3k

(2π)3

e−i
~k·~x

Dk2 − iω
=

1

2π2x

∫ ∞
0

dk
k sin(kx)

Dk2 − iω
(A6)

are the “self-energy” and “interaction potential” between cells mediated by diffusion, respectively [14]. The simpli-
fications in Eqns. A5 and A6 come from writing the volume element d3k = k2 sin θ dk dθ dφ in spherical coordinates

aligned with ~x, such that ~k · ~x = kx cos θ.
We are interested in the low-frequency limits of Σ(ω) and V (x, ω). V (x, 0) = 1/(4πDx) is finite, whereas Σ(0)

diverges. The divergence stems from the delta functions in the dynamical equations, which model the cells as point
sources. As in [14], we regularize the divergence by introducing a cutoff Λ ∼ π/a at large k to account for the fact

that cells have finite extent a, making Σ(0) ∼ (2π2)−1
∫ Λ

0
dk/D = 1/(2πaD). This models cells as spheres of diameter

a, but the exact shape of the cell will not be important for the limits we take. These expressions allow us to write
Eqn. A4 as

N∑
n′=1

Lnn′ δ̃rn′ =
αc̄n
µ

(1 + iωτ1) ˜δFn, (A7)

where

τ1 ≡
1

µ
+

α/µ

2πaD
, (A8)

Lnn′ ≡ δnn′ +
z(1− δnn′)

|n− n′|
, (A9)

z ≡ −iω α/µ

4πaD
. (A10)

In writing Eqn. A7, we have assumed that ωτ1 is small. This assumption is valid for integration times T = 2π/ω
much longer than τ1. The quantity τ1 is the receptor equilibration time: it is the time it takes for a signal molecule
to unbind from the receptors and diffuse away from the cell into the bulk [21]. Its first term µ−1 is the intrinsic
receptor unbinding time, and its second term K/4πσD (where K = α/µ is the equilibrium constant and σ = a/2 is
the cell radius) accounts for rebinding events that occur before the molecule diffuses away from the cell completely
[22]. Either term can dominate: the first term dominates if the intrinsic association rate α is much smaller than
the diffusion-limited association rate 4πσD, because then the molecule rarely rebinds. Conversely, the second term
dominates if α is much larger than 4πσD, because then rebinding is frequent, and comprises most of the escape time.
We see from Eqns. A8 and A10 that |z| < ωτ1; therefore, we also treat z as a small parameter.

Solving Eqn. A7 for δ̃rn requires inverting the matrix Lnn′ . This matrix is a Toeplitz matrix (a matrix with constant
diagonals), which has a known inversion algorithm [20]. Since Lnn′ is also symmetric, it is completely specified by its
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first row [1 ρ1 ρ2 . . . ρN−1]. The inversion is performed recursively as follows. First one introduces N − 1 scalars h1,
h2, . . . , hN−1 and N − 1 column vectors ~q(1), ~q(2), . . . , ~q(N−1). These are initialized as

h1 = 1− (ρ1)2, ~q(1) = [−ρ1], (A11)

and updated as

hk+1 = hk −
(ζk)2

hk
, ~q(k+1) =

[
~q(k) − ζk~̂q(k)/hk
−ζk/hk

]
, (A12)

where ζk ≡ ρk+1 +
∑k
`=1 ρ`q̂

(k)
` , and ~̂q is ~q with the elements in reverse order. Then the inverse is written in terms of

the final quantities hN−1 ≡ H and ~q(N−1) ≡ ~Q. The upper left element is

L−1
11 = 1/H, (A13)

the rest of the first row and column are

L−1
i+1,1 = L−1

1,i+1 = Qi/H (1 ≤ i ≤ N − 1), (A14)

and the diagonals are calculated recursively from the first row and column as

L−1
i+1,j+1 = L−1

ij + (QiQj − Q̂iQ̂j)/H (1 ≤ {i, j} ≤ N − 1). (A15)

We now apply this algorithm to Eqn. A9, keeping only terms up to first order in the small quantity z. From Eqn.
A9 we have ρj = z/j. The initial values are

h1 = 1− z2 ≈ 1, ~q(1) = [−z]. (A16)

Using ζ1 = z/2 + (z)(z) ≈ z/2, the first recursive step gives

h2 = 1− (z/2)2

1
≈ 1, ~q(2) =

[
−z − (z/2)(−z)/(1)
−(z/2)/(1)

]
≈
[
−z
−z/2

]
. (A17)

Continuing the recursion establishes the general formulas

hk = 1, ~q
(k)
j = −z/j (j ≤ k), (A18)

from which we extract the final values,

H = 1, Qj = −z/j. (A19)

These values immediately provide the first row and column of the inverse according to Eqns. A13 and A14. Then
noting that the second term on the right hand side of Eqn. A15 is second order in z, that equation implies that the
diagonals of the inverse are constant. We therefore have the inverse to first order in z,

L−1
nn′ = δnn′ − z(1− δnn′)

|n− n′|
. (A20)

The inverse allows us to solve Eqn. A7 for δ̃rn,

δ̃rn =

N∑
n′=1

Gnn′ ˜δFn′ (A21)

where

Gnn′(ω) =
α

µ
(1 + iωτ1)L−1

nn′ c̄n′ =


αc̄n
µ

[
1 + iωµ

(
1 + α

2πaD

)]
n′ = n,

α2ωc̄n′
4πaDµ2|n−n′|

[
i− ω

µ

(
1 + α

2πaD

)]
n′ 6= n,

(A22)

is the generalized susceptibility. The fluctuation-dissipation theorem then gives the power spectrum,

Srrnn′(ω) =
2

ω
Im[Gnn′(ω)] =

2αc̄n′

µ2

{(
1 + α

2πaD

)
n′ = n,

α
4πaD

1
|n−n′| n′ 6= n,

(A23)

as in Eqn. 10.
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Appendix B: SNR in the many-cell, strong-communication limit

The variance of the readout is given by Eqn. 13,

(δ∆N )2 =
β2

ν2

SrrNN (0)

T
+

N∑
n,n′=1

KN−nKN−n′
Srrnn′(0)

T
− 2

N∑
n=1

KN−n
SrrNn(0)

T

+
2

νT
(x̄N +K0ȳN ) , (B1)

where x̄N = αβc̄N/µν and ȳN = αβ
∑N−1
n=0 Knc̄N−n/µν. In the limit of many cells (N � 1) and strong communication

(γ � ν), the kernel takes the approximate form

Kn ≈
1

n0
e−n/n0 , (B2)

where n0 ≡
√
γ/ν � 1 is the communication lengthscale. Using Eqns. A23 and B2, we evaluate Eqn. B1 term by

term.
The first, fourth, and fifth terms in Eqn. B1 are straightforward,

β2

ν2

SrrNN (0)

T
=

2

µT

αβ2

µν2
c̄N +

1

πaDT

α2β2

µ2ν2
c̄N , (B3)

2

νT
x̄N =

2

νT

αβ

µν
c̄N , (B4)

2

νT
K0ȳN =

2

νT

αβ

µν

c̄N−n0

n0
. (B5)

In the last equation we use the limit of large N to approximate the sum in ȳN as an integral,

N−1∑
n=0

Knc̄N−n ≈
∫ ∞

0

dn
1

n0
e−n/n0(c̄N − nag) = c̄N − n0ag = c̄N−n0 . (B6)

The third term in Eqn. B1 we split in two,

− 2
β2

ν2

N∑
n=1

KN−n
SrrNn(0)

T
= −2

β2

ν2

[
K0

SrrNN (0)

T
+

N−1∑
n=1

KN−n
SrrNn(0)

T

]
. (B7)

The first of these is like Eqn. B3

− 2
β2

ν2
K0

SrrNN (0)

T
= − 4

µT

αβ2

µν2

c̄N
n0
− 2

πaDT

α2β2

µ2ν2

c̄N
n0
. (B8)

The second evaluates to

− 2
β2

ν2

N−1∑
n=1

KN−n
SrrNn(0)

T
= −2

β2

ν2

N−1∑
n=1

1

n0
e−(N−n)/n0

2α

µ2T
[c̄N − (N − n)ag]

α

4πaD

1

N − n
(B9)

= − 1

πaDT

α2β2

µ2ν2

 c̄N
n0

N−1∑
j=1

e−j/n0

j
− ag

n0

N−1∑
j=1

e−j/n0

 (B10)

≈ − 1

πaDT

α2β2

µ2ν2

[
c̄N
n0

log n0 − ag
]
, (B11)

where the last step again uses the integral approximation for large N . In particular, we have written

N−1∑
j=1

e−j/n0

j
≈
∫ ∞

1

dj
e−j/n0

j
= Γ(0, 1/n0) ≈ log n0 − γe ≈ log n0, (B12)
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using the small-argument limit of the upper incomplete Gamma function. The last step assumes that log n0 is much
larger than the Euler-Mascheroni constant γe ≈ 0.577. Numerically, we have checked that Eqn. B12 is valid for
5 . n0 � N . Altogether, the third term in Eqn. B1 is then

− 2
β2

ν2

N∑
n=1

KN−n
SrrNn(0)

T
= − 4

µT

αβ2

µν2

c̄N
n0
− 2

πaDT

α2β2

µ2ν2

[
c̄N
n0

+
c̄N
2n0

log n0 −
ag

2

]
(B13)

≈ − 4

µT

αβ2

µν2

c̄N
n0
− 2

πaDT

α2β2

µ2ν2

log n0

2n0
c̄N , (B14)

where the second step uses c̄N − agn0/2 = c̄N−n0/2 < c̄N and assumes log n0 � 2.
The second term in Eqn. B1 we also split in two,

β2

ν2

N∑
n,n′=1

KN−nKN−n′
Srrnn′(0)

T
=
β2

ν2

 N∑
n=1

K2
N−n

Srrnn(0)

T
+

N∑
n=1

∑
n′ 6=n

KN−nKN−n′
Srrnn′(0)

T

 . (B15)

The first of these is straightforward to evaluate with the integral approximation in Eqn. B6,

β2

ν2

N∑
n=1

K2
N−n

Srrnn(0)

T
=

β2

ν2

N−1∑
j=0

1

n2
0

e−2j/n0
2αc̄N−j
µ2T

(
1 +

α

2πaD

)
(B16)

≈ 2

µT

αβ2

µν2

c̄N−n0/2

2n0
+

1

πaDT

α2β2

µ2ν2

c̄N−n0/2

2n0
. (B17)

The second can be evaluated in two parts,

β2

ν2

N∑
n=1

∑
n′ 6=n

KN−nKN−n′
Srrnn′(0)

T
=

1

2πaDT

α2β2

µ2ν2

[
c̄N
n2

0

N−1∑
j=0

∑
j′ 6=j

e−(j+j′)/n0

|j − j′|︸ ︷︷ ︸
A

−ag
n2

0

N−1∑
j=0

∑
j′ 6=j

j′e−(j+j′)/n0

|j − j′|︸ ︷︷ ︸
B

]
. (B18)

Notice that B = −∂uA/2, where u ≡ 1/n0, so that we only need to evaluate A. We split A into two equal components,

A =

N−1∑
j=0

j−1∑
j′=0

e−(j+j′)/n0

j − j′
+

N−1∑
j=0

N−1∑
j′=j+1

e−(j+j′)/n0

j′ − j
(B19)

= 2

N−1∑
j=0

j−1∑
j′=0

e−(j+j′)/n0

j − j′
, (B20)

and rewrite it in terms of k = j + j′ and ` = j − j′,

A = 2

N−1∑
`=1

2(N−1)−`∑
k=`,`+2,`+4,...

e−k/n0

`
. (B21)

We approximate with integrals for large N , accounting for the fact that k has support on only half of the integers in
its range,

A ≈ 2

∫ N

1

d`
1

2

∫ 2(N−1)−`

`

dk
e−k/n0

`
(B22)

= n0

∫ N

1

d`
e−`/n0

`
− n0e

−2N

∫ N

1

d`
e`/n0

`
. (B23)

The first integral is approximately log n0 by Eqn. B12. The second integral evaluates to Ei(N/n0)− Ei(1/n0), where
Ei is the exponential integral function, whose large- and small-argument limits are Ei(N/n0) ≈ eN/n0/(N/n0) and
Ei(1/n0) ≈ − log n0, respectively. Thus, the second term in Eqn. B23 vanishes exponentially with N , and we have

A = n0 log n0, (B24)

B =
n2

0

2
(1 + log n0) ≈ n2

0

2
log n0, (B25)
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making the term in brackets in Eqn. B18 equal to (c̄N − agn0/2)(log n0)/n0 = (c̄N−n0/2 log n0)/n0. Altogether, the
second term in Eqn. B1 is then

β2

ν2

N∑
n,n′=1

KN−nKN−n′
Srrnn′(0)

T
=

2

µT

αβ2

µν2

c̄N−n0/2

2n0
+

1

πaDT

α2β2

µ2ν2

[
c̄N−n0/2

2n0
+

log n0

2n0
c̄N−n0/2

]
(B26)

≈ 2

µT

αβ2

µν2

c̄N−n0/2

2n0
+

1

πaDT

α2β2

µ2ν2

log n0

2n0
c̄N−n0/2, (B27)

where the second step assumes log n0 � 1.
Finally, collecting the terms in Eqns. B3-B5, B14, and B27, the variance in Eqn. B1 becomes

(δ∆N )2 =

(
αβ

a3µν

)2
[

a2

πDT

(
c̄N +

log n0

2n0
c̄N−n0/2 − 2

log n0

2n0
c̄N

)
a3︸ ︷︷ ︸

Extrinsic noise from c, propagated to x and y

+
2

µT

a3µ

α

(
c̄N +

c̄N−n0/2

2n0
− 2

c̄N
n0

)
a3︸ ︷︷ ︸

Intrinsic noise in r, propagated to x and y

+
2

νT

a3µ

α

ν

β
(c̄N ) a3︸ ︷︷ ︸

Intrinsic noise in x

+
2

νT

a3µ

α

ν

β

(
c̄N−n0

n0

)
a3︸ ︷︷ ︸

Intrinsic noise in y

]
. (B28)

The last line contains the intrinsic noise from xN and yN . For example, the first term in this line is (δxN )2 =
(2/νT )(αβc̄N/µν) = 2x̄N/νT ; the relative noise (δxN/x̄N )2 = 2/νT x̄N then decreases with the number of molecules
x̄N × νT that are turned over in time T , as expected for intrinsic counting noise. The second term in this line is for y
and is similar, except that since the global species is exchanged over roughly n0 cells, more molecules are counted and
the noise is reduced by a factor n0. The second line contains the intrinsic noise in r, propagated to x and y. The third
line contains the noise in c, propagated to x and y, which we deem extrinsic, since it originates in the environment
and is not under direct control of the cells.

Importantly, the intrinsic noise terms in Eqn. B28 are reducible by increasing the numbers of receptors and local and
global species molecules. These molecule numbers are set by the gain factors r̄N/a

3c̄N = α/a3µ and x̄N/r̄N = β/ν,
and indeed, we see that the second and third lines in Eqn. B28 vanish as the gain factors grow large. In this limit we
are left with only the lower bound set by the extrinsic noise,

(δ∆N )2 ≥
(
αβ

µν

)2
1

πaDT

(
c̄N +

log n0

2n0
c̄N−n0/2 − 2

log n0

2n0
c̄N

)
. (B29)

Dividing by the square of the mean ∆̄N = αβn0ag/µν produces Eqns. 14 and 15.

Appendix C: Exact SNR for regional excitation–global inhibition (REGI)

In the REGI strategy, both messengers X and Y are exchanged between cells, at rates γx and γy, respectively. This
results in a straightforward generalization of the expression for the signal-to-noise ratio (SNR). Specifically, the mean
becomes (compare to Eqns. 5 and 6 in the main text)

∆̄N =
αβ

µν

(
N−1∑
n=0

Kx
n c̄N−n −

N−1∑
n=0

Ky
nc̄N−n

)
, (C1)

where now there are two communication kernels,

Kx
n =

∑N−n−1
j=0

(
N−n−1+j

2j

)
(ν/γx)j∑N−1

`=0

(
N+`
2`+1

)
(ν/γx)`

, (C2)

Ky
n =

∑N−n−1
j=0

(
N−n−1+j

2j

)
(ν/γy)j∑N−1

`=0

(
N+`
2`+1

)
(ν/γy)`

. (C3)
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FIG. 4: Dependence of the optimal exchange rate ratio on system parameters in the regional excitation–
global inhibition (REGI) strategy. The signal-to-noise ratio (SNR) has a maximum at a particular rate ratio γ∗

x/γy, which
increases as a function of either gain factor, (A) α/a3µ, or (B) β/ν. Parameters are a = 10 µm, c̄N = 1 nM, g = 1 nM/mm,

D = 50 µm2/s, T = 10 s, µ = ν = 1 s−1, N = 100, and ny =
√
γ/ν = 10. In A, β/ν = 5, and α/a3µ is varied as indicated. In

B, α/a3µ = 5, and β/ν is varied as indicated.

The variance becomes (compare to Eqn. 13)

(δ∆N )2 =
β2

ν2

[∑
nn′

(
Kx
N−nK

x
N−n′ +Ky

N−nK
y
N−n′ − 2Kx

N−nK
y
N−n′

) Srrnn′(0)

T

]
+

2

νT
(Kx

0 x̄N +Ky
0 ȳN ) , (C4)

where the bound receptor power spectrum Srrnn′(ω) remains the same as in Eqn. 10 (or equivalently Eqn. A23). The
SNR is then (∆̄N/δ∆N )2.

The SNR has a maximum as a function of the rate ratio γx/γy. The location of the maximum γ∗x/γy must lie between
0 and 1. At γx/γy = 0, the X messenger is not exchanged, and we recover the SNR of the local excitation–global
inhibition (LEGI) strategy, which is a limiting case of REGI. At γx/γy = 1, there is no difference between X and Y,
and the signal (and therefore the SNR) is 0. The exact location of γ∗x/γy depends on factors that are specific to the
system, e.g. the concentration profile c̄n, the environmental and system parameters, and the measurement location
(n = 1 vs. n = N).

We illustrate the dependence of γ∗x/γy on particular system parameters, namely the gain factors α/a3µ and β/ν.
For this, Fig. 4 shows the dependence on SNR on γx/γy as we vary the gain factors α/a3µ (A) and β/ν (B). In both
cases, we see that the optimal rate ratio γ∗x/γy increases with increasing gain. This is because increasing either gain
factor increases the number of internal messenger molecules. With more molecules, the system can afford to increase
γx while maintaining the same difference in molecule number ∆N in the Nth cell. The increase in γx enhances the
spatial averaging by the X messenger, and thus reduces the noise in the estimate of c̄N . Therefore, we see in Fig. 4
that the maximal SNR occurs at a higher γ∗x value as either gain is increased.
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