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Photoreceptors of Drosophila compound eye employ a G protein-
mediated signaling pathway that transduces single photons into
transient electrical responses called ‘‘quantum bumps’’ (QB). Al-
though most of the molecular components of this pathway are
already known, the system-level understanding of the mechanism
of QB generation has remained elusive. Here, we present a quan-
titative model explaining how QBs emerge from stochastic non-
linear dynamics of the signaling cascade. The model shows that the
cascade acts as an ‘‘integrate and fire’’ device and explains how
photoreceptors achieve reliable responses to light although keep-
ing low background in the dark. The model predicts the nontrivial
behavior of mutants that enhance or suppress signaling and
explains the dependence on external calcium, which controls
feedback regulation. The results provide insight into physiological
questions such as single-photon response efficiency and the ad-
aptation of response to high incident-light level. The system-level
analysis enabled by modeling phototransduction provides a foun-
dation for understanding G protein signaling pathways less ame-
nable to quantitative approaches.

G protein-coupled receptor pathway � phototransduction �
quantitative modeling

S ignal transduction is one of the fundamental functions of the
cell. It invariably involves a protein receptor specialized for a

certain stimulus and a cascade of molecular transformations typi-
cally leading to a macroscopic change in the state of the cell.
Understanding signal transduction requires more than knowing the
molecular components of the pathway. One also needs to under-
stand sensitivity, noise, spatial localization, dynamic range and
adaptation—a plethora of quantitative features—that characterize
the system-level function of the signaling pathway. Drosophila
phototransduction is a signaling system of unmatched experimental
tractability. It offers a readily controllable stimulus (light) and a
readily accessible output (electric depolarization that can be accu-
rately measured for single cells) as well as access to numerous
mutants with interesting phenotypes and a possibility to perturb the
system by manipulating the ionic composition of the buffer solution.
This makes possible a quantitative experimental characterization
and provides a unique opportunity to develop and test quantitative
modeling approaches. Below, after describing Drosophila photo-
transduction, we present, analyze, and discuss a quantitative model
of this pathway and its dynamic behavior.

The single-photon response of a Drosophila photoreceptor cell
involves coordinated opening of 15–20 ion channels (1), which
corresponds to �15 pA inward current for 20 ms (Fig. 1a).
Individual quantum bumps (QBs) under physiological conditions
have a largely stereotypic shape (1), but they occur with a variable
delay (or ‘‘latency’’) after light stimulus (Fig. 1a), suggesting that
phototransduction cascade transforms single-photon absorption
into a regenerative, nonlinear depolarization event.

The major biochemical steps of the signaling cascade underlying
invertebrate phototransduction (2–7) are shown in Fig. 1b. Absorp-
tion of a photon by rhodopsin (R) leads to formation of the active
state (metarhodopsin, M*) that catalyzes nucleotide exchange on

the �-subunit of a heterotrimeric Gq protein. Gq�-GTP then
activates a PLC� molecule that catalyses hydrolysis of PIP2 and
releases diacylglycerol, DAG (6). DAG causes coordinated opening
of TRP and TRP-like (TRPL) channels (4, 7–9); which results in an
influx of Na� and Ca2� ions and the transient depolarization of the
cell membrane called the QB. Shutoff of the activated intermedi-
ates consists of several reactions: (i) M* deactivation by binding of
arrestin—the inhibitory protein (10, 11); (ii) deactivation of PLC�
after GTP hydrolysis in the active Gq�-GTP-PLC� complex; and
(iii) degradation of DAG initiated by DAG kinase (4).

Ca2� plays a key role in photoreceptor function. Ca2� influx
during a QB causes a 1,000-fold transient increase of internal
concentration [Ca2�]in (12, 13) [in a tiny microvillus where signaling
takes place (2)] that drives a sequential positive and negative
feedback determining the shape and size of the QB (1). The
threshold for positive feedback is lower than that for negative
feedback, so that initial elevation of [Ca2�]in facilitates opening of
more TRP channels and increases the rate of Ca2� influx. At higher
[Ca2�]in, negative feedback drives rapid closing of TRP channels
and shut-off of the PLC� activity, thereby terminating the response
(2). The molecular details of the positive feedback are still un-
known. The negative feedback is mediated by several Ca2�-
dependent processes, including phosphorylation of several proteins
by Ca2�–calmodulin-dependent protein kinase (CamK) (2, 14, 15)
and by eye-specific protein kinase C (ePKC) (16, 17).

Results
Model Formulation. To understand quantitatively how a QB is
generated, we formulated a theoretical model that describes the key
processes of phototransduction. It is most easily rendered in terms
of kinetic equations (see Methods). However, because many of the
participating molecules occur in small numbers, stochastic fluctu-
ation in numbers of activated molecules cannot be neglected. Thus,
we reinterpreted the system of kinetic equations as a master
equation (18) describing the probability of finding a given number
of molecules of a certain type [see supporting information (SI)
Text]. The stochastic model is then studied by using numerical
simulations based on the Gillespie algorithm (19). The model
parameters were obtained by fitting to three features of the WT
QB: the average waveform, the mean latency, and the coefficient of
variation of the QB amplitude (Fig. 1b and SI Text) and by imposing
two additional constraints requiring that the average number of
PLC* molecules involved in generating a WT QB is close to five (3)
and that response at [Ca2�]ex � 0 is weak compared with a normal
QB. The choice of parameters, their role in controlling particular
features of the response, and the sensitivity analysis for the fit are
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discussed at length in SI Text; see also Fig. S3. However, the results
presented here regarding the mechanism of QB generation are not
limited to any particular choice of parameters. Instead, our analysis
identifies the conditions necessary for QB generation which, pro-
vided certain essential features of the cascade (such as a rapid
positive feedback), are satisfied in a wide region of parameter space.

An important issue in developing the model is to properly
represent the still incomplete knowledge of certain molecular
details in fly phototransduction. First, although PLC� activity and
DAG is clearly required, the exact molecular mechanism of TRP
channel activation is still uncertain (8). Thus, in the model, we
simply refer to the activator of channels by a variable A*, which is
produced upon PLC� activation and degraded by the Ca2�-
dependent inhibitory processes. Second, two kinds of TRP channels
operate in Drosophila photoreceptors but for simplicity, we lump
these together in the variable B. Following the convention that
starred species are the activated states, open channels are referred
to as B*. Finally, several Ca2�-dependent inhibitory mechanisms
likely operate in the photoreceptor cell. In the absence of more
detailed information, here, we combine these processes together in
a single dynamical variable, C*. These choices obviously ignore
some of the system complexity, but they provide a practical
approximation for assessing the experimental consistency of the
model. We can think of A*, B* and C* variables as phenomeno-
logical outputs of three essential ‘‘modules’’ comprising the cascade:
(i) an ‘‘activation module’’ downstream of PLC� but upstream of
the channels, (ii) a ‘‘bump-generation module’’ including channels
and the Ca-mediated positive feedback and (iii) the Ca2�-
dependent ‘‘negative-feedback module’’ (Fig. 1b).

Fig. 2a shows that QB generation in the model is a dynamic
‘‘integrate-and-fire’’ process. In the initial period after M* activa-
tion and before channels have opened, Ca2�-dependent inhibition
is absent and A* is relatively stable. Therefore, PLC� activity
(PLC*) makes A* rise steadily until the channels open. What
happens next depends on the level of A* at the moment when the
first channel opens. If A* at that point exceeds a certain threshold
level (AQB, defined below), opening of a single channel is likely to
trigger a regenerative burst of channel opening, a process that is

facilitated by the positive feedback, see Eq. 6 in Methods. On the
other hand, if A* stays below the threshold when the first channel
opens, this burst is unlikely to ignite. This condition for reliable QB
generation is found to be satisfied in a specific region of the
PLC*–[Ca2�]ex variable plane, shown in Fig. 2c (see SI Text and Fig.
S1 for details). The region is delineated on one side (the blue line
in Fig. 2c) by the requirement that [Ca2�]ex is sufficiently high for
the Ca2� influx through a single open channel to enable positive
feedback and on the other side (the red line) by the threshold
condition AT � AQB. AT is the typical level of A* at the moment of
the first channel opening, and AQB is defined as the level of A* at
which the probability of opening the second channel equals the
probability of closing the first. AQB depends on the strength of
positive feedback and increases with decreasing [Ca2�]ex because
lower [Ca2�]ex weakens positive feedback. AT, on the other hand, is
determined by the PLC*-dependent rate of A* production: The
faster A* is produced, the higher it is when the first channel opens.
The AT � AQB line (red in Fig. 2c) corresponds to a cross-over
between a regime where most channel-opening events fail to ignite
a high-amplitude response to the regime where such failures are
rare, and QBs are reliably generated.

In the model, the WT single-photon event typically generates
PLC* �5 yielding QBs with a probability of �0.8. On the other
hand we note that PLC* � 1 even at physiological Ca2� level is not
sufficient for reliable QBs generation—a fact to which we shall
return in discussing mutant phenotypes (Fig. 2c). For [Ca2�]ex
below the blue line in Fig. 2c, the positive feedback is too weak to
trigger a QB and B* follows A* adiabatically resulting in a response
with �3-fold lower peak amplitude and 5-fold slower time course.
The cross-over region itself is more complex because it corresponds
to the ‘‘excitable system’’ (20) behavior (described in SI Text and
Figs. S1 and S2), where QB generation depends strongly on
fluctuations in channel opening. As a result, the model predicts
enhanced variability in the amplitude of the response at the edge of
the QB domain. The cross-over behavior can be observed experi-
mentally by systematically reducing Ca2� concentration in the bath
solution (1).

What determines QB shape and the variability in latency after
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Fig. 1. QBs and the phototrans-
duction cascade. (a) QBs, generated
by a brief flash of dim light and
recorded by using whole-cell volt-
age clamp from isolated WT photo-
receptor cells. The traces show a
brief (�20 ms) and intense (�20 pA)
inward current. Significant variabil-
ity is observed, in particular in la-
tency, the histogram of which is
shown at the top. (b) Simplified
view of the molecular mechanism
of invertebrate phototransduction.
Absorption of a photon by rhodop-
sin, via G proteins, activates PLC�

(input module), which generates
DAG, which directly or indirectly
acts as the activator A* (module A)
leading to the opening of TRP chan-
nels (B*). The opening of channels is
facilitated by the rapid influx of
Ca2� that acts as a positive feedback
(fp) comprising module B. At higher
concentration, Ca2� acts via a Ca-
binding intermediary (C*) provid-
ing the negative feedback (fn) in
module C, which terminates the QB.
(c) The average profile of aligned
QBs. The black curve shows the av-
erage of 83 measured QBs, the red
one is the model fit.
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photon absorption? In the model, the stochastically varying delay in
the appearance of the QBs (Fig. 2b) is mostly due to the trial-to-trial
variability in the time it takes for A* to build-up to AT � AQB after
photon absorption. Variability in latency is significant because of
the small number of activated PLC*s but also because of the
variation in the actual time when first channel opens. As to QB
amplitude and duration, these parameters are determined by the
rise of the inhibitor C* upon channel opening, which provides
the feedback signal to deactivate both A*, B*, and M*, terminating
the bump. A calculation of QB amplitude as a function of PLC* and
[Ca2�]ex is given in the SI Text. Interestingly, C* decays slowly after
the QB occurs, predicting a period after a QB during which further
signaling responses are suppressed. Such a ‘‘refractory period’’ has
been proposed to play a critical role in allowing time for activated
upstream intermediates such as metarhodopsin to shut off before
the system returns to the resting dark state (2), a process that
extends the dynamic range of vision.

Mutant Behaviors. A valuable test of the QB model is its ability to
predict mutant phenotypes that nontrivially alter system behavior.
For example, what happens if metarhodopsin fails to deactivate,
and the system stays above threshold for quantum bump generation
as C* falls? Under conditions of persistent M* and, therefore, PLC*
activation, the integrate-and-fire behavior in our model leads to a
‘‘relaxation oscillation,’’ where ramps of A* accumulation leading to
QBs are followed by refractory periods during which inhibition, C*,
is gradually relaxed (see Fig. 3a). Because of the stochastic nature
of the QB production, the QB ‘‘train’’ generated by this relaxation
oscillator is far from periodic: The latency and the amplitude of
secondary QBs depends on the exact C* level left behind by the
preceding QB. Thus, in the absence of M* deactivation, the model
predicts a train of irregularly spaced and sized QBs in response to
a single photon (Fig. 3b). However, consistent with the fact that the
initial activation event is normal, the model predicts that the
distribution of response latencies should remain similar to that of
the WT model.

The arr23 mutation (10, 21) provides an opportunity to compare

Fig. 2. Model of QB generation. (a) An example of temporal evolution of the
key dynamical variables during a QB. The input module produces �5 PLC*,
with significant fluctuations. The number of A* molecules rises slowly until it
reaches the level AT, when channels start opening rapidly (sharp increase of
B*). The value of AT is larger than AQB, the threshold for generating reliable
QB. The observed variability in latency, see b, is largely attributable to the
fluctuations of the levels AT at which the QB starts. Ultimately, the Ca-
dependent inhibitor C* gets produced and terminates the QB. (b) Simulated
QBs elicited by activation of a single M* at t � 0. A brief (�20 ms) opening of
�20 channels occurs after a latency of �80 ms. A significant variability can be
seen from the traces, in particular in the latency time, whose distribution is
shown at the top. (c) The domain of QB generation in the PLC*–[Ca2�]ex plane
defined by the condition that opening of a single channel will, with high
probability, generate the opening of many more channels. The star denotes
the operating point corresponding to the WT.

Fig. 3. Single photon response in the absence of metarhodopsin deactiva-
tion. (a) Simulated dynamics of key variables. M* stays on for the entire period
shown. Generation of the first QB is similar to the WT case shown in Fig. 2a;
however, as soon as C* goes down, PLC* and A* accumulate again, generating
new QBs of smaller amplitude. The amplitudes and time delays between
consecutive QBs fluctuate because of the stochastic nature of A* production,
which triggers the next QB. (b) Simulated response to the persistent activity of
a single M*. Latency distribution for the first QB, shown at the top, is similar
to WT (compare with Fig. 2b). A significant variability is seen in the amplitude
and in the time delay between consecutive QBs. (c) QB generated by a brief
flash of dim light and recorded by using whole-cell voltage clamp from
isolated arr23 mutant photoreceptors. The observed response is in qualitative
agreement with model predictions.
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predictions with experiment. These cells are hypomorphic for the
major arrestin responsible for metarhodopsin shutoff and are
known to display slowly inactivating light responses that are rate-
limited by the inactivation of metarhodopsin. As predicted by the
model, the slow shutoff of the light response in arr23 mutants comes,
not from changes in QB shape, but in repeated, stochastic firings of
small bumps after a normal-sized initial bump (14, 22) (Fig. 3c). The
probability distribution of wait times for the first bump is, as
predicted, the same as that for WT photoreceptor cells (compare
Figs. 1a and 3c). The frequency of bump repetitions is clearly slower
in the model in comparison with the data, suggesting further
refinements of the model to accurately represent the rate of C*
deactivation (which controls the refractory period between bump
generation events). Nevertheless, the basic consistency of experi-
ment and prediction provides strong validation for the quantitative
model for QB generation in fly photoreceptors.

To further test the predictive power of the model, we examined
another mutant with well characterized QB defects. The mutant,
dgq1, is a hypomorphic allele displaying a �100-fold reduction in the
Gq� subunit that couples metarhodopsin to PLC� activation and
therefore shows a dramatic reduction in the efficiency of signal
activation (3). Indeed, dgq1 mutants show reduced bump size, a
severely broadened latency distribution (see Fig. 4a) and a nearly
3 log-order reduction in light sensitivity, factors that render these
mutants nearly blind. Fig. 4 a and b shows simulations in which we
reduced the total number of G proteins per microvillus to one (see
Table S1 for the list of model parameters). Consistent with the
experimental measurements, reducing G leads to a much prolonged
latency of QB activation and a reduced QB amplitude. In addition,
this single perturbation of the model also captures the poor
efficiency of signaling; less than one in 200 simulated rhodopsin
activations now produces a successful QB. This high failure rate of
signaling is primarily explained in the model by the fact that
activation in dgq1 mutants amounts to production of a single PLC*
(Fig. 4a) that is unlikely to generate AT � AQB before it itself
deactivates. Thus, the long latency for the rare successful QBs
reflects the long time it takes for a single PLC* to build up sufficient
A*, and the low efficiency reflects the low probability for the activity
of a single PLC* to last that long.

Dependence on External Ca2� Concentration. The external Ca2�

concentration can be readily varied in an experiment, as was done
by Henderson et al. (1), who measured the mean QB amplitude and
the corresponding coefficient of variation (i.e., the ratio between
the root mean square variation and the mean) as well as the mean
latency time for different [Ca2�]ex. As shown in Fig. 5, the model
predicts that at low Ca2� response amplitude remains essentially
constant and small, but as the [Ca2�]ex increases above a certain
threshold, the average response amplitude goes up. This threshold
corresponds to the Ca2� level where positive feedback becomes
important, and the system crosses over from passive to regenerative
response—the basic systems-level property that defines the QB.
The coefficient of variation peaks as this cross-over occurs, because
in the cross-over regime, the response is bimodal; a photon either
triggers the passive event, causing a slow, small response or a
regenerative event, causing a fast, large response (see SI Text and
Fig. S2). At [Ca2�]ex �0.5 mM, the negative feedback becomes
important, reducing the peak number of open channels. The trends
shown in Fig. 5 are generally consistent with the results of Hen-
derson et al. (1), including, in particular, the peak in the coefficient
of variation. On the other hand, the dependence of the latency time
on [Ca2�]ex predicted by the model appears to be too weak,
suggesting that the present model with its emphasis on simplifica-
tion incompletely represents the Ca2� dependence for some of the
processes involved in module A.

Light Adaptation. The mathematical model can be used to provide
insight into interesting physiological processes such as adaptation of

the response at higher light levels. To extend the analysis from single
photons to macroscopic light flashes we shall assume that photon
absorption events are randomly distributed among the �30,000
microvilli, and the resulting QB currents are linearly summed in the
photoreceptor cell soma. The shape of the macroscopic response is
then determined by the convolution of the average QB shape with
the latency distribution (1) (see Fig. 6). Response is expected to
deviate from linearity once the number of absorbed photons per
flash becomes comparable with the number of microvilli so that a
significant fraction of microvilli are activated by more than one
photon. Absorption of multiple photons by a single microvillus is
described by the Poisson distribution and leads to sublinearity of
response at high flash intensity (Fig. 6 Inset). The extent of
sublinearity and saturation depends on the (average) fraction of the
total number of TRP channels open during the QB relative to the
total number of channels in the microvillus—one of the parameters
of the model. Interestingly, as shown in Fig. 6b, the model predicts
that the onset of sublinearity in the response should be accompa-

Fig. 4. Single-photon response of Gq�-protein hypomorphic receptors. (a) An
example of temporal evolution of the dynamical variable during the successful
generation of a QB. The excitation of a single G protein leads to the activation
of a single PLC*, which leads to QB activation only in rare instances when PLC*
does not spontaneously deactivate before generating enough A* to ignite a
QB. (b) Simulation of the model with a single G protein per microvillus. QBs
shown occur once in �200 trials. The amplitude of the QB is reduced and the
latency increased compared with WT. (c) Measured response of dgq1 mutant
cells to dim light. QB have a reduced amplitude (�5 pA), �5-fold longer
latency and occur with �1,000-fold lower probability compared with the WT.
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nied by a reduction in latency. This reduction of latency is due to
the accelerated rise of A* caused by the multiple activation in the
input module.

Discussion
The mathematical model developed above is not intended to
represent every biochemical detail of the phototransduction cas-
cade; such a model would require many more kinetic parameters
than can be justified by our current knowledge of this system.
Instead, by resorting to simple and generic parameterizations, the
model bridges the most essential gap in our understanding of this
system at the current time—the origin of the elementary visual
response in the global dynamics of the signaling process. These
simplifications enhance our ability to productively iterate between
experiment and theory and suggest a paradigm for analysis of this
G protein signaling system. For example, in lieu of detailed knowl-
edge about the molecular details of TRP channel activation and
positive feedback, we introduced a cooperatively acting and Ca2�-
dependent activator A*. In a detail-independent way, this approach
provides extensive quantitative insight into nonintuitive properties
of the signaling dynamics relating for example the QB yield—the
probability of generating a QB in response to activation of a single
rhodopsin—to specific aspects of G protein and PLC� activation,
DAG production and Ca2�-dependent TRP channel opening.
Virtual mutagenesis studies can now provide predictions about how
modulation of any of these steps influence QB yield and will help
to optimize the design of experiments that can test these predic-
tions. In this regard, it is reassuring that the parameter set deter-
mined in this work results in a QB yield of �0.8, consistent with the
�0.5 yield that is expected on the basis of the experimental data for
Musca photoreceptor cells (23).

The model-based analysis of the dgq1 mutant behavior provides
insight into how Drosophila photoreceptor cells suppress spurious
signaling in the dark. It has been noted that small QB-like events
can occur spontaneously in the dark and have been interpreted as
thermal activation of single G proteins (3). The discussion above
suggests that only a small fraction of events where a G protein or
a PLC� is spontaneously activated result in a QB. Spontaneous
opening of TRP channels should also contribute to ‘‘dark noise,’’
but most of these would be limited to single channel events; the
probability of a QB generation upon opening a single channel is
reduced by a factor (ADark/AQB)m, where ADark is the level of

activator in the dark. Thus, the nonlinearity of the QB generation
process suppresses the effect of the inevitable spontaneous activa-
tion of signaling intermediates. Such a process should contribute to
optimizing the signal-to-noise ratio of photoreceptor cells operating
under low-light conditions.

It is interesting to compare Drosophila and, more generally,
invertebrate phototransduction with the vertebrate system. The two
systems part their ways just beyond the input stage, which in both
cases employs rhodopsin and G proteins. In contrast to Drosophila,
vertebrate phototransduciton involves a phosphodiesterase and a
cGMP-gated channel (24–26). Although Ca2� plays a role in
negative feedback and light adaptation, single-photon response
does not have the regenerative nature of a QB, so that at low light,
vertebrate phototransduction seems to be ‘‘engineered’’ as an
analog amplifier (27). It would be interesting to understand evo-
lutionary pressures and constraints that explain the striking differ-
ence in the way vertebrates and invertebrates deal with light. For
now, this remains an open question.
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Fig. 5. Predicted dependence of single-photon response on [Ca2�]ex. Blue line,
themeanamplitudeofsimulatedsinglephotonresponse; red line, thecoefficient
of variation (i.e., ratio of the root mean square variation to the mean amplitude).
Note the peak in the coefficient of variation marking the cross-over to the QB
regime. Black line, average response half-width; green line, average response
latency. Physiological [Ca2�]ex � 1.5 mM is shown by the vertical arrow.

Fig. 6. Predicted macroscopic response as a function of light flash intensity.
(a) Model predictions for the average current response per absorbed photon
for flashes of different intensity. Light flashes are assumed to result in a
Poisson-distributed number of absorbed photons. Color denotes the mean
number of absorbed photons photon per microvillus: 0.1 (cyan), 0.5 (blue), 1
(red), 2 (green), and 4 (magenta). The black curve shows the averaged re-
sponse to a single absorbed photon. (Inset) Peak amplitude of the macroscopic
response as a function of flash intensity. (b) Latency distribution for a QB
induced by single (blue) and double (green) metarhodopsin activation event.
Simultaneous activation of multiple metarhodopsin molecules reduces the
latency of QB generation.
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Going beyond the light response, Drosophila phototransduction
has served as a general model system for phosphoinositide signal-
ing. There are close functional analogies at the systems level for
many of the underlying processes (G protein-coupled receptor
desensitization, arrestin function in the inactivation of the receptor,
and an adapter molecule for endocytosis, scaffolding, PLC-� feed-
back onto Gq, and regulation of apoptosis), and there are obvious
molecular homologies in that none of the molecules involved are
unique to fly vision (28). An example of a closely homologous
system is provided by the mammalian taste (sweet, bitter, and
umami) receptor cells (29). Yet presently, we know too little about
the elemental physiological response in these systems to say
whether they function in the regime similar to or very different from
invertebrate phototransduction.

In summary, the theoretical and experimental studies de-
scribed above provide a quantitative model for the basic unit of
phototransduction response, the QB. The availability of such a
model for an experimentally powerful system such as Drosophila
photoreceptor cell provides a framework for a systems-level
analysis of a prototypical G protein-mediated signaling network.

Methods
Modeling. The mathematical model was based on the following chemical kinetics
equations:

dM*
dt

� � �Rh*�1 � gRh*fn�M* [1]

governs deactivation of metarhodopsin (M*).

dG
dt

� � �G*G � M* � �Gi�GT � G � G*� [2]

dG*
dt

� �G*G � M* � �PLC*PLCT � G* [3]

describe activation and inactivation of G protein—G* and G being, respectively,
its active and resting forms. GT is the total number of G proteins in the microvilli.

dPLC*
dt

� �PLC*PLCT � G* � �PLC*�1 � gPLC*fn�PLC* [4]

dA*
dt

� �A*PLC* � �A*�1 � gA*fn�A* [5]

describe activation and inactivation of PLC� and production and degradation of
the activator molecule A*. PLC* is the number of active molecules, whereas PLCT

is the total number.

dB*
dt

� �B*�1 � gB*,pfp� � �A*/KA*�
m�BT � B*�

� �B*�1 � gB*,nfn�B* [6]

describes opening and closure of TRP channels denoted (in the open form) by B*;
BT is the total number of channels. Opening and closure of channels are facili-
tated, respectively, by the positive, fp, and negative, fn, feedback defined below.

d�Ca�

dt
� 	B*��Ca�ext � �Ca�� � �Ca��Ca� � �Ca�0�

� ��C*�Ca� � �C*�C*�� [7]

dC*
dt

� �C*Ca � �C*C* [8]

describe Ca2� balance and the dynamics of the Ca-dependent mediator of neg-
ative feedback (C*). Positive and negative Ca-dependent feedbacks were param-
eterized by Hill functions fp(Ca), and fn(C*) are defined by

fp�Ca� �
��Ca� /Kp�

mp

1 � ��Ca� /Kp�
mp [9]

fn�C*� �
��C*�/Kn�mn

1 � ��C*�/Kn�mn. [10]

The numerical values of all of the parameters in Eqs. (1-10) are given in Table S1.
Simulation was based on a Gillespie algorithm and was carried out on a PC using
custom Matlab and Fortran programs, available upon request.

Experiment. Fly stocks used in this work were Canton S (CS), cn dgq1, and w;;arr23.
Whole-cell recordings used retinas from newly eclosed flies that were prepared
as described (11, 16). For more information, see SI Text.
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