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Thanks

• Bryan Daniels (U Wisconsin, Madison)
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Why?  
(paraphrasing Richard Hamming)
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1. What are the important problems in your field? 

2. What important problems are you working on? 

3. Why are the answers to (1) and (2) different?

So: 

    What are the important problems in theoretical biophysics?



Ilya Nemenman,  GaTech Dynamics Days, 1/14

Of exactitude in science
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...In that Empire, the craft of  Cartography attained such Perfection that 
the Map of  a Single province covered the space of  an entire City, and the 
Map of  the Empire itself  an entire Province. In the course of  Time, these 
Extensive maps were found somehow wanting, and so the College of  
Cartographers evolved a Map of  the Empire that was of  the same Scale as 
the Empire and that coincided with it point for point. Less attentive to the 
Study of  Cartography, succeeding Generations came to judge a map of  
such Magnitude cumbersome, and, not without Irreverence, they 
abandoned it to the Rigours of  sun and Rain. In the western Deserts, 
tattered Fragments of  the Map are still to be found, Sheltering an 
occasional Beast or beggar; in the whole Nation, no other relic is left of  the 
Discipline of  Geography.  

From Travels of  Praiseworthy Men (1658) by J. A. Suarez Miranda (a fictional reference).  
 By Jorge Luis Borges and Adolfo Bioy Casares.  

English translation quoted from J. L. Borges, A Universal History of  Infamy,  
Penguin Books, London, 1975.
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At a recent meeting...
• Many have expressed an opinion that: “The final theory of 

biological systems will be a large multiscale computational model. 
We need more and more experimental data to specify details of 
these models.” 
 
 

• There’s something wrong with this statement. 
– The “final” theory? 
– Do we need the theory of  

“everything” in any biological  
(or physical) system? 

• The best material model of a cat is  
another, or preferably the same, cat.  
(Philosophy of Science, Wiener and Rosenblueth, 1945)
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Physics analogy

• What is the final, complete theory of the chair you are sitting in? 
– How does it fall from the second floor? 
– How does the cloth seat age and tear? 
– How much weight would the chair hold before it breaks? 
– How does it conduct electricity? 
– How much food can I cook when I burn it? 
– … 

• There’s no such thing as “the full theory of the chair”.  
– We build models tailored to answer specific questions.  
– The complete theory that answers every question would need to include 

quarks, superstrings… 
– Each modeling level needs its own effective degrees of freedom 

– “Don’t model bulldozers with quarks.” (Goldenfeld and Kadanoff, 1999) 

• Models must loose details. Otherwise, just use the same cat…
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So...

• Are there phenomenological, coarse-grained, and yet 
functionally accurate representations of (some) biological 
dynamics, or are we forever doomed to every detail 
mattering? 
– And, of course, these models would not answer every question, but specific 

questions on coarse scales. 
– E.g., not What is a position of this particular atom in the cell? But What is the whole 

system doing? 
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How’s this done in physics?
• Many degrees of freedom + symmetries (either exact, or emerging on average) 

– Essentially, the law of large numbers produces universalities on large scales if the right 
questions are asked (not about a position of a certain atom, but about large-scale quantities). 

• Unclear if such properties would emerge in many other biological systems. 

• Still, asking the right questions may help even without symmetries 
– By not merely scaling, but throwing away details (different, depending on the specific question 

asked). Which of the pictures is more useful for driving? for driving to a school? 
!
!
!
!
!
!
!
!
!

• Many have worked on these, but I will focus on our approach.
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Cellular networks: complex beasts
A culture’s icons are a window onto 
its soul. Few would disagree that, in 
the culture of molecular biology that 
dominated much of the life sciences 
for the last third of the 20th century, 
the dominant icon was the double 
helix. In the present, post-modern, 
‘systems biology’ era, however, it is, 
arguably, the hairball. 

 A.D. Lander. BMC Biology 2010, 8:40

!9

Margolin et al., 2006
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And yet, for typical inputs,  
their dynamics are rather simple

• A handful of parameters (time scales, amplitudes) describe 
responses of networks to most experimentally accessible 
perturbations. 

• Do we need complex networks to describe simple dynamics?

!10

Cheong et al., 2011 
NF-kB dynamics

Golstein et al., 2004 
TCR dynamics
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We have worked on this problem for a while

• Bottom-up methods, reducing a known microscopic, 
mechanistic network. 

– with Sinitsyn et al., 2006-2010; with Munsky, Bel et al.,
2009-2013; with Merchan et al., in prep., etc. 

• Can we instead build phenomenological models top-
down, from data directly, and without reconstructing a 
mechanistic network as an intermediate step? 
– Purpose: predict responses to exogenous signals. 
– Purpose: drive all of us, modelers, out of work?

!11
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Can we fit simple, phenomenological models to 
biological data?

• Can we automatically fit these functions fi  from data? 
– How do we enumerate the set of all possible multivariate functions? 
– How do we search through this list? 
– How do we not overfit?

!12

8
<

:

dx1
dt

= f1(x1, x2, . . . , xn

)
· · ·
dxn
dt

= f

n

(x1, x2, . . . , xn

)

• We will assume that dynamics of cellular networks is given 
by local ordinary differential equations. 
• Do not fit curves; fit dynamics. 

• We will neglect stochasticity, and spatial structure for now
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Prior art: 
EUREQA: full search approach
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Schmidt et al., 2011

Exhaustive search through all possible elementary functions with 
a smart choice of experiments.
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Testing Model:  
Yeast Glycolytic Oscillator

!14

Phys. Biol. 8 (2011) 055011 M D Schmidt et al

Table 3. Differential equations describing glycolytic oscillation of the generating model (left panel) and the inferred model from the
training data, which had 10% noise (right panel).

Original system Automatically inferred system

dS1
dt

= 2.5 − 100∗A3S1
1+13.68∗A4

3
dS2
dt

= 200∗A3S1
1+13.68∗A4

3
− 6 ∗ S2 − 6 ∗ S2N2

dS3
dt

= 6 ∗ S2 − 6 ∗ N2S2 − 64 ∗ S3 + 16 ∗ A3S3
dS4
dt

= 64 ∗ S3 − 16 ∗ A3S3 − 13 ∗ S4 − 100 ∗ N2S4

+13 ∗ S5
dN2
dt

= 6 ∗ S2 − 18 ∗ N2S2 − 100 ∗ N2S4
dA3
dt

= −1.28 ∗ A3 − 200∗A3S1
1+13.68∗A4

3
+ 128 ∗ S3 + 32 ∗ A3S3

dS5
dt

= 1.3 ∗ S4 − 3.1 ∗ S5

dS1
dt

= 2.53 − 98.79·A3S1
1+12.66·A4

3
dS2
dt

= 200.23·A3S1
1+13.80·A4

3
− 6.87 · S2 − 6.87 · N2 + 0.95

dS3
dt

= 6.00 · S2 − 6.00 · N2S2 − 64.16 · S3 + 16.08 · A3S3
dS4
dt

= 64.04 · S3 − 16.03 · A3S3 − 13.03 · S4 − 100.11 · N2S4

+13.21 · S5
dN2
dt

= −0.055 + 5.99 · S2 − 17.94 · N2S2 − 98.82 · N2S4
dA3
dt

= −1.12 · A3 − 192.24·A3S1
1+12.50·A4

3
+ 124.92 · S3 + 31.69 · A3S3

dS5
dt

= 1.23 · S4 − 2.91 · S5

details of the models shown in figure 4. In this seven-
variable model, the respiratory chain (mitochondrial oxidative
phosphorylation) is completely inhibited. The reaction
network for this system, shown in figure 4(A), contains
the main reactions of glycolysis and adjacent reactions
producing ethanol and glycerol. We provide additional
model details in the supporting information available
at stacks.iop.org/PhysBio/8/055011/mmedia. During the
original model development, the complexity of the model was
reduced by omitting many of the glycolytic reactions, and by
lumping together other reactions, so that several of the model
variables denote concentrations of pools of intermediates
rather than concentrations of the individual compounds, e.g.,
the pools of triose phosphates (glyceraldehydes-3-phosphate,
dihydroxyacetone phosphate) and pyruvate and acetaldehyde.
This simplification has been rigorously justified using a
judiciously applied quasi-steady-state approximation [75].
This particular model is capable of reproducing glycolytic
oscillations with a period in the range of 0.10 to 12 min
and has been used to study the temperature dependence and
temperature compensation of yeast glycolytic oscillations [74].

Reverse engineering glycolytic oscillation in yeast

We used the model of glycolytic oscillations in yeast shown
in figure 4(A) to simulate experimenting on a wet system.
Glycolytic oscillation is one of the most common examples
of oscillatory behavior at the cellular level and enables a
broader understanding of the underlying dynamic processes
that lead to rhythmic behavior. Of such systems, anaerobic
glucose metabolism in yeast is most commonly studied. In
a particular region of parameter space, all of the glycolytic
intermediates show oscillatory behavior with a variation in
the frequency of oscillation observed across species. In the
vicinity of the attractor that is responsible for these oscillations,
the system never reaches steady state and hence this behavior
cannot be readily analyzed by equilibrium or stoichiometric
approaches such as metabolic flux balance analysis [76]. We
use this oscillatory system to demonstrate the capability of
our approach to infer the equations governing a nonlinear
dynamical metabolic system.

Our experiments placed the yeast glucose
model (figure 4(A) and figure S1 (available at
stacks.iop.org/PhysBio/8/055011/mmedia)) in a numeri-
cal black box and then allowed our algorithm to conduct

in silico experiments on this black box. For our studies,
we collect data by numerically integrating the differential
equations in the black box glycolysis model and adding
noise. Initial states, i.e. the initial conditions, are constrained
to a specified range, and the initial states for the test data
are sampled over a larger volume in state-variable space to
determine how well models can extrapolate and predict new
behavior.

Our goal is to find the exact differential equations of
the unknown system algorithmically. More specifically,
we are interested in modeling metabolic networks as a
dynamical system—a set of ODEs. In a system of N state
variables that we observe experimentally (e.g., extracellular
concentrations of glucose (S1) or NADH (N2) over time), we
must identify N (possibly nonlinear) differential equations.
Synthesizing these mathematical models of a dynamical
system is the most computationally intensive task in our
procedure. We first smooth and then differentiate the observed
time series data to produce its derivatives. We then search
for the differential equations that reproduce each numerically
estimated derivative.

We calculate the numerical time derivative of each
variable at each data point in order to compare it with the value
of the candidate differential equation explicitly. Accumulating
errors of the derivative values avoids the need to integrate
each differential equation, which can be computationally
expensive [18].

Regression procedure for all methods

During regression for each compared algorithm—symbolic
regression nonlinear regression and neural network
regression—we track accuracy on both the training and test
data sets over time. Only the training data set is used to update
the models. By recording the accuracy of the model of the test
data set over time, we can analyze later how well the regression
procedure identifies models that generalize and extrapolate to
data not in the training set (e.g., figure 6).

In nonlinear regression and neural network regression,
the training set was constant, with 200 trajectories (random
experiments on the black box). In contrast, the symbolic
regression algorithm’s training set begins with ten trajectories
that were produced following ten different, random initial
conditions, but subsequently adds new black box trajectories

8

Ruoff et al., 2003

• 7 species, 28 variables 

• Complex rational dynamical 
laws
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Results of Schmidt et al.

!15

Pretty amazing!

Schmidt et al., 2011
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Results of Schmidt et al.

!16

• Astronomical computation times -- exhaustive search. 
– Super-exponential scaling with the number of fitted species. 
– Have been unable to go beyond 7 species, or consider hidden species. 
– Overfitting -- need astronomical sample sizes. 

• Two exponential costs: selecting the best model family, fitting the best family with the model.
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Can we avoid exhaustive search?
• We don’t need to do an exhaustive search when fitting 1-

dimensional curves 
!
!
!
!
!
!
!

!
– Taylor or Fourier representations are some of many (nested) ways to 

represent any function. 
– Don’t need to search through all functions as we can do, for example, 

Bayesian model selection to limit the complexity of the search space 
(the value of maximum K).

!17

yK(x) =

KX

k=1

Akx
k
+ noise
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Bayesian Model selection

• For large sample size N, averages done in the Laplace (saddle point) 
limit. 

• Penalty for model complexity (the log term) “selects” the best model 
family. 

• Not that simple in detail, but this description is roughly accurate. 

• Beautiful consistency properties for nested, complete model families. 
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MacKay 1992, Balasubramanian 1996, 
Nemenman 2005

P (K|{x
i

}) =
R
dK~↵P (~↵|{x

i

}) =
R
dK~↵P ({xi}|~↵)P(↵)

P ({xi})
=

R
dk~↵ exp(�NL)

logP (K|{x
i

}) = logP ({x
i

}|~↵ML)� 1
2 log detNF +O(N0

)
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Dynamical fits: no nested structures

• Existence of hidden degrees of freedom and nonlinearities breaks nestedness -- no 
consistency guarantees. 

• Choosing any (reasonable, complete) ordered structure through the model space is better 
than not choosing. 

– For a good choice, we will fit well with few data; for a bad choice we will not do any worse than exhaustive 
search, which is astronomically slow.
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Many 
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anything
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Two types of model families
• Both nested and complete. 

• Account for nonlinearities and hidden variables as more variables are added. 

• BIochemically reasonable.

!20

3

FIG. 2:

One natural choice is the s-system power-law formalism. [? ] The general form of the s-system representation
consists of J dynamical variables and K inputs, with each dynamical variable governed by an ordinary di↵erential
equation of the form [? ]

dxi

dt
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@
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x
gij
j � �i
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hij

j

1

A . (4)

In a process called “recasting,” any set of di↵erential equations written in terms of elementary functions can be
rewritten in the power-law form by defining new dynamical variables in the correct way [? ]. Thus a power-law
network of su�cient size can describe any such deterministic dynamical system to arbitrary accuracy (XXX caveats?).

An advantage of the s-system representation is the existence of a natural scheme for creating a one-dimensional
hierarchy: simply adding dynamical variables xi. The most general power-law network is fully connected, such that
every “node” xi can a↵ect every other xj through gij and hij . A simple hierarchy would start with a fully-connected
network consisting of the necessary number of input and output nodes, and simply add fully-connected “hidden”
nodes [extra xi in Eq. (??)] to add complexity. Since this adds many [1 + 2(J + K + 1)] parameters at every step
(perhaps unnecessarily), we prefer to take a more fine-grained approach, adding parameters as slowly as possible (see
FIG. ?? and Methods). (XXX We expect the specific form of this hierarchy to be not all that important...)

Finally, we may use the fact that the interactions among biological components often takes the form of a sigmoidal
function to create another similar model class, defined as

dxi

dt
= �xi/⌧i +

JX

j=1

Wij ⇠(xj + ✓j) +
KX

k=1

VikIk, (5)

where the sigmoidal function ⇠(y) = 1/(1 + e�y). This class of models has also been shown to approximate any
smooth dynamics arbitrarily well with a su�cient number of dynamical variables [? ]. We use the same method as
the s-system models to create a one-dimensional nested hierarchy.
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Use Bayesian model selection to choose best 
models

• Bayesian model selection modified for parameter 
sloppiness 

!21

Chi-squared cost Bayesian penalty

Eigenvalues of the Fisher matrix  
[ Some parameter directions	



are not well-defined ]

Gutenkunst et al., 2007

L =

1

2

�2
(↵best) +

1

2

X
log �µ
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Algorithm

• Specify a particular hierarchy of model families. 

• For given data: 
– Choose a model family within the hierarchy. 
– Fit for the best model within the family. 
– Calculate the posterior likelihood of the family using modified Bayesian 

criterion. 
– Choose more complex family and terminate when the modified likelihood 

starts to decrease. 

• Algorithmic improvements to ensure that no complete re-fitting 
is done when move to the next family, or increase data set size. 

• Two exponential complexities: search of a model family, and 
fitting a model within the family.  
– This only solves the first. 
– In practice works OK for both. 

!22
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Finding laws that we already know: 
An automated Sir Isaac (Sir Isaac on GitHub)  

• Finds the simplest structure that can account for Newton’s laws. 

• Accounts for different classes of trajectories.

!23
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Simple dynamics from a complex network: 
Combinatorial multisite phosphorylation

!24

A foreboding example 

•  Suppose we are 

trying to fit 

experimental 

data with a 

model… 

•  Phosphoryla$on 

on 5 sites with 

independent 

MM rates 

Input:	


Single on-rate

Output: Total 
phosphorylation at time t

Time

To
ta

l 	


ph

os
ph

or
yl

at
io

n

• Rates depend on occupancy of the nearby sites, about 50 parameters 
total. 

• Caricature of some of the most combinatorially complex signaling models. 

• Typically more parameters than data. 
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Effective, reduced model of multi-site 
phosphorylation

• Effective models (especially sigmoidal) fit better than the true, full model for small data sets! 

• Can even extrapolate to new signal classes, and not just interpolate. 

• (Of course eventually the full, true model would win).

!25
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The yeast glycolytic oscillations: 
Complex dynamics needing complex structure

• Observe only 3/7 of variables; add 
10% noise. 

• Data: N samples of structure 
– Initial condition of the 3 species; 
– Some random time later; 
– The value of these 3 species at that 

time.

!26
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Results

!27
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Computational effort

!28

Scaling of computational effort
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• Only 40 data points (three orders of magnitude fewer).  

• Better accuracy than curve (rather than dynamics) fitting.
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Conclusions
• Fitting dynamics, not curves. 

• Complete, nested model families of dynamics allow to use Bayesian 
model selection to adapt effective model complexity to the available 
data. 
– To the zeroth order, selecting any structure is better than having no structure at all. 
– To the first order, the models one uses (the primitives and the structure) start 

mattering. 

• Such effective models make accurate predictions in the undersampled 
regime, where true models overfit. 

• Why do this? 
– The cat test: If it purrs like a cat and has  

whiskers like a cat, then it probably is a cat 
– Indeed, can predict response to yet-unseen  

perturbations! 
– Find new laws of nature: build effective models of  

many similar systems and look for similarities.

!29
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