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Why?

(paraphrasing Richard Hamming)

1. What are the important problems in your field?
- 2. What important problems are you working on?
3. Why are the answers to (1) and (2) different?

So:

What are the important problems in theoretical biophysics?
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Of exactitude in science

...In that Empire, the craft of Cartography attained such Perfection that
the Map of a Single province covered the space of an entire City, and the
Map of the Empire itself an entire Province. In the course of Time, these
Extensive maps were found somehow wanting, and so the College of
Cartographers evolved a Map of the Empire that was of the same Scale as
the Empire and that coincided with 1t point for point. Less attentive to the
Study of Cartography, succeeding Generations came to judge a map of

- such Magnitude cumbersome, and, not without Irreverence, they
abandoned it to the Rigours of sun and Rain. In the western Deserts,
tattered Fragments of the Map are still to be found, Sheltering an
occasional Beast or beggar; in the whole Nation, no other relic 1s left of the
~ Discipline of Geography.

From Travels of Praiseworthy Men (1658) by J. A. Suarez Miranda (a fictional reference).
| By Jorge Luis Borges and Adolfo Bioy Casares.

English translation quoted from J. L. Borges, A Universal History of Infamy,
Penguin Books, London, 1975. ‘
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At a recent meeting...

 Many have expressed an opinion that: “The final theory of
biological systems will be a large multiscale computational model.
We need more and more experimental data to specify details of
these models.”

g OPENWOrM

A simulation platform to build digital in silico living systems — starting with a c. elegans worm virtual organism simulation

e There’s something wrong with this statement.
— The “final” theory?
— Do we need the theory of
“everything” in any biological
(or physical) system?

e The best material model of a cat is

another, or preferably the same, cat.
(Philosophy of Science, Wiener and Rosenblueth, 1945)
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Physics analogy

* What is the final, complete theory of the chair you are sitting in?
— How does it fall from the second floor?
— How does the cloth seat age and tear?
— How much weight would the chair hold before it breaks?
— How does it conduct electricity?
— How much food can | cook when | burn it?

e There’s no such thing as “the full theory of the chair”.
— We build models tailored to answer specific questions.

— The complete theory that answers every question would need to include
quarks, superstrings...

— Each modeling level needs its own effective degrees of freedom
— “Don’t model bulldozers with quarks.” (Goldenfeld and Kadanoff, 1999)

 Models must loose details. Otherwise, just use the same cat...
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So...

 Are there phenomenological, coarse-grained, and yet
functionally accurate representations of (some) biological
dynamics, or are we forever doomed to every detail
mattering?

— And, of course, these models would not answer every question, but specific
guestions on coarse scales.

— E.g., not What is a position of this particular atom in the cell? But What is the whole
system doing?

EMORY [lya Nemenman, GaTech Dynamics Days, 1/14

UNIVERSITY



How’s this done in physics?

* Many degrees of freedom + symmetries (either exact, or emerging on average)

— Essentially, the law of large numbers produces universalities on large scales if the right
questions are asked (not about a position of a certain atom, but about large-scale quantities).

e Unclear if such properties would emerge in many other biological systems.

o Still, asking the right questions may help even without symmetries

— By not merely scaling, but throwing away details (different, depending on the specific question
asked). Which of the pictures is more useful for driving? for driving to a school?
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 Many have worked on these, but | will focus on our approach.
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Cellular networks: complex beasts

A culture’s icons are a window onto
its soul. Few would disagree that, in
the culture of molecular biology that
dominated much of the life sciences
for the last third of the 20th century,
the dominant icon was the double
helix. In the present, post-modern,
‘'systems biology’ era, however, it is,
arguably, the hairball.

A.D. Lander. BMC Biology 2010, 8:40

Margolin et al., 2006
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And yet, for typical inputs,
their dynamics are rather simple

Cheong et al., 2011 Golstein et al., 2004
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e A handful of parameters (time scales, amplitudes) describe
responses of networks to most experimentally accessible
perturbations.

Do we need complex networks to describe simple dynamics?
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We have worked on this problem for a while

e Bottom-up methods, reducing a known microscopic,
mechanistic network.

— with Sinitsyn et al., 2006-2010; with Munsky, Bel et al.,
2009-2013; with Merchan et al., in prep., etc.

e Can we instead build phenomenological models top-
down, from data directly, and without reconstructing a
mechanistic network as an intermediate step?

— Purpose: predict responses to exogenous signals.
— Purpose: drive all of us, modelers, out of work?
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Can we fit simple, phenomenological models to
biological data?

 We will assume that dynamics of cellular networks is given
by local ordinary differential equations.

e Do not fit curves; fit dynamics.

* We will neglect stochasticity, and spatial structure for now

% S 3 fl(ZEl)xZ?"')xn)
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e Can we automatically fit these functions f; from data?
— How do we enumerate the set of all possible multivariate functions?
— How do we search through this list?
— How do we not overfit?
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Prior art:
EUREQA: full search approach

Start - lnpu. (virtual) Collected
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©) Given the current set of candidate (B) Given the current set of candidate equations, optimize
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E;<haustive search through all possible elementary functions with
a smart choice of experiments.

Schmidt et al., 2011
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Testing Model:

Yeast Glycolytic Oscillator

Ruoff et al., 2003
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Results of Schmidt et al.

Original system Automatically inferred system

s, _ __100%A3S s, _ _ 98.79-A38

W =297 Lizeseal @ =23~ el o

dS, __ 200%A3S ds; __ 200.23-A35; __ .S, — .

Ef—mﬁg“S*Sz—“SzNz i _mi?s} 6.87 - S, — 6.87 - N, 40.95

j{% =6*Sz—6*N252—64*S3+16*A3S3 % =60052—600N2S2—6416S3+ 608A3S3

o = 64% 8 — 16 % A3S3 — 13 %S4 — 100 * N, Ss o = 64.04-5; —16.03 - A38; — 13.03 - S4 — 100.11 - N> 84
+13 % Ss +#521 - Ss |

% =6%S5, — 18 % NbS; — 100 x NS, dd% = %0.05)+5.99- 85, — 17.94 - NS, — 98.82 - N»S4 |

T =128 Ay — L + 128 % Sy + 32 % AsS;s U= TAL Ay RN 412492 85+ 3169 - AsS; ;

&5 =13%8;—3.1%Ss 05 =1.23-5,-291-Ss |

Pretty amazing!

Schmidt et al., 2011
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Results of Schmidt et al.
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—— Nonlinear Regression — with overspecified model

e Astronomical computation times -- exhaustive search.
— Super-exponential scaling with the number of fitted species.
— Have been unable to go beyond 7 species, or consider hidden species.
— Overfitting -- need astronomical sample sizes.

* Two exponential costs: selecting the best model family, fitting the best family with the model.
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Can we avoid exhaustive search?

 We don't need to do an exhaustive search when fitting 1-

dimensional curves
A

K
Y () = ZAkazk + noise
k=1

>

— Taylor or Fourier representations are some of many (nested) ways to
represent any function.
— Don’t need to search through all functions as we can do, for example,

Bayesian model selection to limit the complexity of the search space
(the value of maximum K).
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Bayesian Model selection

_, al § > P({x; Y a)P(o
P(K|{z:}) = [ X GP(a|{x:}) = [ daEz@P
= [d*dexp(—NL)

log P(K|{z;}) = log P({z;}|amL) — % logdet NF + O(N?)

» For large sample size N, averages done in the Laplace (saddle point)
limit.

e Penalty for model complexity (the log term) “selects” the best model
family.

* Not that simple in detail, but this description is roughly accurate.

o Beautiful consistency properties for nested, complete model families.

MacKay 1992, Balasubramanian 1996,
Nemenman 2005
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Dynamical fits: no nested structures

% = A{xe}f jg Few params.; Many
+AEOT o PR Baiins,; it
+. % T anything
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28 models
—
S More hidden variables
—:U T A f 4 Az} T+ Bignéi + - + Biaykék
dt {QZCU} %i = A1} + Bu&i + - + Bikék

LK = Ag(oy@+ Bix& + - + Brr€k

» Existence of hidden degrees of freedom and nonlinearities breaks nestedness -- no
consistency guarantees.

e Choosing any (reasonable, complete) ordered structure through the model space is better
than not choosing.

— For a good choice, we will fit well with few data; for a bad choice we will not do any worse than exhaustive
search, which is astronomically slow.
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Two types of model families

e Both nested and complete.
* Account for nonlinearities and hidden variables as more variables are added.

e Blochemically reasonable.

Degradation Interactions Input
Sigmoidal . h ; K
recurrent o= —w/Tik ) Wi 6w +05) + ) Vil
— P
networks i Ely) — 1/‘7(11+ - :
(Daniels and ~with §(y) = c B
Beer)

Interactions and input dependence

E  da, o | ) |
S-systems ;t = A ] T - BZ,H%@@J T2
k k

(Savageau et. al) |
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Use Bayesian model selection to choose best
models

Chi-squared cost  Bayesian penalty

R

1 1
[ — §X2(abest) + 5 Zlog AL

Eigenvalues of the Fisher matrix
[ Some parameter directions
are not well-defined ]
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Y
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e Bayesian model selection modified for parameter
sloppiness

Gutenkunst et al., 2007
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Algorithm

» Specify a particular hierarchy of model families.

e For given data:
— Choose a model family within the hierarchy.
— Fit for the best model within the family.

— Calculate the posterior likelihood of the family using modified Bayesian
criterion.

— Choose more complex family and terminate when the modified likelihood
starts to decrease.

e Algorithmic improvements to ensure that no complete re-fitting
Is done when move to the next family, or increase data set size.

e Two exponential complexities: search of a model family, and
fitting a model within the family.

— This only solves the first.
— In practice works OK for both.
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Finding laws that we already know:
An automated Sir Isaac (Sir Isaac on GitHub)

A B True model
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* Finds the simplest structure that can account for Newton’s laws.

e Accounts for different classes of trajectories.
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Simple dynamics from a complex network:
Combinatorial multisite phosphorylation

Output: Total

| phosphorylation at time t

- * o

o 9
P -
- e o6 o © % o
-

E 2
E 2

Input:
Single on-rate | () «—

o —

Total
phosphorylation

B Timev

» Rates depend on occupancy of the nearby sites, about 50 parameters
total.

e Caricature of some of the most combinatorially complex signaling models.

e Typically more parameters than data.
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Effective, reduced model of multi-site
phosphorylation
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 Effective models (especially sigmoidal) fit better than the true, full model for small data sets!

e Can even extrapolate to new signal classes, and not just interpolate.

e (Of course eventually the full, true model would win).
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The yeast glycolytic oscillations:

Complex dynamics needing complex structure

e Observe only 3/7 of variables; add
10% noise.

e Data: N samples of structure
— Initial condition of the 3 species;
— Some random time later;

— The value of these 3 species at that
time.
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Num. measurements N 1‘
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Computational effort

Test Set Correlation

L 1 1

1
104 106 108 1010 1012

Computational effort (equation evaiuations)
Symbolic Regression - no prior model

Neural Network — no prior model

Nonlinear Regression — with impaired model

Nonlinear Regression — with overspecified model

e Two orders of magnitude fewer evaluations for the same accuracy compared to EUREQA.
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e Only 40 data points (three orders of magnitude fewer).

e Better accuracy than curve (rather than dynamics) fitting.
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Conclusions

e Fitting dynamics, not curves.

 Complete, nested model families of dynamics allow to use Bayesian

model selection to adapt effective model complexity to the available
data.

— To the zeroth order, selecting any structure is better than having no structure at all.

— To the first order, the models one uses (the primitives and the structure) start
mattering.

» Such effective models make accurate predictions in the undersampled
regime, where true models overfit. ~

» Why do this?
— The cat test: If it purrs like a cat and has

whiskers like a cat, then it probably is a cat

— Indeed, can predict response to yet-unseen
perturbations!

— Find new laws of nature: build effective models of
many similar systems and look for similarities.
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