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Why fly as a neurocomputing

i model system?

= Can record for long times
= Named neurons with known functions

= Nontrivial computation (motion
estimation)

= Vision (specifically, motion estimation)
IS behaviorally important

= Possible to generate natural stimuli




i Questions

= Can we understand the code?

= Which features of it are important?
= Rate of precise timing (how precise)?
= Synergy between spikes?

= What/how much does the fly know?
= Is there an evidence for optimality?




Recording from fly's H1
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Motion estimation in fly H1
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i Decoding a simple spike train

P(t, | s(t)) ~ Poisson[r(s(t,)]
| nonlinear
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(Bialek, Zee, 1990)



Linear decoding for sparse

i spikes (cluster expansion)

<s<r0 )| [, »>
S (1) = =75
<]‘[r(s<ri >>>

i=1

Stimulus couples spikes; but the strength of the coupling
drops with ~(t, —¢,,,)/T (very fast varying mean field)

s (1) = Efl(t—ti)+Efz(t—ti,t—tj)+...

(Bialek, Zee, 1990)



Linear decoding

stimulus
Jdo / /reconstruction
§ Il Position of each spike
~20 within ~2ms matters!
—so|- But what if ...
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Natural stimuli
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Natural stimuli

= ~2 ms resolution known tc¢ (-and and Collett, 1974)
be important for white
noise stimuli

= Could such “brisk” spikes
be due to ~1 ms
correlations in stimulus?

= What if stimulus has
natural correlations?

T = 60ms
response = 30ms



‘L Natural stimulus and response
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Highly repeatable spikes

(not rate coding)




How to characterize coding

i without an explicit decoding ?

Slxl==) p(logp(x),  x=s.{1}

. p(s,{¢;})
I[s,{t.}] = S{Eti} p(s,{t,})log p(s)p(t.})

= Captures all dependencies (zero iff joint probabilities
factorize)

= Reparameterization invariant
= Unique metric-independent measure of “how related”




Experiment design
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i Problems

= Total of about 10-15 min of recordings (limited by
stationarity of the outside world)

= At most 200 repetitions

= Stimulus correlation of 60ms: only 10000 independent
samples (repeated or nonrepeated)

= Need to sample words of length 30 ms (behavioral) to
60 ms (stimulus) at resolution down to 0.2 ms (binary
words of length up to ~100).




Undersampling and

i entropy/MI estimation

Maximum likelihood estimation:

n.
i=1...K pt=—L
(K - # of bins) i

(N - sample size)
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Undersampling and

i entropy/MI estimation

(S, )= —ZOQTihog% =S
log K \

. 2° n 1
bias o Y ] (variance)” o —

JN

Fluctuations underestimate entropies and
overestimate mutual informations.

(Need smoothing.)



Correct smoothing possible

S <logN

Incorrect smoothing --
i= 1 2 3 4 5 6 over- or underestimation.

13 bits for NR, 6-7 bits for R

Even refractory Poisson process at this 7,7 has
over 15-20 bits of entropy!

For estimation of entropyat K/ N <1 see:

Grassberger 1989, 2003, Antos and Kontoyiannins 2002, Wyner and

Foster 2003, Batu et al. 2002, Paninski 2003, Panzeri and Treves
1996, Strong et al. 1998



i What if S>logN ?

But there is hope (Ma, 1981):

For uniform K-bin distribution the first coincidence occurs

for
N 0K =+/2°

S (] ) log NC «— Time of first coincidence

Can make estimates for square-root-fewer samples!
Can this be extended to nonuniform cases?

« Assumptions needed (won't work always)
» Estimate entropies without estimating distributions.



i What is unknown?

Binomial distribution:
S=-plogp-

(I-p)log(l- p)

jl Assume (Bayes)
a

uniform (no assumptions)

Sy a
p S



i What is unknown?

1.O1||?||Té='|"‘|1—|—|—7‘ 8_&;96“—Strue>
Selection of wrong “unknown” 95




One possible uniformization

i strategy for S (NSB)

Posterior variance scalesas 1/~ N
Little bias, except in some known cases.

Counts coincidences and works in Ma regime (if
works).

Is guaranteed correct for large N.
Allows infinite # of bins.

(Nemenman et al. 2002, Nemenman 2003)



S, bits

Synthetic test

Refractory Poisson, rate 0.26 spikes/ms, refractory period 1.8 ms,
T=15ms, discretization 0.5ms, true entropv 13.57 bits.
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= Estimator is
unbiased if
consistent and
self-consistent.

= Always do this
check.

(Nemenman et al. 2004)



$ Natural data (all S)
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Neural code:

i What remains hidden?

= Given entropy of slices, find the mean
noise entropy with error bars (slice
entropies are correlated and bimodal).

= Samples for total entropy are also
correlated and have long tailed Zipf
plots.

= For very fine discretizations and
T~30ms need extrapolation.




2200 e T 2 30 ms 600 A
200 e [ 9, 3
’ 2400 . o
180 [ A L -
‘ [ 00 | 27
£ 160 | 7
:.5: 140 N + . ) O ! 1 ! Il 1 1 |
N "1 0 200 400 600
120 RET S,,, bits/s
é ]
100 f .
80 f
1 10
T.ms

0.2 ms -- comparable to channel opening/

closing noise and experimental noise.

Information rate at T=30ms

Information present up
to t =0.2-0.3 ms

30% more information
at t<1ms. Encoding by
refractoriness?

~1 bit/spike at 170
spikes/s and low-
entropy correlated
stimulus. Design
principle?

Efficiency >50% for ©
>1ms, and ~75% at
30ms. Optimized for
natural statistics?



Synergy from spike
combinations
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New bits (optimized code)

« Spikes are very
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Information about...
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Best estimation at 25ms delay. Little time for reaction.



Precision is limited by physical
noise sources

We see evidence for
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(Lewen, et al 2001)



= One often
considers a
1/f rank-
order plot as
a sign of
intelligence.

s But...
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A very intelligent fly
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Zipf law may be a result of complexity of the world,
not the language.
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