Entropy estimation: coincidences, additivity, and uninformative priors

Ilya Nemenman
CCS-3/CNLS, LANL

nsb-entropy.sf.net

MD simulations:
 Does a protein bind a ligand?

binding

$$
F_{1}=E_{1}-T S_{1}
$$

$$
<
$$

$$
F_{2}=E_{2}-T S_{2}
$$

Configuration sampling: $\quad\left\{C_{i}, E_{i}\right\}, i=1 \ldots N$

$$
\langle E\rangle=\sum_{i} \frac{E_{i}}{N}-\text { easy }
$$

$\langle S\rangle=$?

Undersampling and entropy estimation

$$
\begin{gathered}
\left\langle S_{M L}\right\rangle_{\left\{n_{i}\right\}}=\left\langle-\sum_{i} \frac{n_{i}}{N} \log \frac{n_{i}}{N}\right\rangle_{\left\{n_{i}\right\}} \leq-\sum_{i} p \log p=S \\
\text { bias } \propto-\frac{2^{S}}{N} \gg(\text { variance })^{1 / 2} \propto \frac{1}{\sqrt{N}}
\end{gathered}
$$

- Fluctuations = negative entropy bias
- Universal bias correction possible for $S \ll \log N$
- Won't work in our case (S~100s bits)

Information content of spike trains: probing precise spike timing

$T \sim 50 \mathrm{~ms}, \quad \tau \sim 0.2 \mathrm{~ms}, L=T / \tau \sim 250$
S up to 250 bits; $2^{\wedge} 250 \sim 10^{\wedge} 75$ samples may be needed (refractoriness helps, but not much)
Los Alamos
NATIONAL LABORATORY

Hope:
 Coincidences and Entropy Estimation

- Catch-tag-release population sampling
- What does a coincidence tell us?
- Recall the "birthday problem" (Ma 1981, microcanonical ensemble)

$$
\begin{aligned}
& N_{c} \sim \sqrt{K}=\sqrt{2^{s}} \\
& S \sim 2 \log N_{c}
\end{aligned}
$$

- Can estimate entropies with square-root-fewer samples but with assumptions
- Estimate entropies directly, not distributions
- Assumptions needed (may not work always)
- What if the distribution is not uniform? (canonical ensemble)

Generalizing Ma: What is unknown?

Binomial distribution:

$$
\begin{aligned}
& S=-p \log p- \\
& \quad(1-p) \log (1-p)
\end{aligned}
$$

Slide 5

What is unknown?

Slide 6

For large K the problem is extreme (S known a priori)

$P_{\beta}\left(\left\{p_{i}\right\}\right)=\frac{1}{Z(\beta)} \delta\left(1-\sum_{i=1}^{K} p_{i}\right) \prod_{i=1}^{K} p_{i}^{\beta-1}$
$\left\langle p_{i}\right\rangle=\frac{n_{i}+\beta}{N+K \beta}$
Dirichlet priors, a.k.a., adding pseudocounts (include the uniform prior, the ML prior, and others).

Inference is analytic

Slide 7

For large K the problem is extreme (S known a priori)

$P_{\beta}\left(\left\{p_{i}\right\}\right)=\frac{1}{Z(\beta)} \delta\left(1-\sum_{i=1}^{K} p_{i}\right) \prod_{i=1}^{K} p_{i}^{\beta-1}$
$\left\langle p_{i}\right\rangle=\frac{n_{i}+\beta}{N+K \beta}$
Dirichlet priors, a.k.a., adding pseudocounts (include the uniform prior, the ML prior, and others).

Inference is analytic

Uniformize on S

$$
P_{\beta}\left(\left\{p_{i}\right\}, \beta\right)=\left.\frac{1}{Z} \delta\left(1-\sum_{i=1}^{K} p_{i}\right) \prod_{i=1}^{K} p_{i}^{\beta} \frac{d S}{d \beta}\right|_{N=0} P\left(\left.S\right|_{N=0}\right)
$$

- A delta-function sliding along the a priori entropy expectation.
- This is also Bayesian model selection (small β large phase space)
- Have error bars (dominated by posterior variance in β, not at fixed β).

Slide 9

Coincidence counting

$$
\begin{aligned}
& \Delta \equiv N-K_{1} ; \quad K_{1}=\text { \#bins with } n_{i} \geq 1 \\
& \bar{S}=f(\Delta)+\text { small corrections } \\
& \operatorname{var} S=\frac{1}{\Delta}+\text { small corrections }
\end{aligned}
$$

NSB summary

- Posterior variance scales as $1 / \Delta$
- No bias for short-tailed distributions
- Negative bias for long-tailed distributions (strictly smaller than naïve; as for all learning, cf. Zador and DeWeese)
- Counts coincidences and works in Ma regime (if works)
- Is guaranteed correct (consistent) for large N
- Smooth convergence: if agrees with itself for different N, then correct
- Allows infinite \# of bins
- Not a $1 / N$ series correction, but $1 / \Delta$ expansion
(Nemenman et al. 2002-2007)

Synthetic test (same for natural data)

Refractory Poisson, rate 0.26 spikes/ms, refractory period 1.8 ms , $T=15 \mathrm{~ms}$, discretization 0.5 ms , true entropy 13.57 bits.

- NB: Estimator is unbiased if consistent and selfconsistent.
(Nemenman et al. 2004)

Neural results: Information rate at $T=25 \mathrm{~ms}$

- Rate grows up to τ $=0.2-0.3 \mathrm{~ms}$
- 30% more information at $\tau<1 \mathrm{~ms}$.
- ~1 bit/spike at 150 spikes/s and lowentropy correlated stimulus. Design principle?
- 0.2 ms - comparable to channel opening/ closing noise and experimental noise.

NATIONAL LABORATORY

However: Long tails for lattice proteins

$2^{\wedge} 7$ samples for NSB= $2^{\wedge} 14$ samples for ML

NSB fails!

(though always better than ML)
chiral, cubic, $4 \times 4 \times 4,32$ residues

Slide 14

How to estimate entropy for long tails? Go to the source: entropy is additive!

How to estimate entropy for long tails? Go to the source: entropy is additive!

What's going on?

- Capture-recapture, but count perches separately from wrasses
- Within each subset, probabilities more uniform
- This is a good convergence test
- But no free lunch: more data needed, since now need coincidences in each domain
- Worst case: $2^{\wedge}(S / 2)$ domains, then $N \sim 2^{\wedge} S$
- Usually: $\mathrm{N} \sim 2^{\wedge}(c S), c<1$
- Conjecture: this achieves best possible performance for any distribution, whatever that performance is

Lattice protein entropies: It works!

Slide 18

Summary

- NSB estimator
- Choose the right unknown
- or Count coincidences
- or Do model selection
- Not universal
- But using additivity comes quite close!
- Current applications
- Neuroscience
- Protein structure
- Linguistics

