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ABSTRACT—Motivated by recent experimental develop-
ments in functional genomics, we construct and test a numer-
ical technique for inferring process pathways, in which one
process calls another process, from time series data. We val-
idate using a case in which data are readily available and
we formulate an extension, appropriate for genetic regulatory
networks, which exploits Bayesian inference and in which the
present-day undersampling is compensated for by prior un-
derstanding of genetic regulation.
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Motivation

The last decade has witnessed stunning advances in exper-
imental biology, particularly in the fields of neuroscience and
genomics, which have made possible “data-driven” biolog-
ical investigations. As examples, the quantitative revolution
of genomics has provided terabytes of transcriptome data;
and neuroscientists routinely record for hours or even days
from multiple neurons simultaneously. This transformation
stands as a challenge to theorists who hope to advance un-
derstanding by making a connection between experiment and
first principles models.†

In genomics, for example, we are presented with the ex-
pression levels of thousands of genes, but our ability to model
is limited not only quantitatively, in that there are myriad
unknown rate constants and binding parameters, but qualita-
tively, in that a sizable fraction of proteins and genes remain of
uncharacterized function.1 Similarly, in neuroscience, we can
model patches of cellular membranes, synapses, and (at least
electro-physiologically) entire cells.2 However, this model-
ing hinges on numerous unknown parameters, and even if we
can perform massive computations involved in the study of
even rather small biological neural networks, the sensitivity to
these parameters still makes the whole approach intractable.
The astronomical amounts of experimental data are troubling

†The mathematization of such models are referred to below as the “micro-
scopic equations”; consider, for example, those of fluid dynamics which
govern, yet certainly fail to encapsulate, such phenomena as turbulence and
the tumbling of a falling leaf.
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computationally, but even more immediate problems are the
lack of reductive descriptions of the underlying phenomena
and undersampling—an inability of the data to determine the
(slightly smaller) astronomical number of important micro-
scopic parameters appearing in theoretical models.

Presented with such an imbalance, it is important to distin-
guish among the possible questions we can ask as well as the
possible tools at our disposal for answering them. That is, we
can ask whatthe system is doing (a non-trivial question when
the language for discovery is an astronomical number of unor-
ganized data) before we ask howit is doing what it does. The
latter involves building models of some microscopic fidelity.
The former may be answered without reference to microscop-
ics by a model-independent, data-driven phenomenological
approach.

A useful historical analogy is that of particle physics of
the late 1950s, in which an explosion of data from accelera-
tors was equally daunting and similarly irreducible. At that
time physicists were not yet asking the howquestions (cross-
sections, isospin multiplets, etc.) but were instead carefully,
statistically, inferring the presence or absence of features in
the data; for example, exploiting prior knowledge of quan-
tum mechanics to constrain reasonable shapes for peaks
in the data (hallmarks of newly discovered particles—the
“resonances”).

In this analogy, neuroscience is still dealing with the ex-
istence of peaks. Indeed, only recently (see Rieke et al.3 and
further works by the same authors) it has become clear that
precise timings of single spikes are very important for under-
standing the neural code. This is a basic, objective, model-
independent observation, and it is not surprising that Shan-
non’s information theory, which was specifically designed
with these types of questions in mind, turned out to be ex-
tremely useful.

In genomics, however, the quantities of interest are easier
to identify; gene expressions are largely governed by the un-
derlying regulation networks. Now is the time to attempt to
infer these networks—still the whatquestion—which corre-
sponds to inferring the peaks in the data. This is a requisite
step before classifying the possible networks and explaining
the classification rules; an answer to how the system does
what it does. Trying to answer howbefore carefully explor-
ing whatmight ultimately produce many epi-manipulations
of the data, but little significant understanding.

In other words, presented with data describing natural phe-
nomena, we should form a phenomenology of experimental
results, then inferences from the data in light of this phe-
nomenology, and finally microscopic models. Genomics is
currently at the penultimate step and, armed with careful in-
formatics, here meaning the incorporation of data with prior
knowledge in the absence of detailed models, we hope to
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reduce the data into a representation which allows descrip-
tion, prediction, and ultimately control.

An example of data reduction convenient for representa-
tion is cataloging of the regulatory networks. However, such
cataloging is not a model-independent task; at the very least,
our microscopic model includes the existence of the net-
works. Furthermore, even if we are only interested in a net-
work’s connection diagram and do not care much about the
exact details of the connections, identification of the network
still involves determination of many parameters. Thus it is not
clear that information–theoretic approaches will be of great
use. However, it is plausible that our intuition of how the un-
derlying microscopic dynamics translates into macroscopic
probabilistic models may play a big role. The main purpose
of this paper is to show that this intuition, appropriately math-
ematized in a principled way as the a priori knowledge—the
priors in Bayesian statistics—may be self-consistently incor-
porated into a macroscopic probabilistic model of process
pathways without detailed, sophisticated modeling of micro-
scopic dynamics. We will first show this on a simple synthetic
example, and then suggest some extensions of the ideas with
an eye towards genetic regulatory networks.

Functional Genomics

As mentioned, the motivating problem here is time series
informatics applied to functional genomics.† We therefore
briefly review genetics and characterize the relevant exper-
iments, the data from which will be used in inferring the
underlying connectivities and possibly control.

A Brief Review of Genetics

The central goal of functional genomics is the understand-
ing of the interactions among distinct parts of the genome:
the genes. Each gene consists of long words composed of
thousands of coding base pairs of DNA which are then tran-
scribed into mRNA, which is then translated into protein.
Many of these proteins, called transcription factors, then
regulate the rate of production of mRNA transcribed either
by their own genes or other genes. The working of all the
genes thus forms a genetic regulatory network, and may be
thought of as a dynamical system. Inputs include elements
of the physical world which affect the activity of the tran-
scription factors, and outputs may be considered as the con-
centrations of the translated proteins or, at a deeper level,
the transcribed mRNA. While the proteins are ultimately re-
sponsible for cellular function, the mRNA are more easily
experimentally measured via DNA microarrays.

A Brief Review of DNA Microarrays

Only recently has it become possible to probe the expres-
sion of a number of genes comparable to the total number
of genes in the entire genome of an organism via microar-
rays of nucleic acids, commonly known as “DNA chips”.
The most common application of such a chip is to moni-
tor simultaneously the expression of thousands of genes by
detecting hybridization of nucleic acid originating from a bi-
ological sample to target nucleic acids lying on the chip. We

†It is important here to differentiate functional genomics, or “post-
genomics”, from sequencing genomics. The latter is the set of techniques
associated with obtaining the genetic sequence of an organism. The former
is the set of techniques which try to put this information to use.

can then probe, for example, the differences in gene expres-
sion between cancerous and non-cancerous cells of the same
specialization,4−10 or the expression of different genes as a
function of the phase of the cell cycle,11,12 or of the response
of cells to chemical or physical perturbation. The two latter
types of experiments produce time series of gene expressions,
and they will be the focal point of our discussion from now on.

The first DNA microarrays were made by Affymetrix
in the early 1990s.13−15 In this technique, DNA oligonu-
cleotides are attached to a surface in a specific spatial pattern,
directed by optically activated chemical synthesis. One can
build an arbitrary oligonucleotide sequence in a small area
(approximately 20 µm per target) on the surface. However,
the initial setup cost of creating the chip makes the technique
infeasible for any application for which less than several hun-
dred masks will be created (and sold). Individual researchers
are completely without flexibility to change the chip to fit a
particular area of investigation.

Functional genomics further benefited from a second tech-
nology in 1996, when Pat Brown’s lab at Stanford introduced
the spot chip.16,17 This highly customizable technique ex-
ploits robotic deposition of drops on a microscope slide. The
automation makes creating new and different slides a sim-
ple operation. Moreover, typically 120 slides at a time can
be created. Individual researchers can thus design custom
experiments, placing genes at locations or redundancies of
their choosing. The gene fragments used in the spotting tech-
nique are hundreds of base pairs in length, and therefore less
sensitive to single base pair mismatches.

Methods

Chemical Network Reconstruction

Genomic data are certainly not the first dynamic data for
which reverse engineering of the interaction network has been
attempted. A similar problem has been faced historically in
chemistry, in which one would like to infer the underlying
reactions responsible for observed data. Such reaction net-
works typically are sparse, that is, the typical connectivity is
far less than the total number of chemical species. This is also
true in genomics, where one gene typically interacts with no
more than a few dozen others.18

To highlight the parallels, we may state the question as
follows. Armed with sufficient temporal data taken from a
number of interacting reagents (here, chemicals), is it possi-
ble to infer the circuit diagram? One possible strategy was
proposed in 1995,19 tested first on simulated data, and later
on the glycolytic pathway,20 and recently refined in light of
ideas from information theory.21 However, this strategy has
yet to be successfully applied to any reactions which were not
known by the authors beforehand, nor subjected to a “blind”
test, as in the annual CASP (Critical Assessment of tech-
niques for protein Structure Prediction) test among the pro-
tein folding community (see http://predictioncenter.llnl.gov).
In addition, unlike in chemical kinetics, where the data are
produced by moderately nonlinear and rapidly interrogated
dynamical systems, genomic data sets are highly undersam-
pled and are more like a set of fuzzy logic gates, or leaky
Boolean circuits. Thus, successful application of techniques
inspired by chemical networks to genomic data is, at best,
doubtful.

We may nonetheless attempt reverse engineering of reg-
ulatory networks with a similar philosophy, in that, rather
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than trying to fit to a precise microscopic model, we attempt
to parametrize a minimal phenomenological model and infer
macroscopic parameters from it.

Synthetic Network Reconstruction

In order to test any new attempt to infer connectivity from
dynamics, it is useful to study a system which is qualitatively
similar, e.g., which demonstrates degrees of freedom which
turn on and off other degrees of freedom in a near-complete or
“fuzzy logic gate” way and for which connectivity is sparse;
yet for which data are readily available and obvious to inter-
pret. To that end, we collected data from a multiuser UNIX
machine, recording the relative CPU usage of all processes
(the analog of mRNA concentration), user ID, and process
name, as a function of time. This can be done in an auto-
mated way via bash script ((GNU) Bourne–Again SHell)
and the results analyzed via MATLAB.

A typical time course, automatically labeled via MAT-
LAB, is shown in Fig. 1 for a particular (anonymous) user at
a large department of applied mathematics.

One axis is the job “number”, ordered by frequency of
occurrence over all users; the other axis is time (roughly in
seconds). The height (and color) indicates CPU usage.

Modeling Synthetic Data

We begin with the minimal probabilistic model of process
pathways, in which the strength of each process at subsequent
time steps is linearly determined by the strength of all current
processes. Similar linear models have been used with some
success in understanding genomic data, including clustering
via dynamics.22 The most general model in discrete time is
the AR(p) model, in which we include the possibility that
the state now is a function of the p previous observations
of the system. We do not yet include the possibility of hid-
den degrees of freedom. Mathematically, we may pose the
model as

gt = w0 + M1gt−1 + M2gt−2 + . . .

+Mpgt−p + ξξξt (1)

〈ξi,tξj,t ′ 〉 = Cij δt,t ′ , (2)

where the degree of freedom at observation t is gt , the tran-
sition matrices are Mj , and the noise correlation C is as yet
undetermined.

We may fit for the most probable transition matrices Mj as
well as the offset w0 and the noise correlation matrix C, using,
for example, the standard Schwartz’s Bayesian Information
Criterion23 to determine the most likely value of p. (See the
section on Bayesian statistics for a brief discussion of this
model selection technique.) Excellent numerical techniques
and general purpose libraries have been designed for solving
this problem.24

Note that we do not claimthe actual interactions among
the processes are linear, as eq (1) seems to imply. Indeed, as
stated above, the exact values of the transition matrices Mj

are of very little interest to us, and we are only interested in the
topological features of the network. It is reasonable to expect
that the absence of a connection between two processes will
be fitted well by a zero in the corresponding transition matrix
element, while the presence of a connection of any type will
result in its non-zero value. The mismatch between the linear
form of eq (1) and the actual dynamics will manifest itself

in a large variance Cij . However, if we are not interested in
the exact values of Mj , this should not adversely effect our
determination of connections.

Results

Fitting the observed CPU usages to the transition state
model, we find that the most probable p value is 1, indicating
a lack of inertia in the system; the resulting transition matrix
M1 is plotted in Fig. 2. The noise covariance matrix was quite
small, despite the naïveté of the model.

Causal connections between jobs are labeled with “→”,
e.g., “emacs→latex” or “emacs drives latex”. We
highlight several remarkable features:

1. Processes familiar to anyone who has used the type-
setting software LATEX will be readily apparent: one
edits a file (e.g., in emacs, xemacs, or vi), then
compiles with latex, and views the result in xdvi
and finally ghostscript (“gs”). Similarly one observes
emacs drives latex, latex drives gs, etc.

2. Note that the matrix is not symmetric; one axis de-
scribes processes which “activate” other processes; the
second describes which process is acted on. For exam-
ple, latex drives ghostscript but ghostscript does not
drive latex.

3. The transition matrix shows “upregulation” as well
as “downregulation”: some processes discourage other
processes at later times.

4. Diagonal elements have not been labeled as they sim-
ply describe the likelihood the process will continue
on to the next time step.

5. Note also how the transition matrix correctly infers the
highly sparse connectivity of these disparate jobs. The
vast majority of elements are 0, as they should be, since
processes are not influenced by those called by other
users.

For comparison, in Fig. 3 we also show an example of
a transition matrix when the CPU usages are replaced with
randomly generated data. Any reasonable structure is absent
here. These results are in accord with our intuition that the
proposed probabilistic model for data reduction, eq (1), al-
though an incomplete description, still leads to a reasonable
reconstruction of network connectivity.

Modeling Gene Regulation

In the example above, as mentioned, data are plentiful.
In genomic time series, data are scarce. However, the above
exercise is designed to test a phenomenological model into
which we can incorporate additional knowledge about ge-
netic regulation. This goal, constraining possible models by
compensating for sparse data with prior knowledge, is math-
ematized via Bayesian analysis.

We emphasize that we are not using Bayesian analysis
to attempt to fit for the innumerable unknowns in a micro-
scopic model, e.g., a chemical kinetics model of transcrip-
tional regulation. We are not interested in these parameters
but in couplings and network topology. We instead augment
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Fig. 1—CPU percentage for all the processes called by a particular user during the observation (approximately 103 seconds).
Processes are numbered according to their relative frequency over all users during the observation time.

Fig. 2—The transition state matrix M1 resulting from the data in Fig. 1

the successful phenomenological or “macroscopic” model
above with prior knowledge about transcriptional regulation.

Bayesian Statistics

A brief summary of Bayesian statistics is in order. We refer
the interested reader to standard textbooks (cf. Press25) for
discussions of philosophical implications of Bayesian statis-
tics, as well as standard statistical properties of Bayesian es-
timators. We focus below only on the relevant features.

Bayes rule itself,

P (b|a) = P (a|b)P (b)

P (a)
, (3)

is merely a rewriting of the rules of joint probabilities. The
connection with interpretation of experiments is made by
identifying b as the model, or specifically the vector of pa-
rameters θθθ of the model; and a as the data D. Then
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Fig. 3—The transition state matrix M1 resulting from random data

P (θθθ|D) = P (D|θθθ)P (θθθ)

P (D)
, (4)

P (D) =
∫

dθθθ P (θθθ, D) =
∫

dθθθ P (D|θθθ)P (θθθ). (5)

In eq (4), the left-hand side is called the posterior, and the
first term in the numerator in the right-hand side is called the
likelihood. The strength of Bayesian methods comes from
P (θθθ), the prior. The prior summarizes knowledge about the
probability of a model beforethe results, D, of an experi-
ment are observed. When experimental data are abundant, the
exact specification of the prior is usually unimportant;26,27

when data are scarce the prior constrains the space of avail-
able models. While careless a priori assumptions may con-
strain the observer to the wrong part of the model space, in
the analysis of genetic regulatory networks we may exploit
well-established knowledge about transcriptional regulation
to construct appropriate priors, as we illustrate in the section
on biological priors.

Armed with the prior, we next find the a posteriori expected
value of the parameters

〈θθθ〉D =
∫

dθθθθθθP (θθθ|D) =
∫

dθθθθθθ P (θθθ)P (D|θθθ)

P (D)

≡ 〈θθθ P (D|θθθ)〉
〈P (D|θθθ)〉 ,

(6)

where 〈. . .〉 and 〈. . .〉D denote expectations over the prior
and the posterior respectively. When the number of data N
is large we expect the posterior to be tightly peaked around
some value θ̂θθ which maximizes the posterior (maximum a
posteriori probability, or MAP, values), and then θ̂θθ is the first-
order term in the saddle-point asymptotic expansion of 〈θθθ〉D

in powers of 1/N .
Even for severely undersampled problems, N is usually

large enough so that θ̂θθ ≈ 〈θθθ〉D , and it is tempting to replace

integrals in eq (6) by their saddle-point values. One of the
greatest realizations in Bayesian theory in the last decades
was that such replacement is wrong.23,26,28−30 Indeed, when
averaging over all possible models, each of the integrals in
eq (6) will have a contribution from fluctuations around the
value θ̂θθ. For example, under some very general conditions,
and with an assumption that log P (D|θθθ) scales linearly in the
number of data, the total probability of the data, P (D), has
the following expansion in powers of 1/N

log P (D) = log P (D|̂θθθ) − K

2
log N

− 1

2
log det

[
∂2

∂θi∂θj

∣∣∣∣̂
θθθ

log P (D|θθθ)

N

]
+ log P (̂θθθ) + o(N0) ,

(7)

where K is the number of parameters in the model (dimen-
sionality of θθθ). The integral in the numerator of eq (6) can
be written in a similar fashion. We see that the terms beyond
the maximum likelihood contribution log P (D|̂θθθ) are gener-
ally negative and their magnitude grows with K . Thus, these
terms provide a built-in punishment for model complexity.
For this reason, they are known in the literature as the Occam
razor.30

To illustrate, imagine that the prior admits two model fam-
ilies Θ1 and Θ2 with different parameters θθθ1 and θθθ2, such
that K1 ≡ dim θθθ1 < K2 ≡ dim θθθ2. As an example, consider
fitting a function with a polynomial of low degree (K1) or
high degree (K2). Usually we would expect the model fam-
ily with more parameters to be better at explaining the data:

P (D|θ̂θθ2) > P (D|θ̂θθ1). Thus, if we were to choose a model
family that explains the data best based on the maximum
likelihood alone, a more complex model would win. How-
ever, the estimates within the larger model family, Θ2, are
less robust to small fluctuations, and this is picked up by the

integration over all parameters; even though P (D|θ̂θθ1) may be
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smaller than P (D|θ̂θθ2), the relation between the probabilities
of the model families P (Θ1|D) and P (Θ2|D), as determined
by eqs (6) and (7), may be different. In particular, for N � 1
the likelihood term, which scales linearly with N , always
wins, and Bayesian model selection approaches that of the
maximum likelihood. However, for small N the difference
between the likelihood and the other terms in eq (7) is less
profound, and a simpler model family, which is not the best
in explaining the data, may turn out victorious.

In short, Bayes rule shows how a simpler model may be
less likely, yet more probable.

Before ending our quick review of Bayesian statistics,
two more comments are in order. First, as the model se-
lection arguments are mostly important for small N , where
log N ∼ 1, it would be a mistake to ignore O(1) terms in
eq (7) and use just K/2 log N as a model complexity pun-
ishment (Schwartz’s Bayesian Information Criterion,23 men-
tioned earlier). In particular, we believe that such replacement
may be a cause of a common observation that the Bayesian
Criterion overpunishes complex models.31 Secondly, even
though in this paper we mostly deal with finite parameter
models, application of non-parametric methods to biologi-
cal data certainly holds promise. Occam-type arguments for
such cases have been discussed, for example, by Bialek and
co-workers.27,32

Bayesian Inference of Regulatory Dynamics

A SIMPLE MODEL

Let gt denote the vector of expressions (mRNA con-
centrations) of genes in a microarray experiment at time
t = 1, 2, . . . , T , T + 1. The number of genes, Kg ≡ dim gt ,
can be of the order of thousands, but T is less than a hundred.
In principle, gt+1 can depend on concentrations at all times
that preceded t + 1. However, if we view the gene expres-
sion mechanism in cells as a realization of some chemical
kinetics, governed by first-order differential equations, then
it is reasonable to expect that the concentrations depend only
on their immediate past, i.e., gt+1 = f(gt ).† We begin with
the simplest possible dynamic, a simplified version of eqs (1)
and (2)

gt+1 − gt = Mgt + ξξξt , (8)

〈ξi,tξj,t ′ 〉 = σ2 δij δt,t ′ , (9)

where the noise is Gaussian, and M and σ are unknown. This
is equivalent to

P (gt+1|gt , M, σ) = 1(
2πσ2

)Kg/2
exp

[
− 1

2σ2

∣∣δgt

∣∣2] , (10)

and

†Support for this choice is strong, as such models have been used with
great success in the design of small genetic networks (see, for example,
Hasty et al.33 for a review). Furthermore, in a study clustering genes by
their dynamics, Ramoni et al.22 tested higher-order models, but found that
the first-order dynamics gave the most probable result.

P ({gt �=1}|g1, M, σ) = 1(
2πσ2

)T Kg/2

exp

[
− T

2σ2

〈∣∣δgt

∣∣2〉
t

]
(11)

where δgt ≡ gt+1 − gt − Mgt , and 〈ft 〉t ≡ 1/T
∑T

t=1 f (t)
indicates empirical averaging over time.

Notice that unlike in eqs (1) and (2) the noise in this model
is not correlated among the genes; moreover, variances are
equal for all genes. Below we formulate an extension that
incorporates hidden degrees of freedom (e.g., biochemistry)
whose omission may otherwise lead to large or correlated
noise (cf., the section on hidden control). However, with only
a handful of experiments available we cannot hope that data
will be able to determine millions of elements of a full co-
variance matrix. As data become more plentiful, it may even
make sense to bypass eqs (8) and (9) completely and pur-
sue model independent feature extraction (as formulated in
the first two subsections of the Outlook section). Below we
pursue the possibility that the current simple model exhibits
some of the success evidenced in the Results section.

BIOLOGICAL PRIORS

Even in the simplistic form of eqs (8) and (9), the dynamic
still contains too many parameters (∼ K2

g ) to be tractable. We
therefore search for biologically motivated priors to constrain
the possible values of M. An example of such a prior would
be, for example, that genes with similar regulatory sequences
should be regulated similarly. More directly, genes whose
promoters have similar numbers of certain important motifs
should be co-expressed, an ansatz used with notable success
by Bussemaker et al.34 in discovering regulatory regions.

This may be expressed in the following prior

P (M|µ, �) ∝ exp−�2

2

Kg∑
i �=j,k

(
Mik − Mjk

dij

)2

− µ2

2

Kg∑
ij

M2
ij

 ,
(12)

where the first term punishes for different regulation of genes
with similar regulating sequences, and the second assures
proper normalization of priors by effectively constraining the
range of possible Mij .† Here dij is a distance function mea-
suring deviation between regulatory regions of genes i and j
in terms of the number of each regulatory motif appearing,
weighted by the relative importance of that motif, found by
considering the entire time series as in Bussemaker et al.34

or “quality factors” as in Bussemaker et al.35.
The parameter � plays the role of a smoothing length, as in

Bialek et al.,32 and, lacking a first-principles estimate of its
value, we must integrate over �, weighted by an appropriate
prior. As explained in Nemenman and Bialek,27 it is not only
likely that such integration will choose the proper value of �
almost independently of such prior, but it may even balance a
slightly improper choice of the distance measure dij and the
difference form (Mik −Mjk)2. The same comments relate to
the mass µ and the noise variance σ as well.

†Physicists will recognize these as the “kinetic” and “mass” terms in a
Lagrangian, respectively.
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An enjoyable feature of this prior is that, like the likeli-
hood, eq (10), it is exponentially quadratic in the unknowns
M. Thus, the posterior expectations are Gaussian integrals,
which may be performed analytically using the standard
Wigner current technique.36 Following eq (6) we find for
the a posteriori values of the connection matrix:

〈
Mij

〉
D

= ∂

∂Jij

∣∣∣∣
J=0

log Z(J) , (13)

Z(J) =
∫

dσ dµ d�P (σ)P (µ)P (�)

[
det A

det(A + G)

]1/2

× exp

[
1

2
(B + J) (A + G)−1 (B + J)

]
. (14)

Here the curvature tensor A at the saddle point of eq (12) is
given by

Aij,kl =
µ2 + �2

Kg∑
m

(
cmj + cmi

) δikδj l

− 2�2cikδj l (15)

and the time-lagged correlation, equal-time correlation, and
“closeness” (the inverse of the distance matrix) matrices are

B = 1

σ2

〈
(gt+1 − gt )gT

t

〉
t

(16)

G = 1

σ2

〈
gt gT

t

〉
t

, G = I ⊗ G , (17)

cij =
{

d−2
ij if i �= j,

0 if i = j .
(18)

The mass µ regulates the integrals and is expected to be
small. Then det A/ det(A+G) scales as a large positive power
of �2/(�2+const), and therefore decreases as � decreases. On
the other hand, the exponent in eq (14) involves (A + G)−1,
which scales as 1/(�2 +const) for large �. The exponent thus
decreases as � increases. We may then reasonably expect that
the integrand in eq (14) will be peaked at some non-trivial
value of �; this peak should be sharp since both B and G
involve a large number of samples. This may be viewed as
the smoothing length selection by the data.27

Note that the priors over the hyperparameters σ, µ, � in
eq (14) are as yet undefined. Since, as mentioned above (see
also Clarke and Barron26), their actual forms are of little im-
portance, we may hope that by choosing them appropriately
we may be able to render the integrals in eq (14) analytically
tractable.

HIDDEN CONTROL

The formalism deserves experimental testing. However,
one further extension offers a substantial improvement. DNA
microarrays offer only a partial view into the workings of a
cell, since numerous important degrees of freedom remain
unobserved. In mathematical modeling of the yeast cell cycle,
for example, considerable effort—see, for example, Tyson
et al.37 for a review—has been exerted to fine-tune models
in which only chemistry controls the processes, and the ge-
netic expression is a mere passive function of this chemical

control. While this may or may not prove to be an accurate
characterization, some chemical control unobserved by gene
chip experiments certainly exists. Inclusion will clearly ne-
cessitate a model of some structure other than that of eq (8).
Unlike the assumption of linearity, which merely leads to
misestimation of the values of interactions, this effect may
make the dynamical system appear to be not of first order, or
introduce a gene-dependent noise correlation matrix and ar-
tificial couplings between genes that dominate the real ones.
To avoid this, we need to supplement the vector of genes g
with a vector of unknown hidden degrees of freedom h. Then
the evolution will take form(

gt+1 − gt

ht+1 − ht

)
=

(
Mgg Mgh

Mhg Mhh

)(
gt

ht

)
+
(

ξξξt

ηt

)
,(19)

〈ξi,tξj,t ′ 〉 = σ2 δij δt,t ′ , (20)

〈ηi
tη

j

t ′ 〉 = Vij δt,t ′ . (21)

Within Bayesian analysis, we may integrate over the un-
known degrees of freedom and their possible couplings while
remaining agnostic about the identities of h, and similarly
sum over their possible dimensionality Kh. As data are scarce,
it is reasonable to expect that models with a small number
of hidden units will dominate the posterior. Thus, we allow
a full correlation matrix for the Gaussian noise in the hidden
units, ηt , since this adds only a few additional parameters to
our model (Mgg , of course, has a few million), but allows
necessary flexibility.

With such phenomenological model, the analogs of
eqs (10) and (11) are

P (xt+1|xt , M, σ, V) =
1(

2πK det Σ
)1/2

exp

[
−δxT

t Σ−1 δxt

2

]
, (22)

and

P ({xt �=1}|x1, M, σ, V) =
T(

2πK det Σ
)1/2

exp

[
−T

2

〈
δxT

t Σ−1 δxt

〉
t

]
. (23)

Here, of course, xt denotes the vector of joint expression of
genes and hidden controls at the time t , and the dimension-
ality of this vector is K . Σ is the covariance matrix of the
combined noise, which is diagonal in its gg part, has V for its
hh part, and is zero elsewhere, and M is now the combined
transition matrix.

Now we integrate out the unobservable concentrations of
hidden regulatory units. Notice that we leave all of the cou-
pling matrices untouched. Thus, with no information about
the concentrations and identities of the controls we will still
be able to later specify which genes interact with them:

P (gt+1|gt , M, σ, V, h1) =
1(

2πK det Σ
)1/2

exp

[
−δxT

t Σ−1 δxt

2

]
. (24)

We will need a prior over newly introduced M. Since
chemistry couples to expression via the transcription factors,
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and therefore via the regulatory sequences, we can write a
similar prior as above, namely

P (Mgh|µgh, �) ∝

exp

−�2

2

Kg∑
i �=j

Kh∑
k

M
gh
ik − M

gh
jk

dij

2

− µ2
gh

2

Kg∑
i

Kh∑
j

(M
gh
ij )2

 ,

(25)

with a different mass, but the same kinetic term as in eq (12).
In the absence of precise identification of the hidden degrees
of freedom, we lack a biological prior on Mhg, Mhh and
must therefore choose a prior that does not spoil the analytic
tractability of the resulting integrals, such as

P (Mhg(hh)|µhg(hh)) ∝ exp

−µ2
hg(hh)

2

Kg∑
i

Kh∑
j

(M
hg(hh)
ij )2

 .

(26)

Performing calculations similar to those that led to eq (14)
we then obtain〈
M∗∗

ij

〉
D

= ∂

∂J ∗∗
ij

∣∣∣∣∣
J=0

log Z(J) , (27)

Z(J) =
∫

dσ dµ d�P (σ)P (µ)P (�)

[
det A

det(A + G)

]1/2

× exp

[
1

2
(B + J) (A + G)−1 (B + J)

]
. (28)

Here the curvature tensor A at the saddle point of eq (12) is
given by

Aij,kl =
µ2 + �2

Kg∑
m

(
cmj + cmi

) δikδj l

− 2�2cikδj l (29)

and the time-lagged correlation, equal-time correlation, and
“closeness” (the inverse of the distance matrix) matrices are

B = 1

σ2

〈
(gt+1 − gt )gT

t

〉
t

(30)

G = 1

σ2

〈
gt gT

t

〉
t

, G = I ⊗ G , (31)

cij =
{

d−2
ij if i �= j,

0 if i = j .
(32)

SPARSENESS

Equation (28) may look easy, but it is not. It involves in-
verting a matrix A, which (even if we do not count the hidden
degrees of freedom as in eq (25)) has dimensions of Kg ×Kg,
and is computationally intractable even for simple organisms
such as yeast with their roughly 6000 genes. So if the graph
of interactions between the genes is nearly complete, then
no amount of experimental data or computational power will

be enough for a meaningful inference of the network’s topol-
ogy. We have to assume that the gene regulation networks are
sparse. This agrees with our intuitions of some small number
of agents promoting large cascades of metabolic reactions.
Luckily, such an assumption seems also to be supported by
some preliminary experimental data.38 One way of enforc-
ing sparseness is to specifically search for the network that
explains the data but has the smallest number of connections;
see, for example, Yeung et al.39

Outlook

The main difficulty in obtaining time series data is not
biological or technological, but rather financial. Affymetrix
chips, the more reliable of the two dominant technologies,
are quite expensive. As estimated by Langmead et al.,40 a 24-
point time series with replication factor of 3 currently costs
∼$57,600. As the cost of the technology decreases, and as
data become more plentiful, the role of priors in inferring
connectivity and possible causation diminishes.

Moreover, as noted before, with increasing data comes
the possibility of model-independent, non-parametric feature
extraction by learning the joint probability distributions of
expression levels at different times (cf., Bialek et al.32). We
highlight two promising such directions below.

Mutual Information and Entropy Distance

A completely model-independent visualization tool of in-
formatics is a low-dimensional embedding of the connectivity
diagram of the multiple genes via some meaningful metric.
To this end, armed with a successfully learned joint proba-
bility, we may use information theory to define distance in a
principled way.

An example of such a diagram based on information the-
oretic ideas is presented for simulated chemical kinetics in
Samoilov et al.,21 in which the mutual information

I (i → j) =
∫

dgidg+
j P (gi, g+

j ) log2(
P (gi, g+

j )

P (gi)P (gj )

)
(33)

was used for embedding, with the time-lagged joint probabil-
ity of degrees of freedom P (gi, g+

j ) ≡ 〈P (gi(t), gj (t +τ))〉t

learned by histogramming. While mutual information is a
useful similarity measure, it is not a distance in that it
does not obey the triangle inequality. However, the “entropy
distance”

DH (i → j) = −
∫

dgidg+
j P (gi, g+

j ) log2(
P (gi, g+

j )2σiσj

P (gi)P (gj )

)
(34)

does obey the triangle inequality41 and thus can be used as a
metric, based on which we can form an embedding in lower
dimensions and construct a process diagram as did Arkin and
co-workers.19−21 Here, by σ{i,j} we mean the uncertainties in
measurements of g{i,j}, respectively. Note that this distance is
reparametrization invariant under monotonic reparametriza-
tions x → f (x); y → g(y), σx → σf /f ′, etc.

368 • Vol. 43, No. 3, September 2003 © 2003 Society for Experimental Mechanics



Clustering by Meaningful Information: The Information
Bottleneck

Clustering without identifying a specific property of in-
terest is meaningless. In most cases, if we try to learn from
data (fit a curve, select a model, extrapolate, cluster, etc.) we
are doing so not to find the parameters per se, but to use them
to make predictions of future data.42 Thus, in dynamics the
variables of relevance are the future gene expressions, and we
should cluster data by maximally compressing them while re-
taining the most information about the subsequent time steps.
(In contrast, genes are usually clustered by similarity of their
expression levels measured in some ad hoc metric.12,31)

This idea was put on firm information–theoretic ground re-
cently with the development of the information bottleneck,43

which, given a joint probability distribution between degrees
of freedom (e.g., gene expressions at some time) and a quan-
tity of interest (e.g., gene expressions at subsequent times),
allows an iterative calculation of the meaningful clusters in a
probabilistic clustering algorithm.

An important aspect omitted from current formulations of
the information bottleneck is Bayesian integration over pos-
sible joint probability distributions; this procedure smoothes
the data and avoids clustering noise. We expect that this will
be one of the most promising as well as principled lines of
research in bioinformatics.

Prognosis

The future is promising for such data-driven techniques;
data are becoming more plentiful, computational power con-
tinues to exponentiate, and the data themselves are becoming
more reliable, as those who hope to interpret them study more
carefully their statistics and analyses. (See, for example, Naef
et al.44,45 for one such careful analysis of Affymetrix data
and Affymetrix’s standard data analysis.) However, before
any new techniques in computational biology will be widely
exploited, they must be “verified” by comparing with results
agreed upon in the biological community. In this case, veri-
fication will entail corroboration of inferred causal relations
among genes (or within an inferred module of genes) with
the biological literature. We anticipate that such time series
based techniques will find common usage as tests for con-
sensus with known connectivities becoming more standard-
ized, and we look forward to their continued development and
implementation.
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