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ABSTRACT The electric charges on an enzyme may move concomitantly with a conformational change. Such an enzyme will
absorb energy from an oscillating electric field. If in addition the enzyme has a larger association constant for substrate than
for product, as is often true, it can use this energy to drive the catalyzed reaction away from equilibrium. Approximate
analytical expressions are given for the field-driven flux, electrical power absorbed, free-energy produced per unit time,
thermodynamic efficiency, and zero-flux concentrations. The field-driven flux is written as a generalized Michaelis-Menten
equation.

FOUR-STATE MODEL

Recently, a simple paradigm for free-energy transduction
by an enzyme has been introduced (1-4). This involves
considering an external oscillating field as the energy
source and investigating the rate and efficiency with
which an enzyme can use this energy to drive a chemical
reaction away from equilibrium. The effect will be larger
for membrane enzymes because an externally applied
electric field is greatly magnified in the membrane. Also,
the membrane prevents the enzyme from rotating and
thus escaping the effect of the field.
The paradigm developed in an effort to explain experi-

ments with transport enzymes. Tsong and co-workers
(5-11) have observed the effect of an oscillating electric
field on the transport of Rb+ (an analogue of K+) and
Na+ by Na+-K+-ATPase in erythrocytes at 30C. The net
movement of ions was independent of ATP concentration
but did depend on the frequency and amplitude of the
field. The maximum effect on Rb+ transport occurred at 1

kHz, and the maximum effect on Na+ transport occurred
at 1 MHz. References 6, 7, 10, and 11 compare the
predictions of the paradigm with experiment.

In the present paper, we take an analytical approach to
a catalyzed chemical reaction that is a generalization of
active transport. Approximations suggested by numerical
calculations (12) yield simple analytic formulas for the
field-driven uphill flux, power absorbed and produced in
the process, thermodynamic efficiency, and zero-flux
concentrations. The equation derived for the flux is a
generalization of the Michaelis-Menten equation in which
it is clear that the oscillating field can drive the chemical
or transport reaction away from equilibrium. Thus, the
usefulness of the Michaelis-Menten equation in designing
and understanding experiments is extended to membrane
enzymes in an oscillating electric field.

Consider an enzyme molecule that catalyzes the reaction
S P. It has two electrically distinct conformational
states, E with the binding site for the substrate S exposed,
and E* with the binding site for the product P exposed.
For simplicity, we assume S and P are constant concentra-
tions and that the reaction S P is not electrogenic. The
interaction with the electric field occurs only by electrocon-
formational coupling, i.e., the E* forms have a different
arrangement of charges than the E forms. Our analysis
can easily be generalized to electrogenic reactions.
We assume that all interconversions between states

may be treated as either unimolecular or pseudo-first-
order transitions. Then, a simple cycle for the enzyme can

be described by the four-state kinetic model

SE - E*P
k-210

k

l k-l k_ k_3 ', ~
E_1 k4 0

k4 0

(1)

This is a reasonable model for many enzyme-catalyzed
processes, including proline racemization (13) and mem-
brane transport (14).
The effect of the electric field is given by 0. In zero field,

0 = 1. When an electric potential A is turned on, the
energy of the state E*P is decreased relative to the state
SE by q/, where q is the effective enzyme charge that
moves with a conformational change, and 41 is the
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potential difference through which the charge moves.
Thus, the electric potential causes the equilibrium con-

stant for the reaction SE E*P to be multiplied by
exp (qII/RT). The equilibrium constant equals the ratio
of the rate coefficients. We can apportion any fraction of
the exponent qip/RT to one rate coefficient (with the
complementary fraction to the other) and get similar
results regardless of the fraction. For simplicity, we

apportion half of the exponent to each rate coefficient.
Thus, the effect of the electric potential on the transition
SE E*P in Eqs. 1 is given by the factor

0 = exp (q0/2RT) (2)

in the rate coefficients for that transition. Similarly, the
energy of the state E* is decreased relative to the state E
by qV,, and the effect of the electric potential on this
transition is given by the factor X in the rate coefficients.
The rate equations for the four enzyme-state concentra-

tions in Eqs. 1 are

dE/dt = (k,)SE + (k4/4)E* - (k 40 + k,S)E, (3a)

dSE/dt = (k,S)E + (k-2/0)E*P - (k2O + k1)SE, (3b)

dE*P/dt = (k24$)SE + (k-3P)E* - (k-2/4 + k3)E*P, (3c)

dE*/dt = (k-44)E + (k3)E*P - (k4/l + k-3P)E*. (3d)

Applying an oscillating electric field gives rise to the
oscillating potential

A = A, cos wt. (4)

We do not add a constant potential because the resulting
factor that would appear in 0 in Eq. 2 can be absorbed in
the rate coefficients in Eqs. 3. With Eqs. 2 and 4 inserted,
the differential Eqs. 3 have periodic coefficients, and
hence in the steady state after any transient has decayed,
the four enzyme concentrations are also periodic.

Although this problem is much too complicated to solve
analytically without approximation, we have solved it
numerically (12). Graphs of the rate vs. frequency for
eight sets of values of the rate coefficients are given in
Figs. 1 and 2. In this paper we will obtain an approximate
analytic solution valid on the highest plateau of Fig. 2. On
this plateau the rate, power produced, and efficiency of
energy transduction are constant and maximum as a

function of frequency.

APPROXIMATIONS

Many enzymes, including transport enzymes, have a
larger association constant for substrate than for product.
A large association constant for substrate implies that the
concentrations satisfy E << SE, and a small association
constant for product implies E*P << E*. Furthermore, in

10-1 1 10 102 103 104
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FIGURE 1 Rate of catalyzed reaction vs. frequency (in relative units)
for five values of substrate-association and product-dissociation con-
stants. The label for each curve is the value of the following equilibrium
constants for the catalytic cycle in Eq. 1: substrate-association constant
K,, product-dissociation constant K3, and conformation-change equilib-
rium constants K1 'and K4- ', which all equal each other. The substrate
dissociation rate coefficient k-,, the product association rate coefficient
k 3, and the conformation-change rate coefficients k2 and k4 all equal 1.
The substrate and product concentrations S and P both equal 1, and the
electric interaction energy qI,/RT is 1. This graph shows that increas-
ing the substrate-association and product-dissociation constants, with
the conformation-change coefficients k2 and k4 unchanged, causes the
peak rate of reaction to increase until the rate develops a plateau, which
broadens with further increases. The rate is identically zero when the
equilibrium constants all equal one.

order for the catalyzed reaction to go fast, the conforma-
tion exchanges, between SE and E*P and between E and
E*, should be faster than the association/dissociation
exchanges. These conditions follow (5) from the inequali-
ties

k_40>>k4/1, k, kkS,

k-2/0>> k2o, k-3P, k3.

(5a, b, c)

(Sd, e, f)

Frequency

FIGURE 2 Rate of catalyzed reaction vs. frequency (in relative units)
for four values of conformation-change rate. The label for each curve is
the value of the conformation-change rate coefficients k2 and k4. The
substrate dissociation rate coefficient k, and the product association
rate coefficient k 3both equal 1. The equilibrium constants are the same
as for the 102 curve of Fig. 1, and so the curve labeled 1 in this figure is
the same as the 102 curve of Fig. 1. This graph shows that increasing the
conformation-change coefficients, with the equilibrium constants un-
changed, causes the peak rate of reaction to increase until the rate
develops a plateau, which broadens with further increases. The calcula-
tions of rate and efficiency in this paper are valid on the highest plateau
of this graph.
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The inequalities 5a and Sb make E small, and the
inequalities 5d and 5e make E*P small, and so the
derivatives of these quantities in Eqs. 3a and 3c are
negligible. This is the steady-state approximation. We
can use these equations to eliminate E and E*P in the rate
Eq. 3d for E* and use the total enzyme concentration,
ET= SE + E*, to eliminate SE. Then E* is the only
unknown, and it satisfies

equation

V= AET(KSIO2- P)/(1 + P/KM + S/KM+), (10)
where K = KIK2K3K4 is the equilibrium constant of the
reaction S ± P,

KM+ = (kcat+ + kCa )/k1K4KO,
KM- = (kcat+ + kcat )/k_3,

(1 la)
(1 b)

dE*/dt = a- -IE*, (6)

where, after simplification using the inequalities 5c and
5f,

=(k + K2k32) ET,

T-' = k_, + K2k3q52 + k_3P + k1K4SI-2.

(7a)

(7b)
Here K2 is the equilibrium constant k2/k-2, etc.
The reduction from four unknowns to one considerably

simplifies the problem. However, r-' and af involve 4,

which is a periodic function of time. So, although Eq. 6
can be solved formally, the solution still cannot be written
in a useful form without approximation.
An approximate solution to Eq. 6 for E* is obtained as

follows. At intermediate frequencies, on the highest
plateau of Fig. 2, numerical calculations show that E* is
very nearly independent of time. To compute the value of
this constant, average Eq. 6 over one cycle and solve for
E* to get

E*

where a andT- I are averages of Eqs. 7 over one cycle. This
corresponds to the exact infinite-frequency solution ob-
tained previously (4). The average of 02 and A-2 in these
expressions equals the function Io (q4/j1RT). Let z =

q/II/RT. The function Io (z) equals 1 when z << 1 and
approaches eZ/(2irz)l/2 when z >> 1. More precise values
for this function can easily be computed or looked up in a
table (15).

RATE OF REACTION

The instantaneous net rate of association of substrate is

VI = k,K4S-2E*-kk(ET- E*), (9)

where a term has been neglected by using the inequality
Sa. The time average of this equals the average net rate of
each of the other three transitions. These equal the
average rate of clockwise cycling of the enzyme and the
average rate V of the catalyzed reaction. To compute
V observe that at intermediate frequencies, on the pla-
teau, E* is constant. Insert Eq. 8 into Eq. 9 and average
over a cycle to get the generalized Michaelis-Menten

are the Michaelis constants for substrate and product,
respectively,

kcat' = K2k3IO,

kcat- =k
(12a)
(12b)

are the maximum catalytic rate coefficients in the forward
and reverse directions, respectively, and

A = kcat+/KM+KIO2= kcat /KM-, (13a, b)

is a coefficient. These equations have a form that is
familiar from steady-state enzyme kinetics (16-18). Eq.
10 reduces to the usual Michaelis-Menten equation for
S -+ P when P = 0 and Eq. 13a is used. It reduces to the
Michaelis-Menten equation for P -+ S when S = 0 and Eq.
13b is used. The effect of the oscillating electric field is
given by the function I0, which appears in the numerator
of Eq. 10, in the Michaelis constants, in kcat +, and in the
coefficient A. Eq. 13b is a generalization of the Haldane
equation (16, 19), to which it reduces in zero field
(IO = 1). When k,t+ is determined in the usual way both
in zero field and in nonzero field, the ratio of these two
values gives a value for Io, which in turn can be used to
determine qi/'/RT and, thus, q.
The oscillating field has several interesting effects. It

shifts the zero-reaction-rate condition in Eq. 10 to P =

KS!02. Also, even if kcat+ = katj in zero field, we have
k + >> k - when the field is very large. A very large field
makes the enzyme kinetically irreversible even if it is not
irreversible in zero field. Furthermore, as the field in-
creases, the Michaelis constant for substrate decreases,
and the Michaelis constant for product increases. These
effects on the Michaelis-Menten parameters of the en-
zyme are manifested in an ac-field-induced dramatic
increase of the downhill rate when AG is slightly negative.
This may be important in understanding the effect of very
weak electric fields on biological systems (20).

However, the most striking conclusion from Eq. 10 is
that, in the interval 1 < P/KS cI02 the oscillating field
makes V> 0, which means that it drives the reaction S 2±
P away from equilibrium. This is shown in Fig. 3, in which
the reaction rate is plotted vs. AG = In (P/KS). A
qualitative explanation of how the oscillating field drives
the reaction from equilibrium is given in Fig. 4. This
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FIGURE 3 Reaction rate (upper graph) and efficiency of energy trans-
duction (lower graph) vs. AG/RT = In (P/KS) for three values of
electric interaction energy 41I/RT, where K is the equilibrium constant
between substrate S and product P. The parameters used to draw these
curves are: Zero-field maximum-catalytic-rate coefficients k.,+ and
kcat both equal to one in relative units, and Michaelis constants for
substrate KM+ and product KM- both equal to two in relative units.
These values correspond to those for the highest plateau of Fig. 2. The
upper graph shows that when q4,/RT is nonzero there is an interval of
AG over which the rate is positive even though AG is positive. This says
that the oscillating electric field causes the enzyme to drive the reaction
away from equilibrium in that interval. The interval, found to be 1 <
P/KS < Io' in the text, increases with increasing q4'1/RT. The lower
graph shows that the efficiency of energy transduciton from the
oscillating field is positive in the same interval.

explanation applies at all frequencies, even on the plateau
where the concentrations E* and SE are very nearly
constant since there the fluxes still cycle as described in
Fig. 4.
These effects do not occur in a constant electric field. A

derivation similar to that of Eqs. 10-13 can be made for a

constant potential it. The result is the same except that I02
in the numerator of Eq. 10 is replaced by 420-2 = 1, the I0
in kct' is replaced by 02, and the I0 in KM' by A-2. We see

that, in a constant electric field, the zero-flux condition,
P = KS, does not depend on q//RT. As expected, the
reaction always proceeds toward equilibrium. This is in
contrast to the prediction of Eq. 10 for an oscillating field.

EFFICIENCY OF ENERGY
TRANSDUCTION

The power exerted by the enzyme when it cycles is

Plut= VAG,

FIGURE 4 Free energy of the enzyme states of Eq. 1 vs. reaction
coordinate for zero, positive, and negative electric potential 1'. These
curves show qualitatively how an oscillating electric potential can cause
an enzyme to catalyze a nonelectrogenic reaction away from equilib-
rium. The dotted curves in both graphs are for zero potential. For
simplicity we have chosen K, = K2-' = K3 = K4- > 1 and S = P = 1
as in Figs. 1 and 2. Thus at zero potential the energy levels of states SE
and E* are equal and lower than those of states E and E*P. So at
equilibrium the concentrations of states SE and E* are equal and much
larger than those of states E and E*P. When the potential is positive, the
energies shift from the dotted to the solid curve in the upper graph. The
changes in state energies and activation-barrier heights follow from Eqs.
1 and 2. Because E* is more stable than SE, the system must relax
toward a new equilibrium, and so SE must convert to E*. Because the
activation barrier for the transition via E*P is now lower than for the
transition via E, the relaxation goes mostly through E*P, thus releasing
more P than S. When the potential is negative, the energies shift from
the dotted (zero potential) curve to the solid curve in the lower graph,
where SE is more stable than E*, and so E* must convert to SE. Because
the activation barrier for the transition via E this time is lower than for
the transition via E*P, the relaxation goes mostly through E, binding
more S than P. This process repeats with a net conversion of S to P.

where V is given by Eq. 10, and AG is the free-energy
change associated with the reaction S P. The power

supplied by an oscillating electric field is the time average

of the oscillating potential ,6' cos (wt) times the electric
current q d(E*P + E*)/dt q dE*/dt. This average is
easily computed by multiplying Eq. 6 by qi/il cos (wt),
using Eq. 8, and averaging over one cycle to get

II
Pi, = kcat+ ET qI I I

P/KM- + (2 + KM-/KM+KI02)S/KM+
1 + P/KM + S/KM+

. (15)

Here the function II(qo/RT) is the average of 42 cos (Wt)
or _0-2 cos (ct) over a cycle. II(z) equals z when z << 1

and increases to Io (z) when z >> 1. More precise values for
this function can also easily be computed or looked up in a

(14) table (15).
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The efficiency of energy transduction from the ac field
is the ratio Pout/Pi.. Because Pi. is always positive, the
efficiency is positive when Pout is positive, which, because
AG = RT ln (P/KS), occurs in the interval 1 < P/KS <
Io2. This is the same interval over which an oscillating
electric field drives the reaction S T± P away from
equilibrium, where without the oscillating field the reac-
tion would of course proceed toward equilibrium. This is
shown in Fig. 3, which compares graphs of rate and
efficiency vs. AG.

Numerical calculations show that the frequency range
over which these results are valid is approximately

r-i <K c << (k-4 + k-2)/(2Io), (16a, b)

where

-= (kcat- + kcat+)(1 + P/KM + S/KM+) (17)

is the average of Eq. 7b over one cycle. Previously (4) we
found that r-1/27r is the characteristic frequency of the
dispersion predicted by Eq. 6 for weak fields. This
frequency is the half-amplitude point just below the
plateau. It is also approximately the lowest nonzero
eigenvalue of Eqs. 3. The expression on the right of the
inequality 16b in a weak field very nearly equals the two
largest eigenvalues for Eqs. 3. This is true because the
sum of the four eigenvalues of Eqs. 3 equals the trace of
the matrix of Eqs. 3, and because one eigenvalue is zero
and the remaining one is very small. The right side of the
inequality 16b has been simplified using the inequalities
5. We have guessed the dependence on field strength in
thd expressions for the frequency range and very roughly
confirmed the range numerically.
The ranges of concentrations S and P and of interaction

energy q/11 over which the results are valid are also limited
by the inequalities 5. Provided the inequalities 5 and 16
are satisfied, our approximate analytical formulas for rate
and efficiency agree within <1% with numerical calcula-
tions of these quantities for the original four-state prob-
lem.

SUMMARY

If an enzyme has electric charges that move when it
changes conformation, it will absorb energy from an
oscillating electric field. When the enzyme also has a
large association constant for substrate and a small
association constant for product, it can use this energy to
drive a chemical or transport reaction away from equilib-
rium. This difference in binding energy for substrate and
product is the interaction energy discussed by Jencks
(21). The more asymmetric the enzyme, the larger the
rate of reaction and the broader the frequency range for

the large rate, as shown in Fig. 1. Also, the larger the
conformation-change rate coefficients of the enzyme, the
larger the reaction rate and frequency range, as shown in
Fig. 2.
We have obtained analytic expressions for the reaction

rate and the efficiency of energy transduction from the
oscillating-electric field. These expressions are valid on
the highest plateau of Fig. 2.
The rate is described by a Michaelis-Menten equation

that has been generalized to include the effect of the
oscillating-electric field. The zero-reaction-rate condition
on the substrate and product concentrations is shifted
from thermodynamic equilibrium by an amount that
increases with increasing strength of the oscillating-
electric field. This shift and the corresponding increase of
the interval over which the oscillating field drives the
reaction away from equilibrium is shown in Fig. 3. A
qualitative explanation of the mechanism is given in
Fig. 4.
The effect is synergistic. Without the enzyme, the

reaction proceeds toward equilibrium, although perhaps
very slowly. Adding an oscillating-electric field does
nothing, provided the reaction is nonelectrogenic. Adding
the enzyme without the field causes the reaction to
proceed more rapidly towards equilibrium. Adding both
the enzyme and an oscillating field of suitable frequency
and amplitude causes the reaction, in the interval of Fig.
3, to proceed away from equilibrium.
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