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Abstract

Our knowledge of the sensory world is encoded by neurons in sequences of discrete, identical pulses termed

action potentials or spikes. There is persistent controversy about the extent to which the precise timing

of these spikes is relevant to the function of the brain. We revisit this issue, using the motion–sensitive

neurons of the fly visual system as a test case. Our experimental methods allow us to deliver more nearly

natural visual stimuli, comparable to those which flies encounter in free, acrobatic flight. New mathematical

methods allow us to draw more reliable conclusions about the information content of neural responses even

when the set of possible responses is very large. We find that significant amounts of visual information

are represented by details of the spike train at millisecond and sub–millisecond precision, even though the

sensory input has a correlation time of ∼ 60 ms; different patterns of spike timing represent distinct motion

trajectories, and the absolute timing of spikes points to particular features of these trajectories with high

precision. Further, the system’s information transmission rate still increases with increasing photon flux,

even under these naturalistic conditions where individual photoreceptors are counting up to a million photons

per second. Finally, exploiting the relatively slow dynamics of the stimulus, the system removes redundancy

and so generates a more efficient neural code.
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I. INTRODUCTION

Throughout the brain, information is represented by discrete electrical pulses termed action

potentials or ‘spikes’ [1]. For decades there has been controversy about the extent to which the

precise timing of these spikes is significant: should we think of each spike arrival time as having

meaning down to millisecond precision [2–4], or does the brain only keep track of the number of

spikes occurring in much larger windows of time? Is precise timing relevant only in response to

rapidly varying sensory stimuli, as in the auditory system [5], or can the brain construct specific

patterns of spikes with a time resolution much smaller than the time scales of the sensory and motor

signals that these patterns represent [3, 6]? Here we address these issues using the motion–sensitive

neurons of the fly visual system as a model [7].

We bring together new experimental methods for delivering truly naturalistic visual inputs [8]

and new mathematical methods that allow us to draw more reliable inferences about the informa-

tion content of spike trains [9–11]. We find that as we improve our time resolution for the analysis

of spike trains from 2 ms down to 0.2 ms we reveal nearly 30% more information about the trajec-

tory of visual motion. The natural stimuli used in our experiments have essentially no power above

30 Hz, so that the precision of spike timing is not a necessary correlate of the stimulus bandwidth;

instead the different patterns of precise spike timing represent subtly different trajectories chosen

out of the stimulus ensemble. Further, despite the long correlation times of the sensory stimulus,

segments of the neural response separated by ∼ 30 ms provide essentially independent information,

suggesting that the neural code in this system achieves decorrelation [12, 13] in the time domain,

thereby enhancing the efficiency of the code on time scales relevant to behavior [14].

II. RESULTS

A. Posing the problem

Flies exhibit a wide variety of visually guided behaviors, of which perhaps the best known is

the optomotor response, in which visual motion drives a compensating torque, stabilizing straight

flight [15]. This system offers many advantages for the exploration of neural coding and computa-

tion: there is a small group of identified, wide–field motion–sensitive neurons [7] that provide an

obligatory link in the process [16], and it is possible to make very long, stable recordings from these

neurons as well as to characterize in detail the signal and noise properties of the photoreceptors

that provide the input data for the computation. In free flight, the trajectory of visual motion is
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determined largely by the fly’s own motion through the world, and there is a large body of data

on flight behavior under natural conditions [14, 17–19], offering us the opportunity to generate

stimuli that approximate those experienced in nature. But the natural visual world of flies involves

not only the enormous angular velocities associated with acrobatic flight; natural light intensities

and the dynamic range of their variations are very large as well, and both of the fly’s compound

eyes are stimulated over more than 2π steradians; all of these features are difficult to replicate

in the laboratory [20]. As an alternative, we have moved our experiments outside [8], so that

flies experience the scenes from the region in which they were caught. We recorded from a single

motion–sensitive cell, H1, while rotating the fly along trajectories modeled on published natural

flight trajectories (see Methods for details). For other approaches to the delivery of naturalistic

stimuli in this system see [21].

A schematic of our experiment, and an example of the data we obtained, are shown in Fig

1. We see qualitatively that the responses to natural stimuli are very reproducible, and we can

point to specific features of the stimulus—such as reversals of motion direction—that generate

individual spikes and interspike intervals with better than millisecond precision. The challenge is

to quantify these observations: do precise and reproducible patterns of spikes occur just at some

isolated moments, or does looking at the spike train with higher time resolution generally provide

more information about the visual input?

Precise spike timing endows each neuron with a huge “vocabulary” of responses [1, 2], but

this potential advantage in coding capacity creates challenges for experimental investigation. If

we look with a time resolution of τ = 1 ms, then in each bin of size τ we can see either zero or

one spike; across the behaviorally relevant time scale of 30ms the neural response thus can be

described as a 30–bit binary word, and there are 230, or roughly one billion such words. Although

some of these responses never occur (because of refractoriness), and others are expected to occur

only with low probability, it is clear that if precise timing is important then neurons can generate

many more meaningfully distinguishable responses than the number that we can sample in realistic

experiments.

B. Progress in information estimation

Can we make progress on assessing the content and meaning of neural responses even when we

can’t sample all of them? Some hope is provided by the classical problem of how many people need

to be present in a room before there is a reasonable chance that at least two of them share a birthday.
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This number, N ∼ 23, is vastly less than the number of possible birthdays, K = 365. Turning

this argument around, if we didn’t know the number of possible birthdays we could estimate it by

polling N people and checking the frequency of birthday coincidences. Once N is large enough

to generate several coincidences we can get a pretty good estimate of K, and this happens when

N ∼
√
K � K. Some years ago Ma proposed that this coincidence counting method be used to

estimate the entropy of physical systems from molecular dynamics or Monte Carlo simulations [22]

(see also Ref [23]). If these arguments could be generalized, it would become feasible to estimate

the entropy and information content of neural responses even when experiments provide only a

sparse sampling of these responses. The results of Ref [9, 10] provide such a generalization.

To understand how the methods of Ref [9] generate more accurate entropy estimates from small

samples, it is useful to think about the simpler problem of flipping a coin under conditions where

we don’t know the probability p that it will come up heads. One strategy is to count the number

of heads nH that we see after N flips, and identify p = nH/N ; if we then use this “frequentist”

or maximum likelihood estimate to compute the entropy of the underlying distribution, it is well

known that we will underestimate the entropy systematically [24–26]. Alternatively, we could take

a Bayesian approach and say that a priori all values of 0 < p < 1 are equally likely; the standard

methods of Bayesian estimation then will generate a mean and an error bar for our estimate of the

entropy given N observations. As shown in Fig 2, this procedure actually leads to a systematic

overestimate of the entropy in cases where the real entropy is not near its maximal value. More

seriously, this systematic error is larger than the error bars that emerge from the Bayesian analysis,

so we would be falsely confident in the wrong answer.

Figure 2 also shows us that if we use a Bayesian approach with the a priori hypothesis that all

values of the entropy are equally likely, then (and as far as we know, only then) we find estimates

such that the systematic errors are comparable to or smaller than the error bars, even when we have

seen only one sample. Thus the problem of systematic errors in entropy estimation is not, as one

might have thought, the problem of not having seen all the possibilities; the problem rather is that

seemingly natural and unbiased prior hypotheses about the nature of the underlying probabilities

correspond to highly biased hypotheses about the entropy itself, and this problem gets much worse

when we consider distributions over many alternatives. The strategy of Ref [9] thus is to construct,

at least approximately, a ‘flat prior’ on the entropy (see Methods for details). The results of Ref

[11] demonstrate that this procedure actually works for both simulated and real spike trains, where

‘works’ means that we generate estimates that agree with the true entropy within error bars even

when the number of samples is much smaller than the number of possible responses. As expected
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from the discussion of the birthday problem, what is required for reliable estimation is that the

number of coincidences be significantly larger than one [10].

C. Words, entropy and information

The tools described above allow us to estimate the entropy of neural responses. We first analyze

a long experiment in which the fly experiences a continuous trajectory of motion with statistics

modeled on those of natural flight trajectories (Fig 3; see Methods for details). As shown in Fig

4a, we examine segments of the response of duration T , and we break these segments into discrete

bins with time resolution τ . For sufficiently small τ , each bin either has one or zero spikes, and

hence the response becomes a binary word with T/τ bits, while in the opposite limit we let τ = T ,

and then the response is the total number of spikes in a window of size T ; for intermediate values

of τ , the responses are multi–letter words, but with larger than binary alphabet when more than

one spike can occur within a single bin. An interesting feature of these words is that they occur

with a probability distribution similar to the distribution of words in English (Zipf’s law; Fig 4b).

This Zipf–like behavior emerges only for T & 20 ms, and was not observed in experiments with less

natural, noisy stimuli [4].

With a fixed value of T , improving our time resolution (smaller τ) means that we distinguish

more alternatives, increasing the “vocabulary” of the neuron. Mathematically this means that the

entropy S(T, τ) of the neural responses is larger, corresponding to a larger capacity for carrying

information. This is shown quantitatively in Fig 4c, where we plot the entropy rate, S(T, τ)/T . The

question of whether precise spike timing is important in the neural code is precisely the question

of whether this capacity is used by the system to carry information [2, 4].

To estimate the information content of the neural responses, we followed the strategy of Refs

[4, 27]. The information content of the ‘words’ generated by the neuron is always less than the

total size of the neural vocabulary because there is some randomness or noise in the association of

words with sensory stimuli. To quantify this noise we choose a five second segment of the stimulus,

and then repeat this stimulus 100 times. At each moment 0 < t < 5 s in the cycle of the repeated

stimulus, we look across the one hundred trials to sample the different possible responses to the

same input, and with the same mathematical methods as before, we use these samples to estimate

the ‘noise entropy’ Sn(T, τ |t) in this ‘slice’ of responses. The information which the responses

carry about the stimulus then is given by I(T, τ) = S(T, τ) − 〈Sn(T, τ |T )〉t, where 〈· · · 〉t denotes

an average over time t, which implicitly is an average over stimuli. It is convenient to express this
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as an information rate Rinfo(T, τ) = I(T, τ)/T , and this is what we show in Fig 4d, with T = 25ms,

chosen to reflect the time scale of behavioral decisions [14].

The striking feature of Fig 4d is the growth of information rate with time resolution. We

emphasize that this measurement is made under conditions comparable to those which the fly

encounters in nature—outdoors, in natural light, moving along trajectories with statistics similar

to those observed in free flight. Thus under these conditions, we conclude that the fly’s visual

system carries information about motion in the timing of spikes down to sub–millisecond resolution.

Quantitatively, information rates double as we increase our time resolution from τ = 25 ms to

τ = 0.2 ms, and the final ∼ 30% of this increase occurs between τ = 2 ms and τ = 0.2 ms. In the

behaviorally relevant time windows [14], this 30% extra information corresponds to almost a full

bit from this one cell, which would provide the fly with the ability to distinguish reliably among

twice as many different motion trajectories.

D. What do the words mean?

The information rate tells us how much we can learn about the sensory inputs by examining

the neural response, but it doesn’t tell us what we learn. In particular, we would like to make

explicit the nature of the extra information that emerges as we increase our time resolution from

τ = 2 ms to τ = 0.2 ms. To do this, we look at particular “words” in a segment of the neural

response, as shown in Fig. 5, and then examine the motion trajectories that corresponded to these

words [29]. For simplicity, we consider all responses that had two spikes in successive 2ms bins,

that is the pattern 11 when seen at τ = 2ms resolution. When we improve our time resolution to

τ = 0.2 ms, some of these responses turn out to be of the form 10000000000000000001, while at

the other extreme some of the responses have the two spikes essentially as close as possible given the

refractory period, 00000100000000100000. Remarkably, as we sweep through these subtly different

patterns—which all have the same average spike arrival time but different interspike intervals—the

average velocity trajectory changes form qualitatively, from a smooth “on” (negative to positive

velocity) transition, to a prolonged period of positive velocity, to a more complex waveform with off

and on transitions in succession. Examining more closely the distribution of waveforms conditional

on the different responses, we conclude that these differences among mean waveforms are in fact

discriminable. Thus, variations in interspike interval on the millisecond or sub–millisecond scale

represent significantly different stimulus trajectories.

A second axis along which we can study the nature of the extra information at high time
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resolution concerns the absolute timing of spikes. As an example, responses which at τ = 2 ms

resolution are of the form 11 can be unpacked at τ = 0.2 ms resolution to give patterns ranging

from 01000000001000000000 to 00000000010000000010, all with the same interspike interval but

with different absolute arrival times. As shown in Fig 5, all of these responses code for motion

trajectories with two zero crossings, but the times of these zero crossings shift as the spike arrival

times shift. Thus, whereas the times between spikes represent the shape of the waveform, the

absolute arrival time of the spikes marks, with some latency, the time at which a specific feature

of the waveform occurs, in this case a zero crossing. Again we find that millisecond and sub–

millisecond scale shifts generate discriminable differences.

The idea that sub–millisecond timing of action potentials can carry significant information is

not new, but the clearest evidence comes from systems in which the dynamics of the stimulus itself

has significant sub–millisecond structure, as in hearing and electroreception [5, 32]. Even for H1,

experiments demonstrating the importance of spike timing at the ∼ 2 ms level [4, 33] could be

criticized on the grounds that the stimuli had unnaturally rapid variations. It is thus important to

emphasize that, in the experiments described here, H1 did not achieve millisecond precision simply

because the input had a bandwidth of about a kiloHertz; in fact, the stimulus had a correlation

time of ∼ 60 ms (Fig 6), and 99.9% of the stimulus power was contained below 30 Hz (Fig 3f).

E. Redundancy reduction

The long correlation time of these naturalistic stimuli also raises questions about redundancy—

while each spike and interspike interval can be highly informative, does the long correlation time of

the stimulus inevitably mean that successive spikes carry redundant information about essentially

the same value of the instantaneous velocity? Certainly on very short time scales this is true:

although Rinfo(T, τ) actually increases at small T since larger segments of the response reveal more

informative patterns of several spikes [33, 34], it does decrease at larger T , a sign of redundancy. On

the other hand, the approach to a constant information rate happens very rapidly: we measure the

redundancy on time scale T by computing ΥI(T, τ) = 2I(T, τ)/I(2T, τ)−1, where ΥI = 0 signifies

that successive windows of size T provide completely independent information, and ΥI = 1 that

they are completely redundant. As shown in Fig 6, ΥI(T, τ) decays rapidly, on a time scale of less

than 20 ms. In contrast, correlations in the stimulus decay much more slowly, on the ∼ 60 ms time

scale. Further, we compute at each moment of time the spike rate r(t), and this has a correlation

time comparable to the stimulus itself, suggesting that the decorrelation of information is more
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subtle than a simple filtering of the stimulus.

F. Bit rates and photon counting rates

The ability of the fly’s visual system to mark features of the stimulus with millisecond precision,

even at a ∼ 60 ms stimulus correlation time, was demonstrated in conditions where the visual input

had very high signal–to–noise ratio. Previous work has suggested that this system can estimate

motion with a precision close to the limits set by noise in the photoreceptors [35, 36], which is

dominated by photon shot noise [37, 38]. The present experiments, however, were done under

very different conditions: velocities of motion were much larger, the fly’s eye was stimulated over

a much larger area, and light intensities outdoors were much larger than generated by laboratory

displays. Light intensities in our experiment were estimated to correspond to up to about 1.1×106

transduced photon/s per photoreceptor (see Methods). Is it possible that photon counting statistics

are limiting the precision of H1, even at these high rates?

Because the experiments were done outdoors, there were small fluctuations in light intensity from

trial to trial as clouds drifted by and obscured the sun. Although the range of these fluctuations was

less than a factor two, the arrival times of individual spikes (e.g., the “first spike” after t = 1.75 s in

Fig 1) had correlation coefficients of up to ρ = −0.42 with the light intensity, with the negative sign

indicating that higher light intensities led to earlier spikes. One might see this effect as a failure of

the system to adapt to the overall light intensity, but it also suggests that some of what we have

called noise really represents a response to trial–by–trial variations in stimulus conditions. Indeed,

a correlation between light intensity and spike time implies that the noise entropy Sn(T, τ |t) in

windows which contain these spikes has a significant contribution from stimulus variation, and

should thus be smaller when this source of variation is absent.

More subtly, if photon shot noise is relevant, we expect that, on trials with higher light intensity,

the neuron will actually convey more information about the trajectory of motion. We emphasize

that this is a delicate question. To begin, the differences in light intensity were small, and we

expect (at most) proportionately small effects. Further, as the light intensity increased, the total

spike rate increased, and this increased both the total entropy and the noise entropy. To see if

the system used the more reliable signal at higher light intensities to convey more information, we

have to determine which of these increases is larger.

To test the effects of light intensity on information transmission (see Methods for details), we

divide the trials into halves based on the average light intensity over the trial, and we try to estimate
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the information rates in both halves; the two groups of trials differ by just 3% in their median light

intensities. Since cutting the number of trials in half makes our sampling problems much worse,

we focus on short segments of the response (T = 6 ms) at high time resolution (τ = 0.2 ms); note

that these are still “words” with 30 letters. For this case we find that for the trials with higher

light intensities the information about the motion stimulus is larger by ∆ = 0.0204 ± 0.0108 bits,

which is small but significant at the 94% confidence level. We find differences with the same sign

for all accessible combinations of T and τ , and the overall significance of the difference thus is

much larger. Note that since we were analyzing T = 6 ms windows, this difference correspond

to ∆R ∼ 3 bits/s, 1 − 2% of the total (cf Fig 4). Thus even at rates of more than one million

photons per second per receptor cell, small increases in photon flux produce significant changes in

the transmission of information about the visual input.

III. DISCUSSION

We have found that under natural stimulus conditions the fly visual system generates spikes

and interspike intervals with extraordinary temporal precision. As a consequence, the neural

response carries a substantial amount of information that is available only at sub–millisecond time

resolution. At this high resolution, absolute spike timing is informative about the time at which

particular stimulus features occur, while different interspike intervals provide a rich representation

of distinguishable stimulus features. These results clearly demonstrate that the visual system uses

sub–millisecond timing to paint a more accurate picture of the natural sensory world, at least in

this corner of the fly’s brain. In addition, the data provide support for the idea that the system

performs efficiently both in the tasks of estimation and of coding, making use of the extra signal–

to–noise provided by increased photon flux and reducing the redundancy of the stimulus as it

is transformed into spikes. Finally, we note that our ability to reach these conclusions depends

not just on new experimental methods that allow us to generate truly naturalistic stimuli [8], but

critically on new mathematical methods that allow us to analyze neural responses quantitatively

even when it was impossible for us to sample the distribution of responses exhaustively [9, 11]. We

expect that these sorts of mathematical tools will become even more critical for neuroscience in

the future.
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IV. MATERIALS AND METHODS

Neural recording and stimulus generation. H1 was recorded extracellularly by a short

(12 mm shank length) tungsten electrode (FHC). The signal was preamplified by a differential

bandpass instrumentation amplifier based on the INA111 integrated circuit (Burr-Brown). After

amplification by a second stage samples were digitized at 10 kHz by an AD converter (National

Instruments DAQCard-AI-16E-4, mounted in a Fieldworks FW5066P ruggedized laptop). In off

line analysis, the analog signal was digitally filtered by a template derived from the average spike

waveform. Spikes were then time stamped by interpolating threshold crossing times. The ultimate

precision of this procedure was limited by the signal to noise ratio in the recording; for typical

conditions this error was estimated to be 50-100 µs. Note that we analyzed spike trains down to

a precision of τ = 200µs, so that some saturation of information at this high time resolution may

have actually resulted from instrumental limitations. The experiments were performed outside in

a wooded environment, with the fly mounted on a stepper motor with vertical axis. The speed

of the stepper motor was under computer control, and could be set at 2ms intervals. The DAQ

card generated a 500 Hz clock signal divided down from the same master clock that governs the

AD sample rate. The stepper motor (SIG-Positec RDM566/50, 10,000 pulses per revolution, or

0.036◦/pulse) was driven by a controller (SIG-Positec Divistep D331.1), which received pulses at a

frequency divided down from a free running 8 MHz clock. Over the short time interval (t, t+2 ms)

the stimulus velocity v(t) was determined by the pulse frequency, f(t), that the controller received.

This in turn was set by the numerical value, Ndiv(t), of a divisor: f(t) = 8MHz/Ndiv(t), and

v(t) = (0.036) · f(t)◦/s. Successive values of Ndiv(t) were read every 2 ms from a stimulus file

stored on a dedicated laptop computer. In this way, each 2 ms period the stepper motor speed

was set to a value read from computer, in strict synchrony with the data acquisition clock, with a

maximum jitter of 1/(8 MHz) = 125 ns. The method for delivering pulses to the motor controller

minimized the jerkiness of the motion by spacing the controller pulses evenly over each 2 ms

interval. This proved to be crucial for maintaining stability of the electrophysiological recording.

Controlling temperature. To stabilize temperature the setup was enclosed by a transparent

plexiglass cylinder (radius 15 cm, height 28 cm), with a transparent plexiglass lid. The air tem-

perature in the experimental enclosure was regulated by a Peltier element fitted with heat vanes

and fans on the inside and outside for efficient heat dispersal, and driven by a custom built feed-

back controller. The temperature was measured by a standard J-type thermocouple, and could be

regulated over a range from some five degrees below to fifteen degrees above ambient temperature.
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The controller stabilized temperature over this range to within about a degree. In the experiments

described here, temperature was 23± 1◦C.

Monitoring light intensity. A running overall measure of light intensity was obtained by

monitoring the current of a photodiode (Hamamatsu S2386-44K) enclosed in a diffusing ping pong

ball. After a current to voltage conversion stage, the photodiode signal was amplified by a logarith-

mic amplifier (Burr-Brown LOG100) operating over five decades. The probe was located ∼50 cm

from the fly, and in the experiments the setup was always placed in the shade. The photodiode

measurement was intended primarily to get a rough impression of relative light intensity fluctu-

ations. To relate these measurements to outside light levels, at the start of each experiment a

separate calibration measurement of zenith radiance was taken with a calibrated radiometer (In-

ternational Light IL1400A using silicon detector SEL033/F/R, with radiance barrel). The radiance

measurement was done over a limited spectral band defined by a transmission filter (International

Light, WBS480) and an infrared absorption filter. In this way the radiometer’s spectral sensitivity

peaks close to the fly photoreceptor’s 490 nm long wavelength maximum. However, it is about 20%

broader than the fly’s spectral sensitivity peak in the 350-600 nm range, and the photoreceptor’s

UV peak [39] was not included in this measurement. To relate this radiance measurement to fly

physiology, the radiance reading was converted to an estimated effective fly photoreceptor photon

rate, computed from the spectral sensitivity of the blowfly R1-6 type photoreceptor [39], the ra-

diometer’s spectral sensitivity and the spectral distribution of sky radiance [40]. The reading of the

photodiode was roughly proportional to the zenith intensity reading, with a proportionality factor

determined by the placement of the setup and the time of day. In the experiments, light intensities

within the visual field of the fly ranged from about 2% to 100% of zenith intensity. To obtain a

practical rule of thumb, the photodiode readings were converted to equivalent zenith photon flux

values, using the current to zenith radiance conversion factor established at the beginning of the

experiment. During the experiments the photodiode signal was sampled at 1 s intervals.

Repeated stimuli. In their now classical experiments, Land and Collett measured the trajec-

tories of flies in free flight [14]; in particular they reported the angular position (orientation) of the

fly vs time, from which we can compute the angular velocity v(t). The short segments of individual

trajectories shown in the published data have a net drift in angle, so we include both the measured

v(t) and −v(t) as parts of the stimulus. We used the trajectories for the two different flies in Fig 4

of Ref [14], and grafted all four segments together, with some zero padding to avoid dramatic jumps

in velocity, generating a stimulus that is 5 seconds in duration and had zero drift so that repetition

of the angular velocity vs time also repeated the angular position vs time. Since Land and Collett
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reported data every 20ms, we interpolated to generate a signal that drives the stepper motor at

2 ms resolution; interpolation was done using the MATLAB routine interp, which preserved the

bandlimited nature of the original signal and hence did not distort the power spectrum.

Nonrepeated stimulus. To analyze the full entropy of neural responses, it is useful to have a

stimulus that is not repeated. We would like such a stimulus to match the statistical properties of

natural stimulus segments described above. To do this, we estimated the probability distribution

P [v(t + ∆t)|v(t)] from the published trajectories, where ∆t = 20 ms was the time resolution, and

then used this as the transition matrix of a Markov process from which we could generate arbitrarily

long samples; our nonrepeated experiment was based on a 990 s trajectory drawn in this way. The

resulting velocity trajectories, in particular, had exactly the same distributions of velocity and

acceleration as in the observed free flight trajectories. Although the real trajectories are not exactly

Markovian, our Markovian approximation also captures other features of the natural signals, for

example generating a similar number of velocity reversals per second. Again we interpolated these

trajectories to obtain a stimulus at 2 ms resolution.

Entropy estimation in a model problem. The problem in Fig 2 is that of a potentially

biased coin. Heads appear with probability p, and the probability of observing n heads out of N

flips is

PN (n|p) ∝ pn(1− p)N−n. (1)

If we observe n and try to infer p, we use Bayes’ rule to construct

PN (p|n) = PN (n|p) P(p)
PN (n)

∝ P(p)pn(1− p)N−n, (2)

where P(p) is our prior and PN (n) =
∫ 1
0 dpPN (n|p)P(p). Given this posterior distribution of p we

can calculate the distribution of the entropy,

S(p) = −p log2(p)− (1− p) log2(1− p). (3)

We proceed as usual to define a function g(S) that is the inverse of S(p), that is g(S(p)) = p; since

p and 1−p give the same value of S, we choose 0 < g ≤ 0.5 and let g̃(S) = 1−g(S). Then we have

PN (S|n) = [PN (p = g(S)|n) + PN (p = g̃(S)|n)]
∣∣∣∣dg(S)
dS

∣∣∣∣. (4)

From this distribution, we can estimate a mean S̄N (n) and a variance σ2(n,N) in the usual way.

What interests us is the difference between S̄N (n) and the true entropy S(p) associated with the
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actual value of p characterizing the coin; it makes sense to measure this difference in units of the

standard deviation δS(n,N). Thus we compute

〈(S′ − S0)/δS〉 ≡
N∑

n=0

PN (n|p)
[
S̄N (n)− S(p)
δS(n,N)

]
, (5)

and this is what is shown in Fig 2. We consider two cases. First, a flat prior on p itself, so that

P(p) = 1. Second, a flat prior on the entropy, which corresponds to

P(p) =
1
2

∣∣∣∣dS(p)
dp

∣∣∣∣ = 1
2

∣∣∣∣ log2

(
1− p

p

) ∣∣∣∣. (6)

Note that this prior is (gently) diverging near the limits p = 0 and p = 1, but all the expectation

values that we are interested in are finite.

Entropy estimation: General features. Our discussion here follows Refs [9, 11] very closely.

Consider a set of possible neural responses labeled by i = 1, 2, · · · ,K. The probability distribution

of these responses, which we don’t know, is given by p ≡ {pi}. A well studied family of priors on

this distribution is the Dirichlet prior, parameterized by β,

Pβ(p) =
1

Z(β;K)

[
K∏
i=1

pβ−1
i

]
δ

(
K∑
i=1

pi − 1

)
. (7)

Maximum likelihood estimation, which identifies probabilities with frequencies of occurrence, is

obtained in the limit β → 0, while β → 1 is the natural “uniform” prior. When K becomes large,

almost any p chosen out of this distribution has an entropy S = −
∑

i pi log2 pi very close to the

mean value,

S̄(β;K) = ψ0(Kβ + 1)− ψ0(β + 1), (8)

where ψ0(x) = d log2 Γ(x)/dx, and Γ(x) is the gamma function. We therefore construct a prior

which is approximately flat on the entropy itself by a continuous superposition of Dirichlet priors,

P(p) =
∫
dβ
∂S̄(β;K)

∂β
Pβ(p), (9)

and we then use this prior to perform standard Bayesian inference. In particular, if we observe

each alternative i to occur ni times in our experiment, then

P ({ni}|p) ∝
K∏
i=1

pni
i , (10)

and hence by Bayes’ rule

P (p|{ni}) ∝

[
K∏
i=1

pni
i

]
P(p). (11)
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Once we normalize this distribution we can integrate over all p to give the mean and the vari-

ance of the entropy given our data {ni}. In fact, all the integrals can be done analytically

except for the integral over β. Software implementation of this approach is available from

http://nsb-entropy.sourceforge.net/. This basic strategy can be supplemented in cases where

we have prior knowledge about the entropies. In particular, when we are trying to estimate en-

tropy in “words” of increasing duration T , we know that S(T, τ) ≤ S(T ′, τ) + S(T − T ′, τ) for any

T ′, and thus it makes sense to constrain the priors at T using the results from smaller windows,

although this is not critical to our results. We obtain results at all integer values of T/τ for which

our estimation procedure is stable (see below) and use cubic splines to interpolate to non–integer

values as needed.

Entropy estimation: Details for total entropy. There were two critical challenges to

estimating the entropy of neural responses to natural signals. First, the overall distribution of (long)

words had a Zipf–like structure (Fig 4b), which is troublesome for most estimation strategies and

led to biases dependent on sample size. Second, the long correlation times in the stimulus meant

that successive words ‘spoken’ by the neuron were strongly correlated, and hence it was impossible

to guarantee that we had independent samples, as assumed implicitly in Eq (10). We tamed

the long tails in the probability distribution by partitioning the space of responses, estimating

entropies within each partition, and then using the additivity of the entropy to estimate the total.

We investigated a variety of different partitions, including (a) no spikes vs. all other words, (b)

no spikes, all words with one spike, all words with two spikes, etc., (c) no spikes, all words with

frequencies of over 1000, and all other words. Further, for each partitioning, we followed [4] and

evaluated S(T, τ) for data sets of different sizes αN , 0 < α ≤ 1. By choosing fractions of the

data in different ways we separated the problems of correlation and sample size. That is, to

check that our estimates were stable as a function of sample size, we chose contiguous segments of

experiment, while to check for the impact of correlations we ‘diluted’ our sampling so that there

were longer and longer intervals between words. Obviously there are limits to this exploration (one

cannot access large, very dilute samples), but as far as we could explore the impact of correlations

on our estimates was negligible once the samples sizes were sufficiently large. For the effects of

sample size we looked for behavior of the form S(α) = S∞ + S1/α + S2/α
2 and took S∞ as our

estimate of S(T, τ), as in Ref [4]. For all partitions in which the most common word (silence) was

separated from the rest, these extrapolated estimates agreed and indicated negligible biases at all

combinations of τ and T for which the 1/α2 term was negligible compared to the 1/α (that is,

τ ≥ 0.5 ms at T ≤ 25 ms). For smaller τ , estimation failed at progressively smaller T , and to
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obtain an entropy rate for large T we extrapolated to τ/T → 0 using

1
T
S(T, τ) = S(τ) +A(τ/T ) +B(τ/T )2, (12)

where S(τ) was our best estimate of the entropy rate at resolution τ . All fits were of high quality,

and the resulting error bars on the total entropy were negligible compared to those for the noise

entropy. In principle, we could be missing features of the code which would appear only at high

resolution for very long words, but this unlikely scenario is almost impossible to exclude by any

means.

Entropy estimation: Details for noise entropy. Putting error bars on the noise entropy

averaged over time is more difficult because these should include a contribution from the fact

that our finite sample over time is only an approximation to the true average over the underlying

distribution of stimuli. Specifically, the entropies were very different in epochs that have net

positive or negative velocities. Because of the way that we constructed the repeated stimulus,

v(t) = −v(t+ T0), with T0 = 2.5 s; thus Sn(T, τ |t) + Sn(T, τ |t+ T1) with T1 ≈ T0 fluctuated much

less as a function of t than the entropy in an individual slice. Because our stimulus had zero

mean, every slice had a partner under this shift, and the small difference between T0 and T1 took

account of the difference in latency between responses to positive and negative inputs. A plot of

Sn(T, τ |t) +Sn(T, τ |t+T1) vs time t had clear dips at times corresponding to zero crossings of the

stimulus, and we partitioned the data at these points. We derived error bars on the mean noise

entropy 〈Sn(T, τ |t)〉t by a bootstrap–like method, in which we constructed samples by randomly

sampling with replacements from among these blocks, jittering the individual entropies Sn(T, τ |t)

by the errors that emerge from the Bayesian analysis of individual slices. As with the total entropy,

we extrapolated to otherwise inaccessible combinations of T and τ , now writing

1
T
〈Sn(T, τ |t)〉t = Sn(τ) +A(τ/T ) +B(τ/T )2 + C cos(2πT/τ0) (13)

and fitting by weighted regression. Note that results at different T but the same value of τ were

strongly correlated, and so the computation of χ2 was done using the full (non–diagonal) covariance

matrix. The periodic term was important at small τ , where we could see structure as the window

size T crossed integer multiples of the average interspike interval, τ0 = 2.53 ms. Error estimates

emerged from the regression in the standard way, and all fits had χ2 ∼ 1 per degree of freedom.

Impact of photon flux on information rates. Since there were no responses to repeated and

unrepeated stimuli recorded at exactly the same illuminations, we used the data from the repeated

experiment to evaluate both the noise entropy and the total entropy. We were looking for minute
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effects, so we tightened our analysis by discarding the first two trials, which were significantly

different from all the rest (presumably because adaptation was not complete), as well as excluding

the epochs in which the stimulus was padded with zeroes. The remaining 98 trials were split into

two groups of 49 trials each with the highest and the lowest ambient light levels. We then estimated

the total entropy S(h,l)(T, τ) for the high (h) and low (l) intensity groups of trials, and similarly for

the noise entropy in each slice at time t, S(h,l)
n (T, τ |t). As above, assigning error bars was clearer

once we formed quantities that were balanced across positive and negative velocities, and we did

this directly for the difference in noise entropies,

∆Sn(T, τ ; t) = [S(h)
n (T, τ |t) + S(h)

n (T, τ |t+ T1)]− [S(l)
n (T, τ |t) + S(l)

n (T, τ |t+ T ′1)] (14)

where we allowed for a small difference in latencies (T1 6= T ′1) between the groups of trials at

different intensities. We found that ∆Sn(T, τ ; t) had a unimodal distribution and a correlation

time of ∼ 1.4 ms, which allowed for an easy evaluation of the estimation error.

Acknowledgments

We thank J Miller, KD Miller and the participants in the NIPS 2003 Workshop on Entropy

estimation for helpful discussions. This work was supported in part by grants from the National

Science Foundation (PHY99-07949, ECS-0425850, IIS-0423039), the Department of Energy under

contract DE-AC52-06NA25396, and the Swartz Foundation. Early stages of this work were done

when all the authors were at the NEC Research Institute. IN thanks the Kavli Institute for

Theoretical Physics at UCSB and the Joint Centers for Systems Biology at Columbia University

for their support during this work, WB thanks the Center for Theoretical Neuroscience at Columbia

University for its hospitality, and RdR thanks the Linda and Jack Gill Center for Biomolecular

Science at Indiana University for its generous support.

[1] F Rieke, D Warland, R de Ruyter van Steveninck & W Bialek Spikes: Exploring the Neural Code (MIT

Press, Cambridge, 1997).

[2] D MacKay & WS McCulloch, The limiting information capacity of a neuronal link. Bull Math Biophys

14, 127–135 (1952).

[3] M Abeles, Local Cortical Circuits: An Electrophysiological Study (Springer–Verlag, Berlin, 1982).

[4] SP Strong, R Koberle, RR de Ruyter van Steveninck & W Bialek, Entropy and information in neural

spike trains. Phys Rev Lett 80, 197–200 (1998).

16



[5] CE Carr, Processing of temporal information in the brain. Ann Rev Neurosci 16, 223–243 (1993).

[6] JJ Hopfield, Pattern recognition computation using action potential timing for stimulus representation.

Nature 376, 33–36 (1995).

[7] K Hausen, The lobular complex of the fly: Structure, function and significance in behavior. In Pho-

toreception and Vision in Invertebrates, M Ali, ed, pp 523–559 (Plenum, New York, 1984).

[8] GD Lewen, W Bialek & RR de Ruyter van Steveninck, Neural coding of naturalistic motion stimuli.

Network 12, 317–329 (2001); physics/0103088.

[9] I Nemenman, F Shafee & W Bialek, Entropy and inference, revisited. In Advances in Neural Informa-

tion Processing Systems 14, TG Dietterich, S Becker & Z Gharamani, eds, pp 471–478 (MIT Press,

Cambridge, 2002); physics/0108025.

[10] I Nemenman, Inference of entropies of discrete random variables with unknown cardinalities;

physics/0207009 (2002).

[11] I Nemenman, W Bialek & R de Ruyter van Steveninck, Entropy and information in neural spike trains:

Progress on the sampling problem. Phys Rev E 69, 056111 (2004); physics/0306063.

[12] HB Barlow, Sensory mechanisms, the reduction of redundancy and intelligence. In Proceedings of the

Symposium on the Mechanization of Thought Processes, Vol 2, DV Blake & AM Uttley, eds, pp 537–574

(HM Stationery Office, London, 1959).

[13] HB Barlow, Possible principles underlying the transformation of sensory messages. In Sensory Com-

munication, W Rosenblith, ed, pp 217–234 (MIT Press, Cambridge, 1961).

[14] MF Land & TS Collett, Chasing behavior of houseflies (Fannia canicularis). A description and analysis.

J Comp Physiol 89, 331–357 (1974).

[15] W Reichardt & T Poggio, Visual control of orientation behavior in the fly. Part I: A quantitative

analysis. Q Rev Biophys 9, 311–375 (1976).

[16] K Hausen & C Wehrhahn, Microsurgical lesions of horizontal cells changes optomotor yaw responses

in the blowfly Calliphora erythrocephela. Proc R Soc Lond Ser B 219, 211–216 (1983).

[17] H Wagner, Flight performance and visual control of flight in the free–flying house fly (Musca domestica

L.). I–III. Phil Trans R Soc Ser B 312, 527–595 (1986).

[18] C Schilstra & JH van Hateren, Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics.

J Exp Biol 202, 1481–1490 (1999).

[19] JH van Hateren & C Schilstra, Blowfly flight and optic flow. II. Head movements during flight. J Exp

Biol 202, 1491–1500 (1999).

[20] R de Ruyter van Steveninck, A Borst & W Bialek, Real time encoding of motion: Answerable questions

and questionable answers from the fly’s visual system. In Processing Visual Motion in the Real World:

A Survey of Computational, Neural and Ecological Constraints, JM Zanker & J Zeil, eds, pp 279–306

(Springer–Verlag, Berlin, 2001); physics/0004060.

[21] JH van Hateren, R Kern, G Schwerdtfeger & M Egelhaaf, Function and coding in the blowfly H1 neuron

during naturalistic optic flow. J Neurosci 25, 4343–4352 (2005).

17



[22] S Ma, Calculation of entropy from data of motion. J Stat Phys 26, 221–240 (1981).

[23] GAF Seber, Estimation of Animal Abundance and Related Parameters. (Griffin, London, 1973).

[24] GA Miller, Note on the bias of information estimates. In Information Theory in Psychology: Problems

and Methods II–B, H Quastler, ed, pp 95–100 (Free Press, Glencoe IL, 1955).

[25] A Treves & S Panzeri, The upward bias in measures of information derived from limited data samples.

Neural Comp 7, 399–407 (1995).

[26] L Paninski, Estimation of entropy and mutual information. Neural Comp 15, 1191–1253 (2003).

[27] RR de Ruyter van Steveninck, GD Lewen, SP Strong, R Koberle & W Bialek, Reproducibility and

variability in neural spike trains. Science 275, 1805–1808 (1997).

[28] GK Zipf, Human Behavior and the Principle of Least Effort (Addison–Wesley, Cambridge, 1949).

[29] R de Ruyter van Steveninck & W Bialek, Real–time performance of a movement sensitive neuron in the

blowfly visual system: Coding and information transfer in short spike sequences. Proc R Soc London

Ser B 234, 379–414 (1988).

[30] I Nemenman & W Bialek, Occam factors and model–independent Bayesian learning of continuous

distributions. Phys Rev E 65, 026137 (2002); cond-mat/0009165.

[31] DM Green & JA Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1966).

[32] CE Carr, W Heiligenberg & GJ Rose, A time–comparison circuit in the electric fish midbrain. I.

Behavior and physiology. J Neurosci 10, 3227–3246 (1986).

[33] N Brenner, SP Strong, R Koberle, W Bialek & RR de Ruyter van Steveninck, Synergy in a neural

code. Neural Comp 12, 1531–1552 (2000); physics/9902067.

[34] P Reinagel & RC Reid, Temporal coding of visual information in the thalamus. J Neurosci 20, 5392–

5400 (2000).

[35] W Bialek, F Rieke, RR de Ruyter van Steveninck & D Warland, Reading a neural code. Science 252,

1854–1857 (1991).

[36] R de Ruyter van Steveninck & W Bialek, Reliability and statistical efficiency of a blowfly movement–

sensitive neuron. Phil Trans R Soc Lond Ser B 348, 321–340 (1995).

[37] RR de Ruyter van Steveninck & SB Laughlin, The rate of information transfer at graded–potential

synapses. Nature 379, 642–645 (1996).

[38] R de Ruyter van Steveninck & SB Laughlin, Light adaptation and reliability in blowfly photoreceptors.

Int J Neural Syst 7, 437–444 (1996).

[39] B Minke & K Kirschfeld, The contribution of a sensitizing pigment to the photosensitivity spectra of

fly rhodopsin and metarhodopsin. J Gen Physiol 73, 517-540 (1979).

[40] R Menzel, Spectral Sensitivity and Color Vision in Invertebrates. In Handbook of Comparative Physi-

ology, H Autrum, ed, vol VII/6A, pp 503-580 (Springer Verlag, Berlin-Heidelberg-New York, 1979).

18



Figures

19



1

 0

-1

 1.5  1.6  1.7  1.8  1.9  2

v
(1

03  ˚
/s

)

t (s)

75

50

25

tr
ia

l

75

50

25

1.7621.75

tr
ia

l

1.7621.75

FIG. 1: Neural responses to a natural stimulus ensemble. At left is a schematic of the experimental setup (see

Methods for details). A fly was immobilized with wax, its body in a plastic tube, with its head protruding.

Through a small hole in the back of the head an electrode was inserted to record extracellular potentials

from H1, a wide field neuron sensitive to horizontal motion. This signal was amplified, fed through a slip ring

system to a second stage amplifier and filter, and recorded by a data acquisition card. In synchrony with its

master timer clock, the DAQ card generated a 500 Hz frame clock signal. Every 2 ms, through a bidirectional

parallel port, this clock triggered a successive read of a divisor value from a file stored in the stimulus laptop

computer. The Intel 8254 Counter/Timer chip used this divisor value to divide down the pulse frequency of

a free running 8MHz clock. In this way, in each successive 2ms interval, and in strict synchrony with the

data taking clock, a defined and evenly spaced burst of pulses was produced. These pulses drove the stepper

motor, generating the angular velocity signal. A brief segment of this motion stimulus is shown in the top

right panel, below which we plot a raster of action potentials from H1 in response to 100 repetitions of this

stimulus. At bottom we expand the scale to illustrate (at left) that individual spikes following a transition

from negative to positive velocity jitter from trial to trial by ∼ 1 ms: the standard deviations of spike times

shown here are 0.72 ms for the first spike (·), 0.81 ms for the second spike (◦), and 1.22 ms for the third spike

(×). When we align the first spikes in this window, we see (at right) that the jitter of interspike intervals is

even smaller, 0.21 ms for the first interval and 0.69 ms for the second interval. Our challenge is to quantify

the information content of such precise responses.
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FIG. 2: Systematic errors in entropy estimation. We consider a coin with unknown probability p of coming

up heads; from N coin flips we try to estimate the entropy S = −p log2 p− (1− p) log2(1− p); see Methods

for details of the calculations. At left, we make Bayesian estimates starting from the prior hypothesis that

all values of p are equally likely, P(p) = 1. We show how the best estimate S′ differs from the true value S0

when this deviation is measured in units of the estimated error bar δS (posterior standard deviation). For

small numbers of samples, the best estimate is systematically in error by more than two times the size of the

error bar, so we would have false confidence in a wrong answer, even at intermediate values of the entropy

which are most relevant for real data. At right, we repeat the same procedure but with a prior hypothesis

that all possible value of the entropy are equally likely, P(S) = 1. Systematic errors still appear, but they

are more nearly compatible with the error bars, even at small N , and especially in the range of entropies

which is relevant to our experiments.
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FIG. 3: Constructing a naturalistic stimulus. (a) Digitized version of original video tracking data by Land

and Collett [14]. The panel shows traces of a leading fly (blue) and a chasing fly (green). Successive points

along the trajectories were recorded at 20ms intervals. Every tenth point along each trajectory is indicated

by a number. From these traces we estimated rotational velocities of the body axis by calculating the angular

change in orientation of the trajectory from one point in the sequence to the next, and dividing by 20 ms.

The result of this calculation for the leading fly is shown in panel (b). (c) From these data (on both flies) we

constructed a joint distribution, P (Vk, Vk+1), of successive velocities taken 20ms apart. (d) Short sample of

a trajectory constructed using the distribution in (c) as a Markov process, and then interpolating the velocity

trace to 2 ms resolution. (e) Probability densities of angular velocity generated from this Markov process

(black dashed line) and scaled down by a factor of two (black line) to avoid destabilizing the experiment;

distributions are symmetric and we show only positive velocities. For comparison we show (red line) the

distribution of angular velocities recorded for head motion of Calliphora during episodes of saccadic turning

[19]. (f) Power spectrum of synthesized velocity signal, demonstrating the absence of power above 30 Hz.

(g) As in (e) but for the accelerations. Note that the distribution of our synthesized and scaled signal was

surprisingly close to that for saccadic head motions, as reported in [19].
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FIG. 4: Words, entropy and information in the neural response to natural signals. (a) Schematic showing

how we convert the sequence of action potentials into discrete ‘words’ [4, 27]. At the top we show the

stimulus and spike arrival times (red dots) in a 64 ms segment of the experiment. We treat this as two

successive segments of duration T = 32,ms, and divide these segments into bins of duration τ = 2, 8, or

32 ms. For sufficiently small τ (here, τ = 2ms), each bin contains either zero or one spike, and so each

neural response becomes a binary word with T/τ bits; larger values of τ generate larger alphabets, until

at τ = T the response of the neuron is just the spike count in the window of duration T . Note that the

words are shown here as non–overlapping; this is just for graphical convenience. (b) The distribution of

words with τ = 1 ms, for various values of T ; words are plotted in rank order. We see that, for large T

(T = 40 or 50 ms) but not for small T (T = 20 ms), the distribution of words had a large segment in which

the probability of a word is P ∝ 1/rankα, corresponding to a straight line on this double logarithmic plot.

Similar behavior is commonly observed for words in English, with α = 1, which we show for comparison

(solid line); this is sometimes referred to as Zipf’s law [28]. (c) The entropy of a T = 25 ms segment of

the spike train, as a function of the time resolution τ with which we record the spikes. We plot this as an

entropy rate, S(T, τ)/T , in bits/s; this value of T was chosen because this is the time scale on which visual

motion drives motor behavior [14]. For comparison we show the theoretical results (valid at small τ) for

a Poisson process [1], and a Poisson process with a refractory period [11], with spike rates and refractory

periods matched to the data. Note that the real spike train has significantly less entropy than do these

simple models. In Ref [11] we showed that our estimation methods can recover the correct results for the

refractory Poisson model using data sets comparable in size to the one analyzed here; thus our conclusion

that real entropies are smaller cannot be the result of undersampling. Error bars are smaller than the data

points. (d) The information content of T = 25 ms words, as a function of time resolution τ ; again we plot

this as a rate Rinfo(T, τ) = I(T, τ)/T , in bits/s.
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FIG. 5: Response conditional ensembles [29]. We consider five different neural responses, all of which are

identical when viewed at τ = 2ms resolution, corresponding to the pattern 11, spikes in two successive

bins. At left, we consider responses which, at higher time resolution, correspond to different interspike

intervals. At right, the interspike interval is fixed but higher time resolution revealed that the absolute

spike arrival times differ. In each case, we compute the median motion trajectory conditional on the high

time resolution response (lines) and we indicate the width of the distribution with bars that range plus and

minus one quartile around the median. It is clear that changes in interspike interval encode changes in the

distribution of stimulus waveform that are discriminable, since the midquartiles do not overlap. Changes in

absolute timing are more subtle, and so we estimate the conditional distributions of velocity at each moment

in time using the methods of Ref [30], compute the overlap of these distributions, and convert the result

into the equivalent signal–to–noise ratio d′ for discrimination against Gaussian noise [31]; that is d′ is a

distance between the means of two unit variance Gaussians that have the same overlap as the distributions

in question. Note that we compute this discriminability using single points in time; d′ values based on

extended segments of the waveforms would be even higher.
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FIG. 6: Redundancy reduction in the time domain. We measure the redundancy ΥI(T, τ) (points with error

bars) between words of length T in the neural response, as explained in the text. To allow exploration of

large T we work at a time resolution τ = 3ms. The redundancy is compared to correlations in the stimulus

Υv = 〈v(t+T )v(t)〉/〈v2〉 (dotted line) or correlations in the spike rate Υr = 〈δr(t+T )δr(t)〉/〈(δr)2〉 (dashed

line). Note that the redundancy decays rapidly—we show an exponential fit with a time constant of 17.3 ms.

In contrast, the correlations both in the stimulus and the firing rate decay much more slowly—the solid line,

for comparison, shows an exponential decay with a time constant of 53.4 ms. Correlations in spike rate are

calculated from a separate experiment on the same cell, with 200 repetitions of a 10 s stimulus drawn from

the same distribution, that generated more accurate estimates of r(t).
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