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Dynamic Clamp: Computer-Generated Conductances in Real Neurons 
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SUMMARY AND CONCLUSIONS 

I. We describe a new method, the dynamic clamp, that uses a 
computer as an interactive tool to introduce simulated voltage and 
ligand mediated conductances into real neurons. 

2. We simulate a y-aminobutyric acid (GABA) response of a 
cultured stomatogastric ganglion neuron to illustrate that the dy- 
namic clamp effectively introduces a conductance into the target 
neuron. 

3. To demonstrate an artificial voltage-dependent conduc- 
tance, we simulate the action of a voltage-dependent proctolin 
response on a neuron in the intact stomatogastric ganglion. We 
show that shifts in the activation curve and the maximal conduc- 
tance of the response produce different effects on the target neu- 
ron. 

4. The dynamic clamp is used to construct reciprocal inhibi- 
tory synapses between two stomatogastric ganglion neurons that 
are not coupled naturally, illustrating that this method can be used 
to form new networks at will. 

INTRODUCTION 

The electrical activity of a system of interacting neurons 
arises from a complex dynamic interplay between numer- 
ous voltage and ligand mediated conductances (Harris- 
War-rick and Marder 199 1). Remarkable progress has been 
made in describing the properties of individual membrane 
conductances by using voltage and patch-clamp methods 
(Hille 1992). However, these methods do not provide a 
direct understanding of the role each conductance plays in 
shaping the electrical activity of a neuron or network. Phar- 
macological agents can be used to block individual currents 
to assess their role in neuronal behavior (Calabrese and 
DeSchutter 1992; Meer and Buchanan 1992; Tierney and 
Harris-Warrick 1992), but lack of specificity or lack of 
availability of appropriate blockers limits the utility of this 
method. An alternate approach, computer simulation, 
(Koch and Segev 1989; Marder and Selverston 1992; Traub 
et al. 1992) is limited by the difficulty of accurately measur- 
ing all of the currents found in all of the neurons in a biologi- 
cal network. Moreover, the strengths of synapses in biologi- 
cal networks are often difficult, if not impossible, to mea- 
sure. The dynamic clamp described here offers a third and 
novel solution to this problem. Investigator-specified con- 
ductances are added to individual neurons or used to create 
artificial synapses, allowing the study of these conductances 
and synapses in functioning networks. 

METHODS 

Recordings 
Cancer borealis were purchased from local ( Boston, MA) fisher- 

men. Experiments on intact stomatogastric ganglia (STGs) were 

done as described in Weimann et al. ( 199 1). Experiments on cul- 
tured neurons were done as described in Sharp et al. ( 1992). Physi- 
ological saline had the following composition (in mM): 440 NaCl, 
11 KCl, 13 CaCl,, 26 MgCl,, pH 7.45. Recordings were made with 
single intracellular electrodes filled with 0.6 M &SO, and 20 mM 
KCl. The recording amplifiers (Axoclamp-2A) were used in dis- 
continuous current clamp mode with a sampling rate of 5 kHz. 

Current calculation 
A membrane current (I) to be applied to a neuron is given by 

I = gwzphq( V - E,) where p and 4 are integers, E, is the reversal 
potential of the current, and Vis membrane potential. The activa- 
tion and inactivation variables (Hille 1992; Hodgkin and Huxley 
1952) are described by first order, nonlinear differential equations 

dm 
T,,(V) - = m,( I,‘) - In 

dh 
dt 7/1(V) -jy = h,(V) - Cl 

where T,~, rh, In,, and h, are functions of V. 

Svnaptic conductance - 
To construct a synapse we use the membrane potential of the 

presynaptic neuron ( VP,,) to control the conductance of the post- 
synaptic neuron. The synaptic current is given by 

where E,‘, is the synaptic reversal potential and VpO,l the membrane 
potential of the postsynaptic neuron. The synaptic activation vari- 
able .r varies between zero and one and is determined by 

where &ys is given as a function of the presynaptic potential by 

for presynaptic potentials VP,, satisfying VP,, > I/th. otherwise 
TX, = 0. C/th and A are constants. 

RESULTS 

Artificial conductances 
The properties of membrane conductances can be de- 

scribed by differential equations that relate the opening and 
closing of membrane channels to membrane potential and 
time. The current flowing through a given conductance can 
be computed if one knows the membrane potential and the 
reversal potential for the conductance. The dynamic clamp 
uses a computer to control the current injected through a 
microelectrode into a cell as a function of the membrane 
potential of the cell and properties of the conductance speci- 
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FIG. 1. Dynamic clamp. A : schematic of the 
dynamic clamp. B: intracellular recording from a 
neuron in primary cell culture dissociated from 
the stomatogastric ganglion (STG) of the crab, 
C’unccr boredis ( Sharp et al. 1992). Constant hy- 
perpolarizing pulses (-0.05 nA) were applied 
every 3 s. At the upward arrow, the continuously 
flowing superfusion solution was changed for 30 s 
from control saline to 10e4 M y-aminobutyric 
acid (GABA). This procedure was repeated at the 
different potentials shown. C: same as B, but the 
dynamic clamp was programmed to simulate a 
conductance change of 8 nS with a reversal poten- 
tial of -75 mV. The conductance had an exponen- 
tial rise (7 = 5 s) and fall (7 = 15 s). 
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30 s 0.1 mM GABA 
4s 30 s GABA Simulation 

fied by the investigator. The membrane potential of a dy- through an analog-to-digital converter. On the basis of V 
namically clamped neuron is measured with intracellular and differential equations describing a model conductance 
electrodes by an Axoclamp 2A in discontinuous current- programmed into the computer, Z is computed. This is con- 
clamp mode (Fig. 1 A). I/ is transmitted to the computer verted back into an analog voltage (I/r) and transmitted to 
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FIG. 2. Artificial proctolin response. il: intracellular recordings from an inferior cardiac (IC) neuron in the stomatogas- 
tric ganglion (STG) at the potentials indicated. The artificial proctolin conductance was turned on at the upward arrow (g = 
40 nS, i:; = - 10 mV, 7, = 6 ms). The activation curve for the proctolin current is the solid line in C. B: same as A, but the 
activation curve is the dashed line in C. I? plot of the amplitude of the proctolin response as a function of I’, for the 
activation curve used in A (-) and that used in B (- - -). E: top is membrane potential; bottom is injected current. The 
neuron is hyperpolarized by the same amount as in the third trace of A. The proctolin conductance was 60 nS; other 
parameters are as in A. F: same as E except g = 90 nS. 
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the Axoclamp which injects the computed current into the 
neuron. By adjusting the parameters of the computer-im- 
plemented conductance, we control the characteristics 
(e.g., activation threshold, time constant, and reversal po- 
tential) of the simulated conductance. 

Because the current injected by the dynamic clamp at 
any moment depends on the membrane potential mea- 
sured at that time, this technique effectively changes the 
conductance of the neuron, and mimics the effects of open- 
ing real membrane channels, as illustrated in Fig. 1, B and 
C’. In both panels, pulses of constant current were applied 
to a neuron to monitor its input resistance. 10v4 M GABA 
( y-aminobutyric acid) was applied at the time indicated by 
the arrow in Fig. 113, resulting in an increase in conduc- 
tance. The GABA response was hyperpolarizing at -46 mV 
and showed a reversal potential of - -80 mV. Figure 1C 
shows the use of the dynamic clamp to mimic the GABA- 
activated conductance. As with the GABA application, the 
dynamic clamp increases the effective conductance and 
produces changes in membrane potential that depend on 
the driving force. 

Some ligand-gated conductances are voltage dependent. 
Figure 2 illustrates the use of the dynamic clamp to simu- 
late the voltage-dependent effect of the peptide proctolin 
(Golowasch and Marder 1992) on the inferior cardiac neu- 
ron (IC) of the crab STG by using the equations used in 
previous modeling studies ( Buchholtz et al. 1992; Golo- 
wasch et al. 1992). Figure 2A shows the IC neuron at four 
different levels of steady-state current injection. The simu- 
lated proctolin conductance was applied at the upward 
arrow in each of the traces. Because of the voltage depen- 
dence of the proctolin conductance, this produces a sub- 
stantial depolarization of the membrane potential when the 
neuron is at depolarized levels but relatively little effect at 
more hyperpolarized levels (Fig. 2 0). If the activation 
threshold of the simulated proctolin conductance is 
changed (Fig. 2, B and C), the proctolin activated conduc- 
tance now produces a depolarization throughout the volt- 
age range illustrated (Fig. 2, B and 0). 

Complex phenomena can result from the interaction of a 
voltage-dependent noninactivating conductance (such as 
the proctolin conductance) with other membrane conduc- 
tances (Fig. 2, E and F). The recordings in Fig. 2, E and F 
are at the same baseline membrane potential as trace 3 of 
Fig. 2A. In response to increasing the proctolin conduc- 
tance from 40 to 60 nS (Fig. 2E), the cell produced peri- 
odic bouts of bursting behavior. When the proctolin con- 
ductance was further increased to 90 nS ( Fig. 2 F), the burst 
duration increased. The voltage dependence of the procto- 
lin conductance is crucial for this behavior; it cannot be 
produced simply by depolarizing the neuron with continu- 
ous current injection (not shown). Note that increasing the 
proctolin current by increasing the maximal conductance 
produced very different effects than those produced by a 
negative shift in the activation curve (Fig. 2 B). 

The dynamic clamp can be used to create artificial chemi- 
cal synapses between two neurons. Figure 3A illustrates the 
procedure. When the presynaptic potential crosses the 
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FIG. 3. Artificial chemical synapses. ,4: schematic showing the use of 
the dynamic clamp to construct artificial synapses. B: simultaneous intra- 
cellular recordings from two stomatogastric ganglion (STG) neurons. 7%~: 
action potentials in the presynaptic neuron evoked by depolarization; hot- 
tom artificial inhibitory postsynaptic potentials ( IPSPs) in the postsynap- 
tic neuron at the potentials indicated evoked by action potentials in the 
presynaptic neuron. L&: El; is -65 mV; right: & is -80 mV. C: simulta- 
neous intracellular recordings from a Pyloric Dilator (PD) neuron and an 
Anterior Median (AM) neuron in the STG. Under control conditions 
(W/J) these neurons show no synaptic interactions. Bottom: reciprocal inhi- 
bition established between these neurons by using the dynamic clamp ( vth 
for PD = -45 mV, I$, for AM = -30 mV, and for both neuronsg = 100 nS, 
I:‘, = -80 mV, and a = 40 mV). 

threshold potential (&) the postsynaptic conductance is 
calculated as a function of the presynaptic potential and a 
deactivation time constant. The current injected into a fol- 
lower neuron is the product of the conductance and a driv- 
ing force that is the difference between the potential of the 
postsynaptic neuron and a reversal potential. Figure 3B 
shows artificial inhibitory postsynaptic potentials ( IPSPs) 
evoked in a follower neuron at different membrane poten- 
tials and illustrates the effect of changing the reversal poten- 
tial of the programmed IPSP. 

In Fig. 3C, two neurons from the stomatogastric gan- 
glion, unconnected in the control condition, were con- 
nected with artificial reciprocal inhibitory synapses. Note 
that the new synaptic connections result in a change in the 
frequency and intensity of the bursts as an emergent prop- 
erty of the new network. 

DISCUSSION 
Because the dynamic clamp creates an artificial conduc- 

tance rather than injecting current (Yarom 199 1)) it repli- 
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