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Why fly as a neurocomputing

i model system?

= Can record for long times
= Named neurons with known functions

= Nontrivial computation (motion
estimation)

= Vision (specifically, motion estimation)
IS behaviorally important

= Possible to generate natural stimuli




i Questions

= Can we understand the code?

= Which features of it are important?
= |s this a rate or a position code?
= Synergy between spikes?

= What does the fly code for?
= How much does it know?
= Is there an evidence for optimality?
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Linear decoding for sparse

i spikes (cluster expansion)

P(t, | s(¢)) ~ Poisson[r(s(t,)]

P[{z; } | s]P[s(?)]
Z

Pls(r)1{t,}]1= o< exp[log Pls(t)]— Jr(t)dt +log r(s(t, ))}

Stimulus couples spikes; but the strength of the coupling
drops with ~(f, —1,,,)/7

S =D FE—t)+ D filt—t,t—t)+...

(Bialek, Zee, 1990)



Linear decoding
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Natural stimuli
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‘L Natural stimulus and response
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Highly repeatable spikes
(not rate coding)
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How to characterize coding

i without an explicit decoding 7

S[x]=-) p(x)logp(x),  x=s,{t}

p(s,{t;})
I ’ ti — 2 ti 1 l
[5,{t,}] S{%p(s{ }) o D)




Experiment design
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i Problems

= Total of about 10-15 min of recordings (limited by
stationarity of the outside world)

= At most 200 repetitions

= Stimulus correlation of 60ms: only 10000 independent
samples (repeated or nonrepeated)

= Need to sample words of length 30 ms (behavioral) to
60 ms (stimulus) at resolution down to 0.2 ms (binary
words of length up to 100).



Naively

S << log N (negative bias >> variance for reasonable N)

13 bits for nonrepeated part
6-7 bits for repeated part

Even refractory Poisson process at this 7,7 has
over 15-20 bits of entropy!

For estimation of entropy at K / N <1 see:
Grassberger 1989, 2003, Antos and Kontoyiannins 2002, Wyner and

Foster 2003, Batu et al. 2002, Paninski 2003, Panzeri and Treves
1996, Strong et al. 1998



No universal estimator for

i S>logN

But there is hope (Ma, 1981):

For uniform K-bin distribution the first coincidence

occurs for
N ~JK =2°
S ~2logN,

Can make estimates in the nonasymptotic regime!
Can this be extended to nonuniform cases?

« Assumptions needed
- Estimate entropies without estimating distributions.



i Universal problem

= One can use entropy-based measures in
bioinformatics (conserved binding sites
search, phylogeny, haplotyping) and systems
biology (regulatory networks inference)

= They are also used in computational
linguistics, mathematical finances, and
dynamical systems theory.

= Same problem: severely undersampled data



Unbiased about distribution

i vS. unbiased about entropy

Binomial distribution with the prior uniform on p or S:
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For large K the problem is
extreme (S known a priori)
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For large K the problem is
extreme (S known a priori)
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i Uniformize on S

1 K S dS
Pﬁ({qi},ﬁ)=2 5(1_2i:1qi) jzl:l[%ﬁ E P(S‘N:O)

N=0

= A delta-function sliding along the a priori entropy
expectation.

= This is also Bayesian model selection (small B large phase
space)

= Have error bars (dominated by posterior variance in 3 not
at fixed 3 ).



i For large K

= [he problem is more severe.
= Uniformize on S (approximately).

= Will work for a certain type of
distributions only.




i For NSB solution

s Posterior variance scalesas 1/« N

= Little bias, except for distribution with long
rank-order tails.

= Counts coincidences and works in Ma
regime (if works).

= |s consistent.

= Allows infinite K

(Nemenman et al. 2002, Nemenman 2003)



Synthetic test

Refractory Poisson, rate 0.26 spikes/ms, refractory period 1.8 ms,
T=15ms, discretization 0.5ms, true entropv 13.57 bits.

Refractory spikes, 7'=15 ms, 7= 0.5 ms _ _
= Estimator is
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i Natural data (all S)
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Neural code:

i What remains hidden?

= Given entropy of slices, find the mean
noise entropy with error bars (slice
entropies are correlated and bimodal).

= Samples for total entropy are also
correlated and have long tailed Zipf
plots.

= For very fine discretizations and
T~30ms need extrapolation.




Information rate at T=30ms
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Synergy from spike
combinations
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New bits (optimized code)

« Spikes are very
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Precision is limited by
physical noise sources

We see evidence for
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i Motion prediction by fly

= Receptor delay (sampling) ~8ms

= Correlation time 60ms

= Efficient estimation possible at delays of
~JAT ~20—25ms

= Nicely matches behavioral times

= For 30ms windows, coding at <1ms
may be needed.




= One often
considers a
1/f rank-
order plot
as a sign of

intelligence.

s But...
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A very intelligent fly
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Zipf law may be a result of complexity of the
world, not the language.



