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Many cellular systems rely on the ability to interpret spatial heterogeneities in chemoattractant concentration to direct
cell migration. The accuracy of this process is limited by stochastic fluctuations in the concentration of the external
signal and in the internal signaling components. Here we use information theory to determine the optimal scheme to
detect the location of an external chemoattractant source in the presence of noise. We compute the minimum amount
of mutual information needed between the chemoattractant gradient and the internal signal to achieve a prespecified
chemotactic accuracy. We show that more accurate chemotaxis requires greater mutual information. We also
demonstrate that a priori information can improve chemotaxis efficiency. We compare the optimal signaling schemes
with existing experimental measurements and models of eukaryotic gradient sensing. Remarkably, there is good
quantitative agreement between the optimal response when no a priori assumption is made about the location of the
existing source, and the observed experimental response of unpolarized Dictyostelium discoideum cells. In contrast, the
measured response of polarized D. discoideum cells matches closely the optimal scheme, assuming prior knowledge of
the external gradient—for example, through prolonged chemotaxis in a given direction. Our results demonstrate that
different observed classes of responses in cells (polarized and unpolarized) are optimal under varying information
assumptions.
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Introduction

Recently, there has been considerable research demon-
strating the critical role played by random fluctuations in
cellular signaling systems [1–3]. Stochastic variations are
found in the external signaling molecules [4] as well as in the
intracellular components [5]. They arise because of the small
number of molecules involved in signaling and play signifi-
cant roles in gene regulatory networks [6–10] as well as in
prokaryotic [5,11] and eukaryotic signal transduction path-
ways [4,12,13].

The proper functioning of cellular signaling networks
requires mechanisms that can tolerate the effects of noise
[14]. However, questions remain as to how to evaluate the
performance and efficiency of these cellular decision-making
systems. How well does the signaling network of a cell make
decisions based on the signaling cues available? Can improve-
ments be made by altering the parameters or structure of the
network? How efficiently are resources used? Here we argue
that rate distortion theory [15], a branch of information
theory, can be used to evaluate the effectiveness of such
systems.

The application of information theory to the study of
biology has been under way for some time [15–18] and has
received considerable attention in the fields of neuroscience
[19] and genetics [20–21]. However, the full breadth of this
utility for biological signaling systems, in general, has not
been realized, primarily because of the difficulty of defining
‘‘information’’ in general biological systems. Here we use rate
distortion theory as a tool to study performance–cost
tradeoffs in general spatial gradient sensing mechanisms,

similar to those found in many eukaryotic cells, including
neutrophils and amoebae. Rate distortion theory provides
bounds on the rate at which information must be transmitted
through a system to achieve a given performance criterion.
Our results demonstrate that, depending on the prior
knowledge that a cell has about its chemoattractant environ-
ment, different optimal chemotaxis strategies exist. Further-
more, we show that differences in the observed behaviors of
unpolarized and polarized chemotactic cells correspond to
these various optimally efficient decision-making processes.

Results

To use rate distortion theory to determine optimal
gradient sensing strategies, we develop a theoretical model
of the cellular decision process. We define the system input
Hs to be a random variable that denotes the angle of the
chemoattractant field (Figure 1A). In all notation that follows,
random variables are denoted by capital letters, and lower-
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case denotes deterministic variables or realizations of
random variables. Based on the perceived chemoattractant
gradient, the cell responds by selecting an angle Hr, which is a
random variable that can represent either the location of
intracellular markers of gradient sensing, such as phosphoi-
nositide lipids [22] or the directional bias in which new
pseudopods are generated [23,24]. The signal transduction
network that generates hr based on hs incorporates binding
and downstream signaling processes. It is modeled as the
conditional probability distribution pHr jHsðhrjhsÞ (Figure 1B).

We assume that Hs arises from one of two classes of source
distributions (pHsðhsÞ). The first class assumes that Hs is
uniformly distributed and is representative of a cell with no a
priori directional bias. This distribution would be expected in
‘‘naı̈ve’’ cells that have no previous exposure to chemo-
attractant gradients (Figure 1C). The second, a normal
distribution with mean lHs

and variance r2
Hs
, represents

biased cells that expect gradients to come predominantly
from a predetermined direction (lHs

) (Figure 1D). This bias
may correspond to that of cells that have experienced
prolonged exposure to a chemoattractant source in a fixed
direction.

Because the goal of a chemotaxing cell is to navigate (Hr) in
the direction of greatest ligand concentration (Hs), we
characterize the quality of this decision with a distortion
function that is related to the chemotactic index:

dðhs; hrÞ ¼
1
2
ð1� cosðhr � hsÞÞ: ð1Þ

The distortion function is zero—that is, there is no
distortion—when the directional response of the cell is
aligned with the gradient, and one when the two differ by
1808.

Using this model, we computed the rate distortion function
(R(D)) (Figure 1E, Materials and Methods). This function
describes the minimum amount of mutual information (units
of bits) between stimulus and response required for the cell to
achieve a given expected distortion (E[d] � D) when making a
gradient sensing decision. For both classes of distributions,
the rate distortion function is a decreasing function of

required fidelity. Moreover, the rate distortion curve for a
normal distribution lies below that for the uniform source
distribution for all values of D. Thus, more information is
needed to achieve a required level of fidelity when the cell has
no a priori knowledge of the chemoattractant direction.
To investigate further the differences in cellular response

to the two classes of a priori knowledge, we computed the
map pHr jHsðhrjhsÞ that yields a given point on the rate
distortion curve. These maps represent the optimal signaling
scheme for any required fidelity (Figure 2). For naı̈ve cells, the
optimal pHr jHsðhrjhsÞ is characterized by a distribution whose
peak is at the angle of the external gradient and whose spread
is determined by the required fidelity. More precise chemo-
taxis (smaller D) requires sharper distributions (Figure 2A–
2D).
For cells that have an a priori bias, the optimal pHr jHsðhrjhsÞ

depends on the allowable distortion and the degree to which
the gradient is co-aligned with the bias direction (Figure 2E–
2P). For large allowable distortions (D ¼ 0.2), essentially no
information about the stimulus is required, and a distribution
pHr jHsðhrjhsÞ centered at the direction of bias and independent
of the chemoattractant gradient is sufficient (Figure 2F, 2J,
and 2N). As with naı̈ve cells, the optimal response becomes
uniform as the allowable distortion increases (Figure 2E, 2I,
and 2M). However, for more stringent requirements (smaller
D), the optimal decision is more narrowly distributed—
particularly when the gradient and bias angle are co-aligned.
When these two angles are not aligned, the optimal decision
process follows a complex function of the gradient and
internal bias angles. For large allowable distortion, the
decision tends to point toward the angle of the preexisting
bias (Figure 2J, 2N, and 2O). However, as the required fidelity
becomes more stringent, the optimal decision increasingly
reflects the direction of the chemoattractant gradient (Figure
2K, 2L, and 2P). In particular, when the bias and gradient
angle are misaligned by 1808, the optimal response for
stringent distortions is almost opposite the bias (Figure 2P).
As D decreases even further, the optimal response approaches
complete alignment with the gradient (unpublished data).
We next determined the effect of the optimal stimulus–

response maps on chemotaxing cells through simulation
(Figure 3, Materials and Methods). Cells in a 2-D environment
were exposed to a ligand source at a fixed location, and their
final position after chemotaxing for 400 s was observed
(Figure 3A). Both naı̈ve and biased cells chemotax more
efficiently (p , 10�9 using Student’s t-test) if their decision
process is optimized for more stringent chemotactic index
requirements (smaller distortion). Moreover, cells that em-
ploy the strategy optimized under a preexisting bias chemo-
tax better (p , 10�9) than those whose decision strategy is
optimal for a uniform source distribution.
The simulations above demonstrate the advantage of

having a biased distribution when this is co-aligned with the
gradient. To explore the effect of an inaccurately biased
assumption, we computed the average trajectory of cells in
the presence of a source that changes location with time. Cells
optimized for uniform source distributions change direction
immediately in response to changes in attractant location
(Figure 3B). However, cells that are optimal for a preexisting
bias respond initially by continuing to move in the direction
of the previous gradient and change direction in a more
gradual manner (Figure 3C).

PLoS Computational Biology | www.ploscompbiol.org August 2007 | Volume 3 | Issue 8 | e1531490

Author Summary

For many cell types, the direction of migration is determined in
response to spatial differences in the concentration of chemo-
attractant, a process known as chemotaxis. Precise chemotaxis—
that is, motility with low directional distortion—requires that cells
make accurate decisions based on the stochastic fluctuations
inherent in cell-surface receptor occupancy. Here, we use rate
distortion theory, a branch of information theory, to determine
chemotaxis strategies for cells based on this imperfect information
about their environment. In engineering, rate distortion theory
provides the information processing capabilities required to achieve
a desired accuracy. We demonstrate that more accurate chemotaxis
requires greater information. We also show that a priori information
can improve chemotaxis efficiency. We compare the optimal
signaling schemes to existing experimental measurements and
models of eukaryotic gradient sensing and demonstrate that
different observed types of cellular responses (polarized and
unpolarized) are optimal under varying information assumptions.
Our results also highlight the constraints that noise places on the
performance of cellular systems.
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The distributions of Figure 2 provide the optimal strategies
given a required minimal chemotactic efficiency. To compare
these theoretically optimal performances with the signaling
pathway of chemotaxing cells, we used a local-excitation,
global-inhibition (LEGI) model previously proposed to
explain the gradient sensing pathway of D. discoideum [25–
27]. The model differs from previous versions in that the
response subtracts the minimum receptor occupancy (Mate-
rials and Methods). This model is also parameterized by a Hill
coefficient that describes the degree of amplification, relative
to the external gradient, observed in the cell’s response [28].
Experimentally, Hill coefficients between 3 and 7 have been
observed in the chemoattractant-mediated asymmetric local-
ization of phosphoinositides in D. discoideum and neutrophils
[27–29].
We computed the expected distortion and mutual in-

formation for the stimulus–response map characterized by
the LEGI model for a range of Hill coefficients under both
uniform and normal source distributions (Figure 4A and 4B).
For comparison with the optimal lower bound provided by
the rate distortion curve, these were plotted as points on the
same distortion–information plane as R(D) (Figure 4C and
4D). For both types of distributions, increasing the Hill
coefficient decreases expected distortion. Remarkably, for the
uniform case, all points lie on the rate distortion curve
(Figure 4C), suggesting that cells employing a LEGI mecha-
nism to guide directional decisions are optimized to
minimize the expected distortion for a given information
constraint under uniform source distributions. For normally
distributed gradients, the points lie above the rate distortion
curve (Figure 4D) implying less than optimal information
processing. However, the degree of non-optimality decreases
with increasing Hill coefficient.
To investigate the effect of the ligand profile on decision-

making performance, we repeated the above computations
for different mean levels of chemoattractant and gradient.
We first fixed the gradient (610% across the radius of the
cell) and varied the mean level of chemoattractant (Figure
4E). The least amount of distortion and highest mutual
information was found for ligand concentrations around Kd.
At lower chemoattractant concentrations, the binding noise
dominates; at higher concentrations, receptor saturation
reduces the cell’s ability to sense the gradient. As expected,
when the mean level of chemoattractant was fixed (at Kd), the
expected distortion decreased and the mutual information
increased for higher gradients (Figure 4F). Interestingly, in all
cases, the performance of the LEGI model lies along a single
curve in the distortion–information plane—the effects of
noise and variations in other system parameters simply slides
the performance point along this curve (Figure 4E–4F).
The above results demonstrate that the output distribu-

Figure 1. Gradient Sensing Model and Chemoattractant Gradient

Distributions

(A) We assume that cells are exposed to a linear gradient coming from a
randomly chosen angle Hs and respond by localizing intracellular
markers or extending pseudopods at an angle Hr.
(B–D) The actual response angle Hr¼ hr is determined by the conditional
probability distribution pHr jHs

ðhr jhsÞ (stimulus–response map). We later
assume this map to consist of a ligand-receptor binding component that
yields ligand-bound receptor complexes C and a downstream signaling
component (Materials and Methods). Two classes of gradient angle
distributions are assumed: uniform (C) and normal (D). The former is
appropriate to describe cells that have been newly introduced to a
gradient or cells that are experiencing rapid changes in the location of

the chemoattractant source. A normal distribution is suitable for cells
that have experienced stimulation by and chemotaxis toward a source of
attractant—such as seven-hour D. discoideum cells that are in a stream
[22].
(E) Shown are the rate distortion functions for the uniform (red) and
normal (blue) source distributions with a mean and variance for the
normal distribution of lHs

¼ 0 and r2
Hs
¼ 458, respectively. The rate

distortion curve (R(D)) represents the minimum amount of information
(units of bits) required to meet a given distortion requirement (E[d] � D).
For a given D, the mutual information curve between signal and
response for any practical scheme must lie above this limit.
doi:10.1371/journal.pcbi.0030153.g001
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tions of the LEGI mechanism match those optimal for
uniformly distributed gradient angles. To examine how this
signaling mechanism may be modified to account for biased
input–output maps (i.e., those optimal for normally distrib-
uted gradient angles), we combined gradient amplification
from the LEGI model with a previously proposed model of
directional sensing that incorporates an internal bias [13]
(Materials and Methods). In this model, the cell responds to a
signal that combines the external gradient and an internal
cue that has a spatial predisposition toward an angle hb. The
degree to which hb contributes is quantified by a parameter e.
The value of e represents the extent to which the cell is biased
toward a given location. As e increases, the contribution of
the internal bias increases and the most probable response
angle moves closer to hb.

We computed the response of this modified LEGI model to
a chemoattractant source under both unbiased (e ¼ 0) and
biased (e 6¼ 0) assumptions for a variety of e and h
(unpublished data) and compared the responses with the
optimal signaling maps. The optimal response for uniformly
distributed source angles was captured well by the model with
no bias (e ¼ 0). This optimality of the unbiased LEGI
mechanism was seen previously (Figure 4C), and the expected
distortion for which the model is optimal is dependent upon

h. For example, e¼ 0, and a Hill coefficient of h¼ 4.8 yields a
model response that closely matches the optimal response of
an unbiased cell with an allowable distortion of D ¼ 0.1
(Figure 5A).
The optimal response to normally distributed source angles

was captured well by the modified LEGI model with nonzero
bias (e 6¼ 0). The angle variance r2

Hs
and allowable distortion D

for which the model was optimal is dependent on h and e. The
optimal response for D ¼ 0.1 and a normally distributed
source angle with r2

Hs
¼ 458 is matched well by the model

when e¼ 0.12 and h¼ 8.8 (Figure 5B–5D). Note that when the
gradient is aligned with the bias and D is fixed, the apparent
amplification for biased cells is larger than that for naı̈ve cells
(Figure 5A–5B). This is consistent with experimental data
which shows that polarized cells have higher amplification
than unpolarized cells [28].

Discussion

A common challenge among cellular signaling systems is
making decisions based on noisy chemical cues that offer
incomplete information about the environment. This is
particularly true for chemotaxing cells such as D. discoideum
and neutrophils that must determine the direction of a
chemical gradient. Accurate gradient sensing is hindered by
diffusive fluctuations in the concentration of chemoattrac-
tant as well as random variations inherent in the dynamics of
the signaling process [30,31]. Here we use rate distortion
theory as a quantitative framework within which to study the
effectiveness of gradient sensing strategies with respect to
underlying costs and performance objectives. Rate distortion
theory gives the strategy that minimizes the information that
must be acquired about the gradient direction to satisfy given
performance constraints. Because the input (gradient angle)
is noisy, zero distortion is not possible. We use this optimal
strategy as a benchmark with which to compare responses
observed in chemotaxing cells.
Our results help explain differences in observed behavioral

responses of polarized and unpolarized D. discoideum cells [22].
D. discoideum cells acquire the ability to chemotax to external
cAMP gradients approximately four hours after starvation.
Initially, cells show uniform sensitivity to chemoattractant
signals around their perimeter. Moreover, when exposed to
changes in the gradient, these unpolarized cells respond by
redistributing intracellular markers rapidly. The unpolarized
behavior can be induced through the addition of chemicals,
such as Latrunculin A, that inhibit actin polymerization but
leave intact the ability to detect spatial gradients and respond
by redistributing several internal markers [27,28].
Using rate distortion theory, we showed that many of these

characteristics can be obtained as optimal strategies for cells
that make no a priori assumption on the direction of the
external gradient. In particular, cells that assume uniformly
distributed gradients show uniform sensitivity (Figure 2A–2D)
and change direction rapidly when the chemoattractant field
changes (Figure 3B). Previously, it has been shown that the
cAMP response of unpolarized cells is closely captured by the
LEGI model. Our results show that, when the minimum
receptor signal is subtracted everywhere (Materials and
Methods), the LEGI mechanism is optimal in terms of the
rate distortion function for cells that have no a priori
knowledge of their environment (Figures 4 and 5A). Without

Figure 2. Optimal Gradient Sensing Performance

Circular histogram describing the stimulus–response map pHr jHs
ðhrjhsÞ

that achieves points R(D) on the rate distortion curve for various required
levels of distortion (D¼ 0.5, 0.2, 0.1, and 0.05). The length of each line is
proportional to the probability that the cell will respond in the direction
shown. All panels assume that the chemoattractant gradient is toward
the top of the figure.
(A–D) Describe the response of cells that are optimized for a uniform
source distribution.
(E–P) Depict the response of cells optimized for a normal source
distribution where the mean is indicated by the direction of the black
arrow inside the circle and the variance is 458. In (E–H) the internal cue is
co-aligned with the gradient; in (I–L) they are 908 apart; in (M–P) they are
1808 apart.
doi:10.1371/journal.pcbi.0030153.g002
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the subtraction, the matches between model and optimal
response are not as good and require unreasonably high Hill
coefficients. The subtraction can represent an internally
derived threshold such as has been observed experimentally
[28] and previously modeled [32].

After a prolonged period of directed motion to an existing
gradient, D. discoideum cells become increasingly polarized,
acquiring distinctive leading and trailing edges. The anterior
portion of these cells is more sensitive, so that cells that
experience a change in the chemoattractant environment will
turn toward the new direction of gradient. This polarity can
be changed, however, by steep gradients [22]. We are able to
capture these observed behaviors using rate distortion theory
by assuming that the cell has a priori knowledge of the
direction of the chemoattractant gradient. This assumption
would be reasonable for cells, such as D. discoideum cells
starved for seven hours, that have been chemotaxing in a
given direction for several hours (so-called streaming cells).
Cells whose signaling scheme was optimal with respect to
normally distributed gradients respond in directions that
take this prior knowledge into account (Figure 2E–2P) and
are more efficient than cells that make no such a priori
assumption (Figure 3A). When the angles of the preexisting
bias and chemoattractant field agree, the optimal signaling
schemes show greater amplification of the external gradients
than those where no a priori assumption is made (Figure 2B–
2D versus Figure 2F–2H), as has been observed experimen-

tally in cellular responses [13,28]. This suggests that, to
tolerate a given level of distortion, the presence of prior
(correct) knowledge allows the cell to follow the gradient
more aggressively. These biased signaling schemes also display
turning behavior to changes in gradient location (Figure 3C).
Moreover, the degree to which the preexisting bias dominates
the response can be overcome by either more stringent
distortion requirements (Figure 2O versus Figure 2P), or by
stronger external gradients (unpublished data). The optimal
signaling response of these systems is matched accurately by a
modified LEGI mechanism [13] that allows for an internal cue
(Figure 5B–5D). In D. discoideum, this internal directional cue
may be effected by asymmetric distributions of G-proteins
[33]. Other cells, such as S. cerevisiae may rely on receptor
redistribution [34].
Our results demonstrate that demanding higher fidelity

(lower distortion values) leads to improved chemotaxis
(Figure 3). Lower values of D require greater amplification
of the external chemoattractant gradient in the optimal
signaling scheme (Figure 2) and are recovered by the LEGI
model with higher Hill coefficients (Figure 4). For cells with
no a priori bias, D¼0.1 and 0.2 require Hill coefficients of 4.8
(Figure 5A) and 2.0 (unpublished data), respectively. Exper-
imental quantification of this amplification in both unpolar-
ized D. discoideum cells (3.1 6 0.89) and neutrophils (3.25 6

2.0) suggests that the signaling mechanism has been opti-
mized for a value of D ’ 0.15 (Figure 6A [28,29]). For biased

Figure 3. Chemotaxis Simulation for Cells Optimized under Various Gradient Assumptions

(A) For each simulation, cells were initially at the origin (0,0) of a 2-D environment and exposed to a point source of attractant 100 lm to the right.
Chemotaxis was simulated for 400 s and the cells’ final position noted. Shown is the scatter plot of the final position of 500 cells employing the optimal
stimulus–response map for a uniform source distribution with average distortion D¼0.2 (green), uniform source with D¼0.1 (blue), normal source with
D¼0.2 (orange), and normal source with D¼0.1 (red). Final distance from the source for naı̈ve cells: 60 6 8 lm for D¼0.2, 45 6 4 for D¼0.1; and 40 6
3 for D¼ 0.2 versus 37 6 2 for D¼ 0.1, for biased cells.
(B,C) Mean trajectory of simulated cells employing the optimal stimulus–response map for uniform (B) and normal (C) source distributions with average
distortion D¼ 0.1. Cells were exposed to an attractant source at location (100,0) at time 0 s (blue star) followed by a source at location (�50,50) at 500 s
(red star) and (50,�50) at 900 s (green star). The dots indicate the average of 500 cell trajectories. The insets show the stimulus–response maps, as in
Figure 2, at several points before and after a change in gradient source. For all simulations, position units are lm, cell velocity is 10 lm/min, and biased
cells are optimized for a variance of r2

Hs
¼ 458.

doi:10.1371/journal.pcbi.0030153.g003
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cells, the optimal response depends not only on the allowable
distortion D, but also on the variance r2

Hs
, which is a

reflection of how certain the cell is of the gradient angle.
For optimal gradient sensing, a higher degree of certainty
(smaller r2

Hs
) must be matched by a larger emphasis on the

internal bias signal in the model (larger e) (Figure 6B).
Furthermore, less stringent allowable distortions require less
information about the gradient angle and thus are achieved
with a larger emphasis on the bias (larger e).

As lower values of D would lead to more efficient
chemotaxis (Figure 3), it is worth asking why smaller values
are not seen experimentally. Our results do not consider the
cost associated with demanding more accurate fidelity. To
achieve lower distortion values requires that the cell have

increasingly greater information about the chemoattractant
environment (Figure 4B). However, obtaining this informa-
tion is costly. In engineering systems, this information cost is
quantified by the number of bits of information that must be
processed. How to quantify information in a biological
system is less clear, though the likely measure is based on
energetic costs. Energy has been previously suggested as a
means of measuring the cost of information [16,17] and some
progress has been made in this area in neurobiology [35,36];
however, the energetic costs associated with more general
cellular signaling mechanisms are less certain. Recent analysis
reveals that increasing amplification, either through allosteric
cooperativity or covalent modification, requires larger free
energy [37]. Coupled with our findings that lower distortion
requires greater amplification (higher Hill coefficient) to
achieve greater mutual information between stimulus and
response, these results highlight that the improving chemo-
tactic performance comes with increasing costs.
The feasibility of using the rate distortion framework to

evaluate the decision-making performance of a particular
biological signaling network depends primarily on the ability
to characterize the signaling source distribution and the
distortion function. Specifying a distortion function requires
a quantitative description of a specific goal for the cell, which
is not always possible. However, performance analysis of
various distortion functions may reveal which objectives the
cell has evolved to best address. Also, it is often reasonable to

Figure 5. Comparison of Modified LEGI Model to the Optimal Response

Distribution

(A) Probability distribution of the response to a gradient angle of hs¼ 0
that optimally achieves the rate distortion curve with D ¼ 0.1 for Hs

uniformly distributed (dark red circles). Also shown is the response to hs

¼ 0 of the LEGI model with h¼ 4.8 (light red line).
(B–D) Probability distribution of the optimal response for D ¼ 0.1 to a
normally distributed input with variance 458 and an observed gradient
angle that differs from the mean (bias) by 08, 908, and 1808 (dark blue
circles in (B), (C), and (D), respectively). Also shown is the response of the
modified LEGI model with e ¼ 0.12 and h¼ 8.8 (light blue lines).
In all panels (A–D), binding is excluded from the computations of the
model response (i.e., Yi ¼ L(hi)) so as to more accurately compare Hill
coefficients to experimental observations. Inclusion of binding also yields
good fits to the optimal response, only with slightly larger Hill
coefficients.
doi:10.1371/journal.pcbi.0030153.g005

Figure 4. Achievable Performance of the LEGI Model of Gradient Sensing

(A) Expected distortion of the LEGI model for various degrees of
amplification (characterized by an effective Hill coefficient h) when the
probability distribution of the direction of the attractant gradient is
uniform (red) and normal (blue).
(B) Mutual information between stimulus and response for a uniform
(red) and normal (blue) source distribution for varying Hill coefficients.
(C–D) Superimposed plots of the best achievable rate (black line) as well
as the LEGI model (red and blue circles) for varying Hill coefficients (h)
assuming either uniform (C) or normal (D) source distributions.
(E–F) Expected distortion versus mutual information for various Hill
coefficients (h) under different chemoattractant gradients and a
uniformly distributed gradient angle. In (E) the gradient is 10% and the
midpoint concentration is 0.1Kd (blue circles), Kd (red squares), and 10 Kd

(green triangles). In (F) the midpoint concentration is Kd and the gradient
is 65% (blue circles), 610% (red squares), 615% (green triangles), and
620% (light blue triangles). Parameters used in (A–D) are N ¼ 50, a ¼
220, b ¼ 20, Kd¼ 200, RTi

¼ 1; 000 for all i, lHs
¼ 0, and r2

Hs
¼ 458.

doi:10.1371/journal.pcbi.0030153.g004
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assume that the signaling mechanisms of at least simple
cellular systems balance performance–cost tradeoffs nearly
optimally [14,38]. In light of this, rate distortion theory is a
useful tool in providing insight into the types of decision-
making processes that cellular systems are likely to utilize.

Materials and Methods

Model. The gradient sensing system detects an input gradient
signal hs that arises from a probability distribution pHs ðhsÞ. The
cellular signaling network, described by the conditional distribution
pHr jHs ðhrjhsÞ, yields an output hr that indicates the direction of cell

movement in response to the gradient. The distortion function
dðhs; hrÞ is a measure of how well the response is aligned with the
gradient. Smaller distortions represent better alignment.

Rate distortion. The entropy, HðHsÞ, of the random variable Hs
characterizes the amount of uncertainty in the gradient direction:
HðHsÞ ¼ �RpHs ðhsÞlogðpHs ðhsÞÞ. The mutual information I(Hs; Hr)
between Hs and Hr is the reduction in uncertainty of the gradient
direction given the response direction. Mathematically,

IðHs; HrÞ ¼
X
hs

X
hr

pHs ðhsÞpHr jHs ðhrjhsÞlog
pHr jHs ðhrjhsÞX

hs

pHs ðhsÞpHr jHs ðhrjhsÞ

¼ HðHsÞ �HðHsjHrÞ

:

The rate distortion function gives the minimum rate R(D) (with
units of bits) at which data must be transmitted through the system so
that the expected distortion is no greater than some preset level D;
i.e., E[d(Hs,Hr)] � D for a given D and a given input distribution
pHs ðhsÞ. It is known that [39]

RðDÞ ¼ min
pHr jHs ðhr jhsÞ:E½dðHs ;HrÞ��D

IðHs; HrÞ:

While the term ‘‘rate’’ here is not clearly defined in the context of
the biological system, we can view rate distortion as providing a lower
bound on the information processing of downstream cellular
networks required to achieve certain performance criteria.

Computation of R(D). In general, the rate distortion function is
given by

RðDÞ ¼ min
pHr jHs ðhr jhsÞ:

P
ðhs ;hr Þ

pHs ðhsÞpHr jHs ðhr jhsÞdðhs;hrÞ�D
IðHs; HrÞ: ð2Þ

and can be solved using the method of Lagrange multipliers [39].
Theoretical solutions are well known for common source distribu-
tions and distortion functions such as Gaussian and squared error,
respectively. However, in our system an analytical solution is
intractable, so we solve the problem computationally using the
Blahut-Arimoto algorithm described in Chapter 13 of [39]. The basic
steps are as follows: we assume a particular marginal output
distribution pHr ðhrÞ. In our computations, we initialize pHr ðhrÞ as a
uniform distribution. We then compute the conditional distribution
pHr jHs ðhrjhsÞ that minimizes the mutual information subject to the
distortion constraint. Next, given pHr jHs ðhrjhsÞ, we compute the
marginal distribution pHr ðhrÞ that minimizes the mutual information.
We then repeat these last two steps until convergence. The limiting
mutual information as these steps are carried out has been shown to
be R(D) where D is determined by the Lagrange multiplier chosen in
the minimization.

Computation of I(Hs; Hr). In Figure 4, estimation of the mutual
information between the gradient angle Hs and the cell’s directional
response Hr is computed as follows. First, 100,000 independent
instances of the input are generated in Matlab version 7.3 (Math-
works, http://mathworks.com) according to the source distribution.
Then, after computing the corresponding bound-receptor concen-
tration (c) for each input, a random output is generated for each
input via the distribution pHr jHs ðhrjhsÞ. Given each input–output pair,
the mutual information is estimated using the Matlab command
information.m, developed by R. Moddemeijer [40].

Chemotaxis simulation. We simulated a cell chemotaxing toward a
point source of attractant in a 2-D environment in Matlab. Define the
position of the cell and source at time step k as (x1(k),x2(k)) and
(s1(k),s2(k)), respectively. At each simulation time step, the cell
measures hs(k), the source angle, as tan�1[(s2(k) – x2(k))/(s1(k) – x1(k))].
The direction of cellular movement is then randomly generated
based on the input–output map pHr jHs ðhrðkÞjHs ¼ hsðkÞÞ, and the cell’s
position at time step kþ 1 is computed as

x1ðkþ 1Þ ¼ x1ðkÞ þ vcosðhrðkÞÞs
x2ðkþ 1Þ ¼ x2ðkÞ þ vsinðhrðkÞÞs

where v is the velocity of the cell and s is the size of the simulation
time step in seconds.

The input–output map pHr jHs ðhrðkÞjHs ¼ hsðkÞÞ is computed as the
optimal conditional distribution that achieves the point (D,R(D)) on
the rate distortion curve with D ¼ 0.1 for both uniform and normal
source distributions pHs ðhsðkÞÞ (Figure 2). For the case of a normal
source distribution, the optimal pHr jHs ðhrðkÞjHs ¼ hsðkÞÞ at time k is
computed assuming Hs has mean lHs

ðkÞ (the bias) and variance r2
Hs
¼

458, where lHs
ðkÞ is the average of the six previous input values (two

minutes of data). To avoid periodicity complications, we compute
lHs
ðkÞ as

Figure 6. Optimal Model Parameters

(A) Plotted is the Hill coefficient h that best fits the LEGI model to the
optimal response function that achieves R(D) for Hs distributed uniformly
and varying D. The optimal response for a distortion of D ’ 0.15 is best
fit by the LEGI model with a Hill coefficient of h ’ 3.17 (inset), which is
close to that observed in unpolarized D. discoideum cells (3.1 6 0.89) and
neutrophils (3.25 6 2.0) [28,29].
(B) The value of e for which the response of the modified LEGI model
matches the optimal response depends on the allowable distortion D
and the gradient angle variance r2

Hs
. Larger e (larger contribution of the

internal bias signal b to the overall response) is required for smaller r2
Hs

and larger D. As in Figure 5, binding is excluded from the model
response.
doi:10.1371/journal.pcbi.0030153.g006
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lHs
ðkÞ ¼ tan�1

1
6

X5
i¼0

sinðhsðk� iÞÞ

1
6

X5
i¼0

cosðhsðk� iÞÞ

0
BBBB@

1
CCCCA
:

This adjustment of lHs
over time simulates a realignment of the

cell’s a priori presumption of the source location as time progresses.
With no adjustment, a cell would continue to bias its directional
decision toward a given source location, even after that source has
moved, and successful chemotaxis would not occur. Parameters used
are s ¼ 20 s and m ¼ 10 lm/min.

Gradient sensing model of D. discoideum. Our model is based on
previously published models [13,26,27]. In these cells, ligand concen-
tration is sensed by receptors that are found uniformly distributed
along the membrane of the cell. We divide the cell into N sectors, hi, i
2 (1, . . . , Ng, and assume that receptors in each sector interact
independently with ligand molecules in the vicinity of the sector. The
discrete random variable Hs denotes the angle of greatest ligand
concentration (the gradient or source angle) and takes values on the
set fh1, . . . , hNg. Assuming a linear gradient of ligand in the
environment and a particular gradient angle Hs ¼ hs, the ligand
concentration in the vicinity of sector hi is L(hi) ¼ a � b(1 � cos (hi �
hs)), where a and b are the maximum ligand concentration
experienced by the cell and the size of the gradient, respectively.

Binding is assumed at steady state so that, given the gradient
direction Hs ¼ hs, the probability distribution (pCi ðciÞ) of bound
receptor complexes (Ci) in sector i is normal with mean lCi

¼
LðhiÞRTi=½Kd þ LðhiÞ� and variance r2

Ci
¼ LðhiÞRTiKd=½ðKd þ LðhiÞÞ2�,

where RTi is the total receptor concentration in sector i and Kd is the
ligand-receptor binding dissociation constant, assumed to be the
same for all sectors [41]. Unless otherwise specified, we use N¼ 50, Kd

¼L0, where L0 is the ligand concentration at the center of the cell and
RTi ¼ 1; 000 for all i [31,42].

Following the work of Samadani et al. [13], which is based on a
phenomenological model, we assume the response of the cell in
sector i is characterized by an effective signal Yi, which combines the
effect of the external gradient and an internal bias: Yi ¼ Cibi. The
internal bias is given by:

bi ¼ 1þ ecosðhi � hbÞ;

where the angle hb represents the direction of the internal bias, and
the variable e is the magnitude of the internal bias contribution.
When e ¼ 0, the cell is unbiased.

To relate the signal Yi to the probability of moving in a particular

direction, we employ a LEGI mechanism [25–27]. In this mechanism,
the response signal in a given direction is determined by the ratio
of the local signal (Yi) to a global signal that is representative of
the mean level of local signal ( 1

N

P
j Yj). We model the effect of

amplification phenomenologically through a Hill coefficient, so that
the response at a location hi along the membrane equals

Yh
i

1
N

X
j

Y h
j

:

Fitting this model to match the optimally derived responses leads
to extremely large Hill coefficients (h . 20). Better matches that also
require smaller Hill coefficients are found when we subtract the
minimum before amplification, so that the response at angle hi is:

rðhiÞ ¼
ðYi �minkYkÞh

1
N

XN
j¼1
ðYj �minkYkÞh

:

This minimum subtraction mimics observed responses of cells that
suggest that there is no response at the rear of the cell [28].

Finally, normalization leads to the conditional probability distri-
bution between bound-receptor concentration and the response
angle given by:

pHr jCðhijcÞ ¼
rðhiÞX
j

rðhjÞ
:
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